Math 614, Fall 2010 Due: Monday, December 13 Problem Set #5

1. Let M and N be finitely generated modules over the Noetherian ring R. Let $I = \operatorname{Ann}_R M$ and let $J = \operatorname{Ann}_R N$. Show that the support of $M \otimes_R N$ is V(I+J) (there is a class result that is relevant). Show that the support of $\operatorname{Hom}_R(M, N)$ is $\subseteq V(I+J)$.

2. Let $I \neq R$ be an ideal of a Noetherian ring R and let $I = Q_1 \cap \cdots \cap Q_n$ be an irredundant primary decomposition of I. Let $P_i = \text{Rad}(Q_i)$. For all $N \gg 0$, let $Q_{i,N}$ be the contraction to R of $(P_i^N + I)R_P$. Show that for all $N \gg 0$, $Q_{i,N} \subseteq Q_i$, is primary to P_i , and that replacing Q_i by $Q_{i,N}$ for such an $N \gg 0$ gives a primary decomposition of I.

3. Let P be a prime ideal of R, a Noetherian ring, and let W = R - P. Let $P^{(n)}$ be the *n*th sybolic power of P, i.e., the contraction of $P^n R_P$ to R. Let J be $\bigcup_{w \in W} \operatorname{Ann}_R w$. Prove that $J = \bigcap_{n=1}^{\infty} P^{(n)}$.

4. Let *R* be a Noetherian ring, and let *M* be a finitely generated *R*-module. Let *I* be an ideal of *R*. Let $N = \operatorname{Ann}_M I$. Prove that $\operatorname{Ass}(M) = \operatorname{Ass}(N) \cup \operatorname{Ass}(M/N)$. (By a class theorem, one has \subseteq . The problem is to prove \supseteq , which is false in general but true here.)

5. Let R be a Noetherian graded ring over \mathbb{N}^h or \mathbb{Z}^h , where $h \ge 1$, and let M be a graded module (for \mathbb{N}^h or \mathbb{Z}^h)

(a) Show that all associated primes of M are homogeneous ideals (for the \mathbb{N}^h or \mathbb{Z}^h grading). [Suggestion: if P is the annihilator of a nonzero element $u \in M$, replace u by a nonzero multiple $v = v_1 + \cdots + v_d$, where the v_i are the nonzero homogeneous components of v, such that d is as small as possible. Then show that all of the v_i have annihilator P.]

(b) Let R be a polynomial ring $K[x_1, \ldots, x_n]$ over a field K, and give R the \mathbb{N}^n -grading in which the (a_1, \ldots, a_n) -forms are the elements of the one-dimensional K-vector space $Kx_1^{a_1}\cdots x_n^{a_n}$. Let I be a proper ideal of R generated by monomials. Prove that every associated prime of I is generated by a subset of the variables, and that I has a primary decomposition in which every ideal is generated by monomials.

6. Find a primary decomposition of $(wxyz^2, x^2, y3, xyz)R$ in the polynomial ring K[w, x, y, z] over a field K. Which associated primes are minimal and which are embedded? Which primary components in your decomposition are unique?

Extra Credit Let R be a ring whose localizations at maximal ideals are all Noetherian.

(a) Show that if every element of R is contained in only finitely many maximal ideals, then R is Noetherian.

(b) Give an example where R is not Noetherian.

(c) Let $R = K[x_1, \ldots, x_n, \ldots]$ be the polynomial ring in an infinite sequence of variables over a field K. Partition the variables into sets S_1, \ldots, S_n, \ldots such that S_n contains n of the variables. Let P_n be the prime ideal generated by S_n . Let $W = S - \bigcup_{n=1}^{\infty} P_n$. Prove that $W^{-1}S_n$ is Noetherian but has infinite Krull dimension.