Math 614, Fall 2012 Due: Friday, October 12

Problem Set #2

1. (a) Let X = Spec(R) and let $\{D(f_{\lambda}) : \lambda \in \Lambda\}$ be a family of open sets such that any finite number of elements in the family have nonempty intersection. Show that the intersection of the family is nonempty.

(b) Let $h: R \to S$ be a ring homomorphism. Show that under Spec (h), inverse images of quasicompact open sets are quasicompact open sets.

2. Let R be a ring of prime characteristic p > 0. Let F denote the homomorphism of $R \to R$ such that $F(r) = r^p$. Prove that Spec (F) is the identity map on Spec (R).

3. Let $a, m, b \neq 0, 1$ and d > 0 be integers such that b is square-free and GCD(a, m, d) = 1. Characterize the values of a, m, b, d such that $(a + m\sqrt{b})/d$ is integral over \mathbb{Z} .

4. Let *M* be a faithful *R*-module generated by *n* elements. Suppose that $I \subseteq J$ are ideals of *R* such that $I \subseteq J$ and JM = IM. Show that every element $j \in J$ satisfies a monic polynomial $x^n + i_1 x^{n-1} + \cdots + i_t x^{n-t} + \cdots + i_{n-1} x + i_n = 0$ where for $1 \leq t \leq n$, $i_t \in I^t$.

5. Let S = R[x], the polynomial ring in one variable over R. Show that the a chain of prime ideals of S lying over a given prime ideal P of R has length at most one. Show that if R has finite Krull dimension d, then the Krull dimension n of S is such that $d+1 \le n \le 2d+1$. (In the Noetherian case, n = d+1. In the general case, the statement made here is sharp.)

6. Let R be a ring and let $S = R[x_1, \ldots, x_n]$ be the polynomial ring in n variables over R. Let $f_1, \ldots, f_n \in S$ be such that $f_i = x_i^{d_i} + g_i$ where $d_i \ge 1$ and $g_i \in S$ is such that $\deg(g_i) < d_i$ if $g_i \ne 0, 1 \le i \le n$. Let T = S/J, where J is the ideal of S generated by f_1, \ldots, f_n . Show that T is module-finite over R, and give an explicit set of R-module generators for T.

EXTRA CREDIT 3 The patch topology (or strong topology) on Spec (R) is the topology in which a subbasis for the closed sets consists of subsets of the form $V(I) \cap D(f)$, where $I \subseteq R$ is an ideal and $f \in R$. (The closed sets are the intersections of finite unions of these.) Show that Spec (R) is a compact Hausdorff totally disconnected topological space in this topology, and that if $h : R \to S$ is a ring homomorphism, Spec (h) is continuous for the patch topologies. [Hence, images of closed sets are closed, as well as inverse images.]

EXTRA CREDIT 4 If \mathcal{C} is a category and A is an object, we may consider a category \mathcal{D} whose objects are elements of Mor (A, X) for some X. Given $f : A \to X$ and $g : A \to Y$, a morphism from f to g is a morphism $h : X \to Y$ such that g = hf. (If \mathcal{C} is the category of commutative rings and A is fixed ring, the new category constructed in this way is the category of A-algebras.) Suppose that coproducts exist in \mathcal{D} . Show that $f : A \to X$ is an *epimorphism* in \mathcal{C} (this means that for all objects Y in \mathcal{C} , the map Mor $(X, Y) \to$ Mor(A, Y) given by composition with f is injective) if and only if the coproduct of f with itself in \mathcal{D} , which we denote $X \coprod_A X$, is such that $(\mathrm{id}, \mathrm{id}) : X \coprod_A X \to X$ is an isomorphism.