Math 614, Fall 2012 Due: Monday, October 29 Problem Set #3

1. Let $R = K[x_1, \ldots, x_n]$ be the polynomial ring in n variables over a field K. Let k be an integer with $0 \le k < n$ and let I_k be the ideal generated by all of the products $x_i x_{i+1} \cdots x_{i+k}$, where the subscripts are read modulo n. (E.g., if n = 3, $I_0 = (x_1, x_2, x_3)R$, while $I_1 = (x_1 x_2, x_2 x_3, x_3 x_1)R$.) What are the minimal primes of R/I_k ? What is the Krull dimension of this ring?

2. Let *R* be a ring finitely generated over a field *K*, and suppose that *R* has Krull dimension *d*. Let *S* be a ring generated over *R* by *k* elements. Prove that the Krull dimension of *S* is at most d + k.

3. Let $K \subseteq L$ be fields, with K algebraically closed. Let s, d_1, \ldots, d_s , and e_1, \ldots, e_s be specified positive integers. Let $F \in K[x_1, \ldots, x_n]$, the polynomial ring, and suppose that (*) $F = G_1H_1 + \cdots + G_sH_s$ where $G_1, \ldots, G_s, H_1, \ldots, H_s \in L[x_1, \ldots, x_n]$, and G_1, \ldots, G_s have respective degrees d_1, \ldots, d_s while H_1, \ldots, H_s have respective degrees e_1, \ldots, e_s . Show that G_i, H_i of these degrees can be chosen in $K[x_1, \ldots, x_n]$ such that (*) holds. (Note that this shows that if F is irreducible in $K[x_1, \ldots, x_n]$, it is irreducible in $L[x_1, \ldots, x_n]$: that is the case where s = 1, and $d_1 + e_1$ is $\deg(F)$.)

4. Let $A = (a_{ij})$ be an $m \times n$ matrix of integers. Let K be a field, and let x_1, \ldots, x_n be indeterminates over K, and let $S = K[x_1, \ldots, x_n, x_1^{-1}, \ldots, x_n^{-1}]$. For $1 \le i \le m$, let $\mu_i = x_1^{a_{i,1}} x_2^{a_{i,2}} \cdots x_n^{a_{i,n}}$. Let $T = K[\mu_1, \ldots, \mu_m] \subseteq S$. Prove that the Krull dimension of T is the rank of the matrix A over \mathbb{Q} .

5. Let M be a finitely generated module over a commutative ring R.

(a) Let $u \neq 0$ be an element that is in every nonzero submodule of M. Prove that the annihilator $\{r \in R : ru = 0\}$ is a maximal ideal of R.

(b) Let N be a proper submodule of M. Prove that N is an intersection (which is allowed to be infinite) of submodules W_{λ} of M with the property that for each λ there exists $m_{\lambda} \in M \setminus W_{\lambda}$ such that $\{r \in R : rm_{\lambda} \in W_{\lambda}\}$ is a maximal ideal of R.

6. Let K be a field, let $R = K[z_1, \ldots, z_n]$ be a polynomial ring and let f be the sum of the products of the indeterminates taken n-1 at a time (so that f has n terms). That is, $f = \sum_{i=1}^{n} (\prod_{j \neq i} z_j)$. Find explicit elements in S = R/fR that are algebraically independent over K and such that S is module-finite over the K-algebra they generate.

Extra Credit 5 Let R be a commutative ring with identity, let $m, n \ge 1$ be integers and let $R^m \hookrightarrow R^n$ be an injective map of free modules. Prove that $m \le n$.

Extra Credit 6 Let S be any K-subalgebra of the polynomial ring K[x] in one variable over a ring K. Prove that if K is a field, then S is finitely generated over K and, hence, Noetherian. Is this true when $K = \mathbb{Z}$? Prove your answer.