Math 614, Fall 2015 Due: Wednesday, October 21

Problem Set #2

1. Let R be a ring and let X_1, \ldots, X_n be indeterminates over R. Consider a system \mathcal{L} of h linear equations in n unknowns, $r_{i1}X_1 + \cdots r_{in}X_n = a_i$, $1 \leq i \leq h$, with coefficients in R (i.e., the $r_{ij} \in R$ and the $a_i \in R$ are fixed, and one seeks values for the X_i in R that satisfy the equations). For every maximal ideal $m \in R$, there is a corresponding system of linear equations over R_m , call it \mathcal{L}_m , obtained by replacing every r_{ij} and every a_I by its image in the local ring R_m . Prove that \mathcal{L} has a solution in R iff for all maximal ideals m of R, the system \mathcal{L}_m has a solution in \mathcal{L}_m . (Suggestion: show the existence of a solution is equivalent to a question about membership in a submodule of a module.)

2. Let \mathcal{C} be a category and $X, Y \in Ob(\mathcal{C})$. Show that the natural transformations between h_X and h_Y are in one-to-one correspondence with Mor(Y, X). (Given $g: Y \to X$, one has a map ${}^{g}T_{Z}: H_X(Z) \to H_Y(Z)$ induced by composition with g on the left. Show that all natural transformations from h_X to h_Y arise uniquely in this way.) (It is straightforward to check that if $f: Z \to Y$ and $g: Y \to X$, the natural transformation ${}^{g \circ f}T$ is ${}^{f}T \circ {}^{g}T$. It follows that h_X and h_Y are isomorphic if and only if X and Y are isomorphic. This shows the uniqueness, up to isomorphism, of the object representing a covariant functor.)

3. Let R be a subring of S, and suppose that there is an R-module map $\theta : S \to R$ (it need not be an algebra map) such that $\theta(1) = 1$. Note that $\theta(r) = r$ for all $r \in R$. (One says that R is a direct summand of S as an R-module.)

(a) Show that for every ideal I of R, $IS \cap R = I$.

(b) Show that the map $\operatorname{Spec}(S) \to \operatorname{Spec}(R)$ is surjective.

(c) Prove that if S is a normal domain, then R is a normal domain.

4. Let $R = \bigoplus_{n=0}^{\infty} R_n$ be an N-graded ring. For d > 0, let $R^{(d)} = \bigoplus_{n=0}^{\infty} R_{nd}$ (called the *d*th *Veronese* subring of *R*). Prove that if *R* is a normal domain, then so is $R^{(d)}$.

5. If P is a prime ideal of R, $P^{(n)}$ denotes the contraction of $P^n R_P$ to R, and is called the *n*th symbolic power of P. Let $T = K[x_1, \ldots, x_n, y_1, \ldots, y_n]$ be a polynomial ring over a field K, where $n \ge 2$, and let $f = \sum_{i=1}^n x_i y_i$. Let R = T/fT. Let $P = (x_1, \ldots, x_n, y_1, \ldots, y_{n-1}) R \subseteq R$. Show that P is prime, and that $P^{(2)} \neq P^2$.

6. Let R be a reduced ring of Krull dimension 0.

(a) Prove that for every ideal I of R, $I = I^2$.

(b) Prove that every principal ideal of R is generated by an idempotent.

Extra Credit 3. Let $R \subseteq S$ be rings and $s \in S$. Suppose that for every minimal prime P of S, the image of s in S/P is integral over $R/(P \cap R)$ (which injects into S/P). Prove that s is integral over R.

Extra Credit 4. Let R be a ring such that Spec(R) is the union of two nonempty open sets U, V (both will then be closed as well), i.e., Spec(R) is disconnected. Show that there are non-trivial complementary idempotents e, f = 1 - e in R such that U = D(e) and V = D(f). That is, R is a product ring in a non-trivial way iff Spec(R) is disconnected.