Problem Set #5

Math 614, Fall 2015 Due: Wednesday, December 9

1. Let μ_1, \ldots, μ_h be monomials in a polynomial ring $R = K[x_1, \ldots, x_n]$ over a field K, where $\mu_i \not\mid \mu_j$ for $i \neq j$. Show that $I = (\mu_1, \ldots, \mu_h)R$ is primary iff for every x_j dividing some μ_i , some $x_j^t \in I$.

2. Find an irredundant primary decomposition for the ideal $(x^3, xyzw, y^2z^2, zw^2, w^4)$ in the polynomial ring K[w, x, y, z] over the field K. What are the associated primes? Which are minimal? Which primary components are unique?

3. Let $P \in \text{Spec}(R)$, R Noetherian and let $x, y \in P$ be nonzerodivisors. Show that P is an associated prime of xR iff it is an associated prime of yR.

4. (a) Let M, N be R-modules with $\ell(M), \ell(N) < \infty$. Show that $\ell(\operatorname{Hom}_R(M, N) < \infty$. (b) Let (*) $0 \to A \to B \to C \to 0$ be an exact sequence of finite length R-modules. If $B \cong A \oplus C$, show that (*) splits. $[0 \to \operatorname{Hom}_R(C, A) \to \operatorname{Hom}_R(C, B) \xrightarrow{\beta} \operatorname{Hom}_R(C, C) \to N \to 0$ is exact, where $N := \operatorname{Coker}(\beta)$. Use a length argument to show that N = 0.]

5. Let R, M be Noetherian where M is an R-module and Ass $R(M) = \{P_1, \ldots, P_n\}$.

(a) Show that if $I \subseteq R$ and $N = \operatorname{Ann}_M I \subseteq M$, then Ass $(M) = \operatorname{Ass}(N) \cup \operatorname{Ass}(M/N)$. (If $I = f_1, \ldots, f_h$, the map $M \to M^h$ given by $m \mapsto (f_1m, \ldots, f_hm)$ has kernel N.)

(b) Show that if P_n is maximal in $\operatorname{Ass}_R(M)$, then $M_1 = \operatorname{Ann}_M P_n \subseteq M$ is a torsion-free module over R/P_n , and that $\operatorname{Ass}_R(M/M_1) \subseteq \operatorname{Ass}_R(M)$.

(c) Show that M has a finite filtration whose factors are nonzero torsion-free modules over the various domains R/P_i , and that each P_i must occur.

6. Let (V, tV) be a Noetherian discrete valuation domain with fraction field $\mathcal{F} = V[1/t]$. Let $N = \mathcal{F}/V$. N is a V-module generated by the classes u_n of the elements $1/t^n$, $n \ge 1$. (a) Show that every submodule $W \neq 0$ of N is determined by which of the u_n it contains, that N has DCC but not ACC, and that every submodule $W \neq 0$ of N contains u_1 .

(b) Let $R = V \oplus N$, a V-algebra with the multiplication $(v \oplus n)(v' \oplus n') = vv' \oplus (vn' + v'n)$, so that $N^2 = 0$. (Assume this is a ring.) Show that $0 \oplus u_1$ is in every nonzero ideal of R. (c) Show that (0) is not a primary ideal of R. [Hence, (0) has no primary decomposition.]

Extra Credit 9. Let $I \subseteq R$, an ideal. Show that $I \otimes M \to IM$ is an isomorphism iff for every exact sequence $0 \to A \to B \to R/I \to 0$, the map $A \otimes_R M \to B \otimes_R M$ is injective.

Extra Credit 10. (a) Let R be a normal Noetherian domain in which 2 is a unit, and $a \in R - \{0\}$ be such that $aR \neq R$ is radical. Prove that $x^2 - a$ is irreducible over frac(R). Let $S = R[\sqrt{a}] = R + R\sqrt{a}$. Prove that S is normal.

(b) Hence $S = \mathbb{R}[x, y](x^2 + y^2 - 1)$ is a normal domain. Note that $T = \mathbb{C} \otimes_{\mathbb{R}} S \cong \mathbb{C}[u, 1/u]$ is a PID, where u = x + yi (and 1/u = x - iy). Show that the maximal ideal m = (x - 1, y)Sof S is not principal. (A generator would also generate mT: it suffices to show that a generator of mT cannot be in S.) Also show that $m \oplus m \cong S \oplus S$. [This is another example of a projective that is not free.]