Math 614, Fall 2017 Due: Monday, November 6

Problem Set #3

1. Let $T = K[x_1, \ldots, x_n]$, $n \ge 2$, be a polynomial ring over a field K, and let f denote the sum of the square-free products of the variables taken n-1 at a time. Let R = T[1/f]. Explicitly express R as a module-finite extension of a polynomial ring over K. In particular, give the algebraically independent generators of the polynomial ring explicitly.

2. Let K be a Noetherian ring and let $R = K[u_1, \ldots, u_n]$ be a finitely generated extension ring. Let $G = \{g_1, \ldots, g_d\}$ be a finite group with |G| = d consisting of K-algebra automorphisms of R (every element of G fixes every element of K) and let $R^G = \{r \in R : \text{ for all } g \in G, g(r) = r\}$, the ring of invariants of G acting on R. Prove that R^G is a finitely generated K-algebra. For each $i, 1 \leq i \leq n$, let e_{i1}, \ldots, e_{id} be the elementary symmetric functions of the elements $g_1(u_i), \ldots, g_d(u_i)$ (note that $u_i = 1_G(u_i)$). Show that every u_i is integral over $B = K[e_{ij} : 1 \leq i \leq n, 1 \leq j \leq d]$, and use that $B \subset R^G \subset R$.)

3. Let R be a ring such that for every maximal ideal m of R, the ring R_m is Noetherian. Suppose also that every element of $R - \{0\}$ is contained in only finitely many maximal ideals of R. Prove that R is Noetherian.

4. Show that if the set of ideals of R that are not finitely generated is non-empty, it has a maximal element J, and that J must be prime. [Hence, if every prime ideal of R is finitely generated, then R is Noetherian.] (Suggestion: if $fg \in J$ with $f \notin J$ and $g \notin J$, then $J :_R g = \{r \in R : rg \in J\}$ is finitely generated, and so is J + Rg.)

5. Let S = R[x], the polynomial ring in one variable over R. Show that the a chain of prime ideals of S lying over a given prime ideal P of R has length at most one. Show that if R has finite Krull dimension d, then the Krull dimension n of S is such that $d+1 \le n \le 2d+1$. (In the Noetherian case, n = d+1. In the general case, the statement made here is sharp.)

5. Let K be an algebraically closed field.

(a) Let $f: K^2 \to K^2$ be the morphism such that f(x, y) = (x, 1 + xy) for all $x, y \in K$. Find the image of f, and show that it is neither open nor closed in K^2 .

(b) Let $g: K^2 \to K^2$ be such that g(x, y) = (x + y(1 + xy), 1 + xy) for all $x, y \in K$. Find the image U of g, and show that it is open in K^2 . Describe the sets $A_i \subseteq U$ of points P such that $g^{-1}(P)$ has i elements for i = 1, 2.

Extra Credit 5. Let K be an algebraically closed field. Let P_1, \ldots, P_n be any n distinct points of K^2 .

(a) Let Q_1, \ldots, Q_n be any set of n distinct points of K^2 . Prove that there is an isomorphism $f: K^2 \to K^2$ such that $f(P_i) = Q_i, 1 \le i \le n$.

(b) Show that there is a morphism $g: K^2 \to K^2$ whose image is precisely $K^2 - \{P_1, \ldots, P_n\}$.

Extra Credit 6. Let R be a ring in which every prime ideal is an intersection of maximal ideals. Prove that every finitely generated R-algebra has the same property.