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CHAPTER 1

Overview, notation, review of topology, categories
and Spec

1. Lecture of August 31

R
f−→ S We assume familiarity with the notions of ring, ideal, module, and with

the polynomial ring in one or finitely many variables over a commutative ring, as
well as with homomorphisms of rings and homomorphisms of R-modules over the
ring R.

As a matter of notation, N ⊆ Z ⊆ Q ⊆ R ⊆ C are the non-negative integers,
the integers, the rational numbers, the real numbers, and the complex numbers,
respectively, throughout this course.

Unless otherwise specified, all rings are commutative, associative, and have a
multiplicative identity 1 (when precision is needed we write 1R for the identity in
the ring R). It is possible that 1 = 0, in which case the ring is {0}, since for every
r ∈ R, r = r · 1 = r · 0 = 0. We shall assume that a homomorphism h of rings
R → S preserves the identity, i.e., that h(1R) = 1S . We shall also assume that all
given modules M over a ring R are unital, i.e., that 1R ·m = m for all m ∈M .

The submodule of an R-module M generated by a family of elements mi ∈M f,
for i ∈ I, an index set is the smallest submodule of M that contains these elements.
If the set is empty, it is 0. Otherwise, it consists of all elements of M of the form
r1mi1 + · · · + rhmih , which are called R-linear combinations of the mi. Here, the
integer h may vary, but even if the set of elements is infinite, h is finite in any given
instance. This submodule may be denoted

∑
i∈I Rmi.

The R-submodules of R itself are the ideals of R. The ideal generated by
elements ri for i ∈ I may be denoted

∑
i∈I riR or (ri : i ∈ I)R or even (ri : i ∈ I).

The ideal generated by r1, . . . , rn may be denoted (r1, . . . , rn)R or (r1, . . . , rn),
although the last notation has the disadvantage that it may be confused with the
n-tuple that is denoted in the same way.

The ring itself is an ideal and is referred to as the unit ideal. An element of the
ring is called an invertible element or a unit if it has an inverse under multiplication.

When R and S are rings we write S = R[θ1, . . . , θn] to mean that S is gener-
ated as a ring over its subring R by the elements θ1, . . . , θn. This means that S
contains R and the elements θ1, . . . , θn, and that no strictly smaller subring of S
contains R and the θ1, . . . , θn. It also means that every element of S can be written
(not necessarily uniquely) as an R-linear combination of the monomials θk11 · · · θknn .
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6 1. OVERVIEW, NOTATION, REVIEW OF TOPOLOGY, CATEGORIES AND Spec

When one writes S = R[x1, . . . , xk] it often means that the xi are indeterminates,
so that S is the polynomial ring in n variables over R. But one should say this.

The main emphasis in this course will be on Noetherian rings, i.e., rings in
which every ideal is finitely generated. Specifically, for all ideals I ⊆ R, there exist

f1, . . . , fk ∈ R such that I = (f1, . . . , fk) = (f1, . . . , fk)R =
∑k
i=1Rfi. We shall

develop a very useful theory of dimension in such rings. This will be discussed
further quite soon. We shall not be focused on esoteric examples of rings. In fact,
almost all of the theory we develop is of great interest and usefulness in studying
the properties of polynomial rings over a field or the integers, and homomorphic
images of such rings.

There is a strong connection between studying systems of equations, study-
ing their solutions sets, which often have some kind of geometry associated with
them, and studying commutative rings. Suppose the equations involve variables
X1, . . . , Xn with coefficients in K. The most important case for us will be when
K is an algebraically closed field such as the complex numbers C. Suppose the
equations have the form Fi = 0 where the Fi are polynomials in the Xj with co-
efficients in K. Let I be the ideal generated by the Fi in the polynomial ring
K[X1, . . . , Xn] and let R be the quotient ring K[X1, . . . , Xn]/I. In R, the im-
ages xj of the variables Xj give a solution of the equations, a sort of “universal”
solution. The connection between commutative algebra and algebraic geometry is
that algebraic properties of the ring R are reflected in geometric properties of the
solution set, and conversely. Solutions of the equations in the field K give maximal
ideals of R. This leads to the idea that maximal ideals of R should be thought of
as points in a geometric object. Some rings have very few maximal ideals: in that
case it is better to consider all of the prime ideals of R as points of a geometric
object. We shall soon make this idea more formal.

Before we begin the systematic development of our subject, we shall look at
some very simple examples of problems, many unsolved, that are quite natural
and easy to state. Suppose that we are given polynomials f and g in C[x], the
polynomial ring in one variable over the complex numbers C. Is there an algorithm
that enables us to tell whether f and g generate C[x] over C? This will be the case
if and only if x ∈ C[f, g], i.e., if and only if x can be expressed as a polynomial with
complex coefficients in f and g. For example, suppose that f = x5 + x3 − x2 + 1
and g = x14 − x7 + x2 + 5. Here it is easy to see that f and g do not generate,
because neither has a term involving x with nonzero coefficient. But if we change
f to x5 + x3 − x2 + x+ 1 the problem does not seem easy. The following theorem
of Abhyankar and Moh [1] gives a method of attacking this sort of problem.

Theorem 1.1 (Abhyankar-Moh). Let f , g in C[x] have degrees d and e respec-
tively. If C[f, g] = C[x], then either d | e or e | d, i.e., one of the two degrees must
divide the other.

Given this difficult result, it is clear that the specific f and g given above cannot
generate C[x]: 5 does not divide 14. Now suppose instead that f = x5+x3−x2+x+1
and g = x15 − x7 + x2 + 5. With this choice, the Abhyankar-Moh result does not
preclude the possibility that f and g generate C[x]. To pursue the issue further,
note that in g − f3 the degree 15 terms cancel, producing a polynomial of smaller
degree. But when we consider f and g− f3, which generate the same ring as f and
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g, the larger degree has decreased while the smaller has stayed the same. Thus, the
sum of the degrees has decreased. In this sense, we have a smaller problem. We
can now see whether the Abhyankar-Moh criterion is satisfied for this smaller pair.
If it is, and the smaller degree divides the larger, we can subtract off a multiple of
a power of the smaller degree polynomial and get a new pair in which the larger
degree has decreased and the smaller has stayed the same. Eventually, either the
criterion fails, or we get a constant and a single polynomial of degree ≥ 2, or one of
the polynomials has degree 1. In the first two cases the original pair of polynomials
does not generate. In the last case, they do generate.

This is a perfectly general algorithm. To test whether f of degree d and g of
degree n ≥ d are generators, check whether d divides n. If so and n = dk, one can
choose a constant c such that g − cfk has degree smaller than n. If the leading
coefficients of f and g are a 6= 0 and b 6= 0, take c = b/ak. The sum of the degrees
for the pair f, g − cfk has decreased.

Continue in the same way with the new pair, f , g − cfk. If one eventually
reaches a pair in which one of the polynomials is linear, the original pair were
generators. Otherwise, one reaches either a pair in which neither degree divides
the other, or else a pair in which one polynomial has degree ≥ 2 while the other
is constant. In either of these cases, the two polynomials do not generate. The
constant does not help, since we have all of C available anyway, and a polynomial g
of degree d ≥ 2 cannot generate: when g is substituted into a polynomial of degree
n, call it F , F (g) has a term of degree dn coming from gn, and no other term
occurring can cancel it. Thus, one cannot have x = F (g).

One can work backwards from a pair in which one of the polynomials is linear
to get all pairs of generators. For example, one gets pairs of generators

x, 0→
x, 1→
x+ 5, 1→
x+ 5, (x+ 5)7 + 1→(
(x+ 5)7 + 1

)11
+ x+ 5, (x+ 5)7 + 1.

If one expands the last pair out, it is not very obvious from looking at the
polynomials that they generate. Of course, applying the algorithm described above
would enable one to see it.

This gives a reasonably appealing method for telling whether two polynomials
in one variable generate C[x].

The step of going from the problem of when two polynomials generate to C[x]
over C to when three polynomials generate turns out to be a giant one, however!
While algorithms are known based on the theory of Gröbner bases, the process is
much more complex. There are some elegant conjectures, but there is a lack of
elegant theorems in higher dimension.

One might hope that given three polynomials that generate C[x], say f , g, and
h, with degrees d, e, n, respectively, that it might be true that one of the degrees
has to be a sum of non-negative integer multiples of the other two, e.g., n = rd+se.
Then one could reduce to a smaller problem (i.e., one where the sum of the degrees
is smaller) by subtracting a constant times frgs from h, while keeping the same f
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and g. But it is not true in the case of three polynomials that one of the degrees
must be a sum of non-negative integer multiples of the other two. (See whether
f = x5, g = x4 + x, and h = x3 generate C[x].)

The problem of giving an elegant test for deciding when m polynomials generate
the polynomial ring C[x1, . . . , xn] in n variables over C seems formidable, but when
m = n there is at least a tantalizing conjecture.

In order to state it, we first want to point out that derivatives with respect
to x can be defined for polynomials in x over any commutative ring R. One way
is simply to decree that polynomials are to be differentiated term by term, and
that the derivative of rxn is nrxn−1. A somewhat more conceptual method is to
introduce an auxiliary variable h. If one wants to differentiate F (x) ∈ R[x], one
forms F (x+ h)− F (x). This is a polynomial in two variables, x and h, and all the
terms that do not involve h as a factor cancel. Thus, one can write F (x+h)−F (x) =
hP (x, h) for a unique polynomial in two variables P . That is,

P (x, h) =
F (x+ h)− F (x)

h
.

One then defines the derivative
dF

dx
or F ′(x) to be P (x, 0), the result of substituting

h = 0 in P (x, h). This is the algebraist’s method of taking a limit as h → 0: just
substitute h = 0.

Given a polynomial F ∈ R[x1, . . . , xn] we may likewise define its partial deriva-

tives in the various xi. E.g., to get ∂F
∂xn

we identify the polynomial ring with S[xn]

where S = R[x1, . . . , xn−1]. We can think of F as a polynomial in xn only with

coefficients in S, and ∂F
∂xn

is simply its derivative with respect to xn when it is

thought of this way.

The Jacobian conjecture asserts that F1, . . . , Fn ∈ C[x1, . . . , xn] generate (note
that the number of the Fi is equal to the number n of variables) if and only if the
Jacobian determinant det

(
∂Fi/∂xj

)
is identically a nonzero constant. This is true

when n = 1 and is known to be a necessary condition for the Fi to generate the
polynomial ring. But even when n = 2 it is an open question!

If you think you have a proof, have someone check it carefully — there are at
least five published incorrect proofs in the literature, and new ones are circulated
frequently.

It is known that if there is a counter-example one needs polynomials of degree
at least 100. Such polynomials tend to have about 5,000 terms. It does not seem
likely that it will be easy to give a counter-example.

1.1. Algebraic sets. The problems discussed above are very easy to state,
and very hard. However, they are not close to the main theme in this course, which
is dimension theory. We are going to assign a dimension, the Krull dimension, to
every commutative ring. It may be infinite, but will turn out to be finite for rings
that are finitely generated over a field or the integers.

In order to give some idea of where we are headed, we shall discuss the notion
of a closed algebraic set in Kn, where K is a field. Everyone is welcome to think
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of the case where K = C, although for the purpose of drawing pictures, it is easier
to think about the case where K = R.

Let K be a field. A polynomial in K[x1, . . . , xn] may be thought of as a function
from Kn → K. Given a finite set f1, . . . , fm of polynomials in K[x1, . . . , xn], the
set of points where they vanish simultaneously is denoted V(f1, . . . , fm). Thus

V(f1, . . . , fm) = {(a1, . . . , an) ∈ Kn : fi(a1, . . . , an) = 0, 1 ≤ i ≤ m}.

If X = V(f1, . . . , fm), one also says that f1, . . . , fm define X.

Over R[x, y], V (x2 + y2 − 1) is a circle in the plane, while V (xy) is the union
of the coordinate axes. Note that V(x, y) is just the origin.

A set of the form V(f1, . . . , fm) is called a closed algebraic set in Kn. We shall
only be talking about closed algebraic sets here, and so we usually omit the word
“closed.”

For the moment let us restrict attention to the case where K is an algebraically
closed field such as the complex numbers C. We want to give algebraic sets a
dimension in such a way that Kn has dimension n. Thus, the notion of dimension
that we develop will generalize the notion of dimension of a vector space.

We shall do this by associating a ring with X, denoted K[X]: it is simply the
set of functions defined on X that are obtained by restricting a polynomial function
on Kn to X. The dimension of X will be the same as the dimension of the ring
K[X]. Of course, we have not defined dimension for rings yet.

In order to illustrate the kind of theorem we are going to prove, consider the
problem of describing the intersection of two planes in real three-space R3. The
planes might be parallel, i.e., not meet at all. But if they do meet in at least one
point, they must meet in a line.

More generally, if one has vector spaces V and W over a field K, both subspaces
of some larger vector space, then dim(V ∩W ) = dimV +dimW−dim(V +W ). If the
ambient vector space has dimension n, this leads to the result that dim(V ∩W ) ≥
dimV +dimW −n. In the case of planes in three-space, we see that that dimension
of the intersection must be at least 2 + 2− 3 = 1.

Over an algebraically closed field, the same result turns out to be true for
algebraic sets! Suppose that V and W are algebraic sets in Kn and that they meet
in a point x ∈ Kn. We have to be a little bit careful because, unlike vector spaces,
algebraic sets in general may be unions of finitely many smaller algebraic sets,
which need not all have the same dimension. Algebraic sets which are not finite
unions of strictly smaller algebraic sets are called irreducible. Each algebraic set is
a finite union of irreducible ones in such a way that none can be omitted: these
are called irreducible components. We define dimx V to be the largest dimension
of an irreducible component of V that contains x. One of our long term goals
is to prove that for any algebraic sets V and W in Kn meeting in a point x,
dimx(V ∩W ) ≥ dimx V + dimxW −n. This is a beautiful and useful result: it can
be thought of as guaranteeing the existence of a solution (or many solutions) of a
family of equations.

We conclude for now by mentioning one other sort of problem. Given a specific
algebraic set X = V(f1, . . . , fm), the set J of all polynomials vanishing on it is
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closed under addition and multiplication by any polynomial — that is, it is an
ideal of K[x1, . . . , xn]. J always contains the ideal I generated by f1, . . . , fm. But
J may be strictly larger than I. How can one tell?

Here is one example of an open question of this sort. Consider the set of pairs
of commuting square matrices of size n. Let M = Mn(K) be the set of n × n
matrices over K. Thus,

W = {(A, B) ∈M ×M : AB = BA}.
The matrices are given by their 2n2 entries, and we may think of this set as a

subset of K2n2

. (To make this official, one would have to describe a way to string
the entries of the two matrices out on a line.) Then W is an algebraic set defined
by n2 quadratic equations. If X = (xij) is an n × n matrix of indeterminates and
Y = (yij) is another n × n matrix of indeterminates, then we may think of the
algebraic set W as defined by the vanishing of the entries of the matrix XY −Y X.
These are the n2 quadratic equations.

Is the ideal of all functions that vanish on W generated by the entries of XY −
Y X? This is a long standing open question. It is known if n ≤ 3. So far as I know,
the question remains open over all fields.

2. Lecture of September 2

The notes for this lecture contain some basic definitions concerning abstract
topological spaces that were not given in class. If you are not familiar with this
material please read it carefully. I am not planning to do it in lecture.

————————

We mention one more very natural but very difficult question about algebraic
sets. Suppose that one has an algebraic set X = V(f1, . . . , fm). What is the least
number of elements needed to define X? In other words, what is the least positive
integer k such that X = V(g1, . . . , gk)?

Here is a completely specific example. Suppose that we work in the polynomial
ring in 6 variables x1, . . . , x3, y1, . . . , y3 over the complex numbers C and let X be
the algebraic set in C6 defined by the vanishing of the 2 × 2 �subdeterminants or
minors of the matrix (

x1 x2 x3

y1 y2 y3

)
,

that is, X = V (f, g, h) where f = x1y2−x2y1, g = x1y3−x3y1, and h = x2y3−x3y2.
We can think of points of X as representing 2× 3 matrices whose rank is at most
1: the vanishing of these equations is precisely the condition for the two rows of
the matrix to be linearly dependent. Obviously, X can be defined by 3 equations.
Can it be defined by 2 equations? No algorithm is known for settling questions of
this sort, and many are open, even for relatively small specific examples. In the
example considered here, it turns out that 3 equations are needed. I do not know
an elementary proof of this fact — perhaps you can find one!

One of the themes of this course is that there is geometry associated with any
commutative ring R. The following discussion illustrates this.

For an algebraic set over an algebraically closed field K, the maximal ideals of
the ring K[X] (reminder: functions from X to K that are restrictions of polynomial
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functions) are in bijective correspondence with the points of X — the point x
corresponds to the maximal ideal consisting of functions that vanish at x. This is,
essentially, Hilbert’s Nullstellensatz, and we shall prove this theorem soon. This
maximal ideal may also be described as the kernel of the evaluation homomorphism
from K[X] onto K that sends f to f(x).

If R is the ring of continuous real-valued functions on a compact (Hausdorff)
topological space X the maximal ideals also correspond to the points of X.

2.1. Filters and ultrafilters. A filter F on a nonempty set X is a non-
empty family of subsets closed under finite intersection and such that if Y ∈ F ,
and Y ⊆ Y ′ ⊆ X, then Y ′ ∈ F . Let K be a field. Let S be the ring of all K-
valued functions on X. The ideals of S correspond bijectively with the filters on
X: given a filter, the corresponding ideal consists of all functions that vanish on
some set in the filter. The filter is recovered from the ideal I as the family of sets
of the form f−1(0) for some f ∈ I. The key point is that for f and g1, . . . , gk ∈ S,
f is in the ideal generated by the gk if and only if it vanishes whenever all the
gi do. The unit ideal corresponds to the filter which is the set of all subsets of
X. The maximal ideals correspond to the maximal filters that do not contain the
empty set: these are called ultrafilters. Given a point x ∈ X, there is an ultrafilter
consisting of all sets that contain x. Ultrafilters of this type are called fixed. If X is
infinite, there are always others: the sets with finite complement form a filter, and
by Zorn’s lemma it is contained in an ultrafilter. For those familiar with the Stone-
Čech compactification, the ultrafilters (and, hence, the maximal ideals) correspond
bijectively with the points of the Stone-Čech compactification of X when X is given
the discrete topology (every set is open).

We shall see that even for a completely arbitrary commutative ring R, the set
of all maximal ideals of R, and even the set of all prime ideals of R, has a geometric
structure. In fact, these sets have, in a natural way, the structure of topological
spaces. We shall give a brief review of the notions needed from topology shortly.

2.2. Categories. We do not want to dwell too much on set-theoretic issues
but they arise naturally here. We shall allow a class of all sets. Typically, classes
are very large and are not allowed to be elements. The objects of a category are
allowed to be a class, but morphisms between two objects are required to be a set.

A category C consists of a class Ob (C) called the objects of C and, for each pair
of objects X, Y ∈ Ob (C) a set Mor (X, Y ) called the morphism from X to Y with
the following additional structure: for any three given objects X, Y and Z there is
a map

Mor (X, Y )×Mor (Y,Z)→ Mor (X, Z)

called composition such that three axioms given below hold. One writes f : X → Y

or X
f−→ Y to mean that f ∈ Mor (X, Y ). If f : X → Y and g : Y → Z then the

composition is denoted g ◦ f or gf . The axioms are as follows:

(1) Mor (X,Y ) and Mor (X ′, Y ′) are disjoint unless X = X ′ and Y = Y ′.
(2) For every object X there is an element denoted 1X or idX in Mor (X, X) such

that if g : W → X then 1X ◦ g = g while if h : X → Y then h ◦ 1X = h.
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(3) If f : W → X, g : X → Y , and h : Y → Z then h ◦ (g ◦ f) = (h ◦ g) ◦ f
(associativity of composition).

The morphism 1X is called the identity morphism on X and one can show that
it is unique. If f : X → Y then X is called the domain of f and Y is called
the codomain, target, or range of f , but it is preferable to avoid the term “range”
because it is used for the set of values that a function actually takes on. A morphism
f : X → Y is called an isomorphism if there is a morphism g : Y → X such that
gf = 1X and fg = 1Y . If such a g exists, it is unique, and g is called the inverse
of f and is an isomorphism from Y → X. If there is an isomorphism from X → Y
then X and Y are called isomorphic.

Examples. (a) Let the class of objects be the class of all sets, let the morphisms
from a set X to a set Y be the functions from X to Y , and let composition be
ordinary composition of functions. In this category of sets and functions, two sets
are isomorphic if and only if they have the same cardinality.

In the next few examples the objects have underlying sets and composition
coincides with composition of functions.

(b) Rings and ring homomorphisms form a category.

(c) Commutative rings with identity and ring homomorphisms that preserve
the identity form a category.

(d) For a fixed ring R, R-modules and R-linear homomorphisms form a cate-
gory.

Examples (c) and (d) give the environments in which we’ll be “living” during
this course.

(e) Groups and group homomorphisms are another example of a category.

We pause to review some basics about topological spaces before continuing with
our examples.

A topology on a set X is a family of sets, called the open sets of the topology
satisfying the following three axioms:

(1) The empty set and X itself are open.
(2) A finite intersection of open sets is open.
(3) An arbitrary union of open sets is open.

A set is called closed if its complement is open. A topological space is a set X
together with a topology. Such a space may be described equally well by specifying
what the closed sets are. They must satisfy:

(1) The empty set and X itself are closed.
(2) A finite union of closed sets is closed.
(3) An arbitrary intersection of closed sets is closed.

A subset Y of a topological space X becomes a topological space in its own
right: one gets the topology by intersecting the open sets of X with Y . (The closed
sets of Y are likewise gotten by intersecting the closed sets of X with Y .) The
resulting topology on Y is called the inherited topology, and Y with this topology
is called a (topological) subspace of X.
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The intersection of all the closed sets containing a subset Y of X is closed, and
is the smallest closed set containing Y . It is called the closure of Y in X. The
union of all the open subsets of X is contained in Y is the largest open subset of
X contained in Y . It is called the interior of Y in X. If Y ⊆ X, Y is called dense

in X if the closure of Y is X.
A family B of open subsets is called a basis or base for the open sets of a

topological space X if every open set of X is a union (which may be infinite) of
sets in B. A family of open sets is called a subbasis or subbase for the open sets if
these sets together with their finite intersections form a basis for the open sets.

Similarly, a family C of closed subsets is called a basis or base for the closed sets
of a topological space X if every closed set of X is an intersection (which may be

infinite) of sets in C. A family of closed sets is called a subbasis or subbase for the
closed sets if these sets together with their finite unions form a basis for the closed
sets.

A topological space is called T0 if for any two distinct points there is an open
set that contains one of them and not the other. It is called T1 if every point is
closed. It is called T2 or Hausdorff if for any two distinct points x and y there are
disjoint open sets U and V such that x ∈ U and y ∈ V .

A family of open subsets of a topological space X (following the usual imprecise
practice, we mention the underlying set without mentioning the topology) is called
an open cover if its union is all of X. A subset of such a family whose union is all
of X is called a subcover . A topological space is called quasicompact if every open
cover has a subcover containing only finitely many open sets, i.e., a finite subcover.

A family of sets is said to have the finite intersection property if every finite
subfamily has non-empty intersection. Being quasicompact is equivalent to the
condition that every family of closed sets with the finite intersection property has
non-empty intersection. (This is only interesting when the family is infinite.) A
quasicompact Hausdorff space is called compact. We assume familiarity with the
usual topology on Rn, in which a set is closed if and only if for every convergent
sequence of points in the set, the limit point of the sequence is also in the set.
Alternatively, a set U is open if and only if for any point x in the set, there exists
a > 0 in R such that all points of Rn within distance of a of x are in U .

The compact subspaces of Rn are precisely the closed, bounded sets.

A topological space is called connected if it is not the union of two non-empty
disjoint open subsets (which will then both be closed as well). The connected
subsets of the real line are identical with the intervals: these are the subsets with
the property that if they contain a and b, they contain all real numbers in between
a and b. They include the empty set, individual points, open intervals, half-open
intervals, closed intervals, and the whole line. The closure of a connected set in a
topological space is connected, and the union of two connected sets that have non-
empty intersection is connected. It follows that the maximal connected subsets of
a non-empty topological space X are closed, and partition the space. These sets
are called the connected components of X.

A function f from a topological space X to a topological space Y is called
continuous if for every open set V of Y , f−1V = {x ∈ X : f(x) ∈ V } is open. It
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is an equivalent condition to require that the inverse image of every closed set be
closed.

We are now ready to continue with our discussion of examples of categories.

(f) Topological spaces and continuous maps give a category. In this category,
an isomorphism is called a homeomorphism.

2.3. Metric spaces. We discuss metric spaces briefly. A function d : X×X →
[0,∞) (i.e., taking only non-negative real values is called a pseudometric on X if for
all x, y ∈ X, d(x, x) = 0, d(x, y) = d(y, x), and d satisfies the triangle inequality: for
all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z). A pseudometric on X is called a metric
if, in addition, d(x, y) = 0 implies that x = y. A pseudometric space (respectively,
a metric space) is a set X together with a pseudometric (respectively, a metric)
d. The number d(x, y) is called the distance from x to y. If X is a metric space,
x ∈ X, and r > 0 is a real number, the open ball of radius r centered at x ∈ X
is the set B(x, r) = {y ∈ X : d(x, y) < r}. A metric space is standardly given a
topology in which the open balls are an open basis for the open sets. Thus, a set
is open if and only if it contains an open ball around each of its points. Note that
given a pseudometric space X, we can define an equivalence relation ∼ on points
by x ∼ y if and only if d(x, y) = 0. The set of equivalence classes [x] becomes a
metric space such that the distance between [x] and [y] is d(x, y). This does not
change in value if x or y (or both) is replaced by an equivalent point.

A sequence {xn}n of points in a metric space X is said to converge to x ∈ X
if limn→∞ d(xn, x) = 0. If the sequence has a limit it is unique. The limit of a
sequence of points {yn}n in a subset Y ⊆ X, if it is not in Y , is called a limit point
of Y . It is straightforward to show that a subset Y of a metric space X is closed
if and only if it contains all of its limit points. The closure of Y consists of Y and
all limit points of Y .

A sequence of points {xn}n of X is a said to be a Cauchy sequence if for all
real epsilon > 0 there exists an integer N such that if i, j ≥ n then d(xi, xj) < ε.
It is easy to show that a convergent sequence is Cauchy. If every Cauchy sequence
in a metric space converges, then the metric space is called complete .

The metric space topology on the spaces Rn with the usual notion of distance
is the standard topology to use on Rn. These spaces are complete. The open unit
interval, for example, is not complete: e.g., {1/n}n≥1 is a Cauchy sequence that
does not converge to any point in (0, 1).

A function f from a metric space (X, dX) to a metric space (Y, dY ) is called
an isometry if f is a function from X to Y that preserves distances, i.e., for all
x1, x2 ∈ X, dX(x1, x2) = dY

(
f(x1), f(x2)

)
. Metric spaces and isometries form a

category: the isomorphisms in this category are called isometric isomorphisms or
congruences , but the latter term is used in many other contexts.

Every metric space X is isometrically embeddable in a complete metric space
in which it is dense. One takes the Cauchy sequences in X and defines {xn}n and

{yn}n to be equivalent if limn d(xn, yn) = 0. One can define a metric on the set X̃
of equivalence classes by

d̃({xn}n, {yn}n) := lim
n→∞

d(xn, yn)

(this turns out to be independent of the representatives of the equivalence classes

one chooses). One maps X → X̃ by sending x to the Cauchy sequence all of whose
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terms are x. This is easily checked to be an isometry. The typical point [{xn}n] of

X̃ turns out to be the limit of the images of the points xn ∈ X.

We now consider some examples in which composition is not necessarily com-
position of functions.

(g) A partially ordered set (or poset) consists of a set P together with a relation
≤ such that for all x, y, z ∈ P , (1) if x ≤ y and y ≤ x then x = y and (2) if x ≤ y
and y ≤ z then x ≤ z. Given a partially ordered set, we can construct a category in
which the objects are the elements of the partially ordered set. We artificially define
there to be one morphism from x to y when x ≤ y, and no morphisms otherwise.
In this category, isomorphic objects are equal. Note that there is a unique way to
define composition: if we have a morphism f from x to y and one g from y to z,
then x ≤ y and y ≤ z. Therefore, x ≤ z, and there is a unique morphism from x to
z, which we define to be the composition gf . Conversely, a category in which (1)
the objects form a set, (2) there is at most one morphism between any two objects,
and (3) isomorphic objects are equal is essentially the same thing as a partially
ordered set. One defines a partial ordering on the objects by x ≤ y if and only if
there is a morphism from x to y.

(h) A category with just one object in which every morphism is an isomor-
phism is essentially the same thing as an associative semigroup with identity. The
morphisms of the object to itself are the elements of the group.

(i) A category with just one object in which every morphism is an isomorphism
is essentially the same thing as a group. The morphisms of the object to itself are
the elements of the group.

3. Lecture of September 4

Given any category C we can construct an opposite category Cop. It has the
same objects as C, but for any two objects X and Y in Ob (C), Mor Cop(X, Y ) =
Mor C(Y, X). There turns out to be an obvious way of defining composition using
the composition in C: if f ∈ Mor Cop(X, Y ) and g ∈ Mor Cop(Y, Z) we have that
f : Y → X in C and g : Z → Y , in C, so that f ◦ g in C is a morphism Z → X in
C, i.e., a morphism X → Z in Cop, and thus g ◦Cop f is f ◦C g.

By a covariant functor from a category C to a category D we mean a function
F that assigns to every object X in C an object F (X) in D and to every morphism
f : X → Y in C a morphism F (f) : F (X)→ F (Y ) in D such that

(1) For all X ∈ Ob (C), F (1X) = 1F (X) and
(2) For all f : X → Y and g : Y → Z in C, F (g ◦ f) = F (g) ◦ F (f).

A contravariant functor from C to D is a covariant functor to C to Dop. This
means that when f : X → Y in C, F (f) : F (Y ) → F (X) in D, and F (g ◦ f) =
F (f) ◦ F (g) whenever g ◦ f is defined in C.

Here are some examples.

(a) Given any category C, there is an identity functor 1C on C: it sends the
object X to the object X and the morphism f to the morphism f . This is a
covariant functor.
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(b) Given any of the categories

(i) Rings and ring homomorphisms
(ii) Commutative rings and commutative ring homomorphisms

(iii) Groups and group homomorphisms
(iv) Topological spaces and continuous homomorphisms

there is a functor to the category of sets and functions called the forgetful
functor which in each case assigns to each object its underlying set and to each
morphism its corresponding function. In essence, this functor simply “forgets”
about the extra structure (ring, commutative ring, group, topological space).

(c) There is a functor from commutative rings to commutative rings which
assigns to each ring R the ring R/N(R), where N(R) is the ideal of R consisting
of all nilpotent elements, i.e., elements u ∈ R such that for some positive integer k,
uk = 0 . If one has f : R→ S the value of this functor on f is the induced function
R/N(R) → S/N(S)] such that [r] 7→ [f(r)]. This well-defined because nilpotents
automatically map to nilpotents under ring homomorphisms.

(d) There is a functor from the category of groups and group homomorphisms
to the category of abelian groups and homomorphisms that sends the group G
to G/G′, where G′ is the commutator subgroup of G: G′ is generated by the set
of all commutators {ghg−1h−1 : g, h ∈ G}: it is a normal subgroup of G. The
group G/G′ is abelian. Note also that any homomorphism from G to an abelian
group must kill all commutators, and factors through G/G′, which is called the
abelianization of G.

Given φ : G→ H, φ automatically takes commutators to commutators. There-
fore, it maps G′ into H ′ and so induces a homomorphism G/G′ → H/H ′. This
explains how this functor behaves on homomorphisms. It is covariant.

(e) Note that the composition of two functors is a functor. If both are covariant
or both are contravariant the composition is covariant. If one is covariant and the
other is contravariant, the composition is contravariant.

(f) There is a contravariant functor F from the category of topological spaces
to the category of rings that maps X to the ring of continuous R-valued functions
on X. Given a continuous map f : X → Y , the ring homomorphism F (Y )→ F (X)
is induced by composition: if h : Y → R is any continuous function on Y , then h◦f
is a continuous function on X.

(g) A category C is said to be a full subcategory of the category D if Ob (C) ⊆
Ob (D), for all X, Y ∈ Ob (C), Mor C(X, Y ) = MorD(X, Y ), and composition in C
is the same as in D. Thus, finite sets yield a full subcategory of sets, abelian groups
is a full subcategory of the category of groups, finitely generated R-modules is a
full subcategory of the category of R-modules and R-linear maps, and Hausdorff
topological spaces give a full subcategory of topological spaces. The category of
rings with identity is, however, not a full subcategory of the category of rings
(where there need not be a multiplicative identity): in the former, the identity is
required to map to the identity. Thus 0 → Z is a homomorphism of rings but not
of commutative rings with identity.

We next want to give a contravariant functor from commutative rings to topo-
logical spaces.
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We first want to review some terminological conventions. All rings, unless
otherwise specified, are commutative with multiplicative identity 1. We use 1R for
the identity in the ring R if greater precision is needed. We recall that 1 = 0 is
allowed, but this forces every element of the ring to be 0. Up to unique isomorphism,
there is a unique ring with one element, which we denote 0.

By a domain or integral domain we mean a commutative ring such that 1 6= 0
and such that if ab = 0 then either a = 0 or b = 0. It is an arbitrary convention to
exclude the ring in which every element is zero, but this turns out to be convenient.
By a field we mean a ring in which 1 6= 0 and in which every nonzero element has
an inverse under multiplication. A field K has only two ideals: {0} and K. A field
is an integral domain, although the converse is not true in general.

An ideal P in R is called prime if R/P is an integral domain. This means that
P is prime in R if and only if 1 /∈ P and for all a, b ∈ R, if ab ∈ P then either
a ∈ P or b ∈ P .

An ideal m ∈ R is called maximal if, equivalently, either R/m is a field or m is
maximal among all proper ideals of R. A maximal ideal is prime.

Every proper ideal is contained in a maximal ideal. To see this, we first recall
Zorn’s lemma, which we shall not prove. It is equivalent to the axiom of choice
in set theory. A subset of a partially ordered set is called a chain if it is linearly
ordered, i.e., if any two of its elements are comparable. Note that the elements of
a chain need not be any sort of sequence. The real numbers, with their usual total
order, form a chain.

Theorem 1.2 (Zorn’s lemma.). Let P be a non-empty partially ordered set in
which every chain has an upper bound. Then P has a maximal element.

Corollary 1.3. Let I be a proper ideal of the commutative ring R. Then I is
contained in a maximal ideal m.

Proof. We apply Zorn’s lemma to the partially ordered set of proper ideals
containing I. Given any chain containing I, its union is a proper ideal containing
I and is an upper bound for the chain. Thus there are maximal elements in the set
of proper ideals containing I, and these will be maximal ideals. �

It is also true that the existence of maximal ideals in commutative rings implies
Zorn’s lemma see [2, 11].

We are now ready to introduce our functor, Spec , from commutative rings to
topological spaces. If R is a ring, let Spec (R) denote the set of all prime ideals of
R. This set is called the prime spectrum of R. Note that Spec (R) is empty if and
only if R is the 0 ring. We place a topology, the Zariski topology, on Spec (R) as
follows. For any subset I of R, let V (I) denote the set {P ∈ Spec (R) : I ⊆ P}.
If the set I is replaced by the ideal it generates, V (I) is unaffected. The Zariski
topology has the subsets of Spec (R) of the form V (I) as its closed sets. Note that
V (0) = Spec (R), that V (R) = ∅, and that for any family of ideals {Iλ}λ∈Λ,⋂

λ∈Λ

V (Iλ) = V (
∑
λ∈Λ

Iλ).

It remains only to show that the union of two closed sets (and, hence, any finite
number) is closed, and this will follow if we can show that for any two ideals I, J ,
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V (I) ∪ V (J) = V (I ∩ J) = V (IJ). It is clear that the leftmost term is smallest.
Suppose that a prime P contains IJ but not I, so that u ∈ I but u /∈ P . For every
v ∈ J , uv ∈ P , and since u /∈ P , we have v ∈ P . Thus, if P does not contain I, it
contains J . It follows that V (IJ) ⊆ V (I) ∪ V (J), and the result follows.

The Zariski topology is T0. If P and Q are distinct primes, one of them contains
an element not in the other. Suppose, say, that u ∈ P and u /∈ Q. The closed set
V (u) contains P but not Q.

It is easy to show that the closure of the one point set {P}, where P is prime,
is the set V (P ). The closure has the form V (I), and is the smallest set of this form
such that P ∈ V (I), i.e., such that I ⊆ P . As I gets smaller, V (I) gets larger. It
is therefore immediate that the smallest closed set containing P is V (P ).

It follows that {P} is closed if and only if P is maximal. In general, Spec (R)
is not T1.

Spec becomes a contravariant functor from the category of commutative rings
with identity to the category of topological spaces if, given a ring homomorphism
f : R → S, we define Spec (f) by having it send Q ∈ Spec (S) to f−1(Q) = {r ∈
R : f(r) ∈ Q}. There is an induced ring homomorphism R/f−1(Q) → S/Q which
is injective. Since S/Q is an integral domain, so is its subring R/f−1(Q). (We
are also using tacitly that the inverse image of a proper ideal is proper, which is a
consequence of our convention that f(1R) = 1S .) f−1(Q) is sometimes denoted Qc

and called the contraction of Q to R. This is a highly ambiguous notation.



CHAPTER 2

Equivalence of categories, products and
coproducts, free modules, semigroup rings, and

localization

1. Lecture of September 9

We want to talk about when two functors are isomorphic and to do that, we
need to have a notion of morphism between two functors. Let F,G be functors from
C → D with the same variance. For simplicity, we shall assume that they are both
covariant. The case where they are both contravariant is handled automatically
by thinking instead of the case of covariant functors from C to Dop. A natural
transformation from F to G assigns to every object X ∈ Ob (C) a morphism TX :
F (X) → G(X) in such a way that for all morphisms f : X → Y in C, there is a
commutative diagram:

F (X)
F (f)−−−−→ F (Y )

TX

y yTY

G(X) −−−−→
G(f)

G(Y )

The commutativity of the diagram simply means that TY ◦ F (f) = G(f) ◦ TX .

This may seem like a complicated notion at first glance, but it is actually very
“natural,” if you will forgive the expression.

This example may clarify. If V is a vector space write V ∗ for the space of linear
functionals on V , i.e., for HomK(V, K), the K-vector space of K-linear maps from
V → K. Then ∗ is a contravariant functor from K-vector spaces and K-linear maps
to itself. (If θ : V → W is linear, θ∗ : W ∗ → V ∗ is induced by composition: if
g ∈W ∗, so that g : W → K, then θ∗(g) = g ◦ θ.)

The composition of ∗ with itself gives a covariant functor ∗∗: the double dual
functor. We claim that there is a natural transformation T from the identity functor
to ∗∗. To give T is the same as giving a map TV : V → V ∗∗ for every vector space
V . To specify TV (v) for v ∈ V , we need to give a map from V ∗ to K. If g ∈ V ∗, the
value of TV (v) on g is simply g(v). To check that this is a natural transformation,
one needs to check that for every K-linear map f : V →W , the diagram

V
f−−−−→ W

TV

y yTW

V ∗∗ −−−−→
f∗∗

W ∗∗

19
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commutes. This is straightforward. Note that the map V → V ∗∗ is not necessarily

an isomorphism. It is always injective, and is an isomorphism when V is finite-
dimensional over K.

Here is another example of a natural transformation: in this case, the functors
are contravariant. Let F and G be the functors from topological spaces to rings such
that F (X) (respectively, G(X) ) is the ring of continuous real-valued (respectively,
complex-valued) functions on X. (The values on continuous maps are both induced
by composition.) The inclusions F (X) ⊆ G(X) give a natural transformation from
F to G.

Let C be the category of pairs (X, x) where X is a non-empty topological space
and x ∈ X, i.e., of topological spaces with basepoint. A morphism from (X, x) to
(Y, y) is a continuous function from X to Y such that f(x) = y. For every X there
is a group homomorphism from TX : π1(X,x)→ H1(X, Z) where the former is the
fundamental group and the latter is singular homology with integer coefficients.
(Let S1 be a circle and fix a generator θ of H1(S1,Z) ∼= Z. Every element of
π1(X,x) is represented by (the homotopy class of) a continuous map f : S1 → X.
TX([f ]) = f∗(θ) ∈ H1(X, Z).) These TX give a natural transformation from π1 to
the functor H1( ,Z), both regarded as functors from C to the category of groups.
There are also natural transformations H1( ,Z) → H1( ,Q) → H1( ,R) →
H1( ,C).

In giving definitions for natural transformations, we will stick with the case of
covariant functors: the contravariant case may be handled by replacing D by Dop.

Given functors F, G, H from C → D, a natural transformation S : F → G, and
a natural transformation T : G→ H, we may define a natural transformation T ◦S
from F to H by the rule (T ◦ S)X = TX ◦ SX .

There is an identity natural transformation, 1F , from the functor F : C → D
to itself: 1F,X : F (X) → F (X) is 1F (X). It behaves as an identity should under
composition. Given two functors F and G from C → D, we can now define them
to be isomorphic if there are natural transformations T : F → G and T ′ : G → F
such that T ′ ◦ T = 1F and T ◦ T ′ = 1G. In fact, T is an isomorphism of functors
if and only if all the morphisms TX are isomorphisms, and in that case the unique
way to define T ′ is by the rule T ′X = (TX)−1.

Once we have a notion of isomorphism of functors we can define two categories
C and D to be equivalent if there are functors F : C → D and G : D → C such that
G ◦ F is isomorphic to the identity functor on C and F ◦ G is isomorphic to the
identity functor on D. If C is equivalent to Dop it is said to be antiequivalent to D.
Roughly speaking, equivalence is like isomorphism, but there may not be the same
number of objects in an isomorphism class in one of the two equivalent categories
as there are in the other. For example, suppose that we have a category D and
another C in which there is exactly one object of D from each isomorphism class of
objects in D. Also suppose that the morphisms from one object in C to another are
the same as when they are considered as objects of D, and likewise for composition.
Then one can show, with a suitably strong form of the axiom of choice, that C and
D are equivalent categories.
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Another application of the notion of isomorphism of functors is the definition of
a representable functor . This is a point of view that unifies numerous constructions,
both in commutative algebra and in many other parts of mathematics. If we fix
an object Z in a category C then we get a covariant functor hZ mapping C to the
category of sets by letting hZ(X) = Mor (Z, X). If f : X → Y we let hZ(f) :
Mor (Z,X) → Mor (Z, Y ) be the map induced by composition — it sends g to
f ◦ g. A covariant functor G from C to sets is called representable in C if it is
isomorphic to hZ for some Z ∈ Ob (C). We say that Z represents G. Similarly,
we can define a contravariant functor hZ to sets by hZ(X) = Mor (X, Z) while
hZ(f) : Mor (Y, Z) → Mor (X, Z) sends g to g ◦ f . A contravariant functor is
representable in C if it is isomorphic with hZ for some Z.

Examples. (a) Let C be the category of abelian groups and group homomorphisms.
Let G be any group. We can define a functor F from abelian groups to sets by
letting F (A) = Hom(G,A), the set of group homomorphisms from G to A. Can
we represent F in the category of abelian groups? Yes! Let G = G/G′, the
abelianization of G. Then every homomorphism G → A factors uniquely G →
G → A, giving a bijection of F (A) with Hom(G, A). This yields an isomorphism
of F ∼= hG.

(b) Let R be a ring and I be an ideal. Define a functor from the category of
commutative rings with identity to the category of sets by letting F (S) be the set
of all ring homomorphisms f : R → S such that f kills I. Every homomorphism
R → S such that f kills I factors uniquely R � R/I → S, from which it follows
that the functor F is representable and is ∼= hR/I .

(c) In this example we want to define products in an arbitrary category. Our
motivation is the way the Cartesian product Z = X×Y behaves in the category of
sets. It has product projections πX : Z → X sending (x, y) to x and πY : Z → Y
sending (x, y) to y. To give a function from W → X × Y is equivalent to giving
a pair of functions, one α : W → X and another β : W → Y . The function
f : W → X × Y then sends w to (α(w), β(w)). The functions α and β may be
recovered from f as πX ◦ f and πY ◦ f , respectively.

Now let C be any category. Let X, Y ∈ Ob (C). An object Z together with
morphisms πX : Z → X and πY : Z → Y (called the product projections on X an
Y , respectively) is called a product for X and Y in C if for all objects W in C the
function Mor (W, Z)→ Mor (W, X)×Mor (W, Y ) sending f to (πX ◦ f, πY ◦ f) is
a bijection. This means that the functor sending W to Mor (W, X)×Mor (W, Y )
is representable in C. Given another product Z ′, π′X , π′Y , there are unique mutually
inverse isomorphisms γ : Z → Z ′ and δ : Z ′ → Z that are compatible with the
product projections, i.e., such that πX = γ ◦ π′X πY = γ ◦ π′Y (the existence
and uniqueness of γ are guaranteed by the defining property of the product) and
similarly for δ. The fact that the compositions are the appropriate identity maps
also follows from the defining property of the product.

Products exist in many categories, but they may fail to exist. In the categories
of sets, rings, groups, abelian groups, R-modules over a given ringR, and topological
spaces, the product turns out to be the Cartesian product with the usual additional
structure (in the algebraic examples, operations are performed coordinate-wise; in
the case of topological spaces, the product topology works: the open sets are unions
of Cartesian products of open sets from the two spaces). In all of these examples,
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the product projections are the usual set-theoretic ones. In the category associated
with a partially ordered set, the product of two elements x and y is the greatest
lower bound of x and y, if it exists. The point is that w has (necessarily unique)
morphisms to both x and y iff w ≤ x and w ≤ y iff w is a lower bound for both
x and y. For z to be a product, we must have that z is a lower bound for x, y
such that every lower bound for x, y has a morphism to z. This says that z is a
greatest lower bound for x, y in the partially ordered set. It is easy to give examples
of partially ordered sets where not all products exist: e.g., a partially ordered set
that consists of two mutually incomparable elements (there is no lower bound for
the two), or one in which there are four elements a, b, x, y such that a and b are
incomparable, x and y are incomparable, while both a and b are strictly less than
both x and y. Here, a and b are both lower bounds for the x, y, but neither is a
greatest lower bound.

The product of two objects in Cop is called their coproduct in C. Translating, the
coproduct of X and Y in C, if it exists, is given by an object Z and two morphisms
ιX : X → Z, ιY : Y → Z such that for every object W , the map Mor (Z, W ) →
Mor (X, W ) ×Mor (Y, W ) sending f to (f ◦ ιX , f ◦ ιY ) is bijective. This means
that the functor sending W to Mor (X, W ) × Mor (Y, W ) is representable in C.
Coproducts have the same sort of uniqueness that products do: they are products
(in Cop).

In the category of sets, coproduct corresponds to disjoint union: one takes
the union of disjoint sets X ′ and Y ′ set-isomorphic to X and Y respectively. The
function ιX is an isomorphism of X with X ′ composed with the inclusion of X ′ in
X ′∪Y ′, and similarly for ιY . To give a function from the disjoint union of two sets
to W is the same as to give two functions to W , one from each set.

In the category of R-modules over a commutative ring R, coproduct corre-
sponds to direct sum. We shall discuss the existence of coproducts in the category
of commutative rings later on. In the category associated with a partially ordered
set, it corresponds to the least upper bound of the two elements.
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2. Lecture of September 11

Let R be a commutative ring with identity. An R-module F is said to be free
with free basis B ⊆ F if every element of F is uniquely an R-linear combination
of elements in B. The uniqueness statement is very important: it implies that if
b1, . . . , bn are distinct elements of B and r1b1+· · ·+rnbn = 0 then r1 = · · · = rn = 0,
which says that the elements of the free basis are linearly independent over R.

A word about degenerate cases: the 0 module is considered free on the empty
set of generators.

In case R is a field, an R-module is just a vector space, and a free basis is the
same thing as a vector space basis. (The term “basis” for a module is sometimes
used to mean a set of generators or spanning set for the module. I will try not
to use this term in this course, to avoid ambiguity.) By Zorn’s lemma, every set
of independent vectors in a vector space is contained in a maximal such set (one
can start with the empty set), and a maximal independent set must span the whole
space: any vector not in the span could be used to enlarge the maximal independent
set. Thus, over a field, every module is free (i.e., every vector space has a basis).

Freeness is equivalent to the statement that for every b ∈ B, Rb ∼= R in
such a way that rb corresponds to r, and that F is the direct sum of all these
copies of R, i.e., F ∼=

⊕
b∈B Rb. The free R-module on the free basis b1, . . . , bn is

isomorphic with Rn, the module of n-tuples of elements of R under coordinate-
wise addition and scalar multiplication. Under the isomorphism, the element
r1b1 + · · · + rnbn corresponds to (r1, . . . , rn). The element bi corresponds to
ei = (0, 0, . . . , 0, 1, 0, . . . , 0) where the unique nonzero entry (which is 1) occurs
in the i th coordinate. In particular, the ei give a free basis for Rn.

In general, if F is free on B, F is isomorphic with the set of functions B → R
which are 0 on all but finitely many elements of B. Under the isomorphism, the
element r1b1 + · · ·+rnbn corresponds to the function that assigns every bi the value
ri, while assigning the value 0 to all elements of B−{b1, . . . , bn}. When B is infinite,
this is strictly smaller than the set of all functions from B to R: the latter may be
thought of as the product of a family of copies of R indexed by B.

When M and N are R-modules, the set of R-linear maps from M to N is
denoted HomR(M, N) or Hom (M, N): this is Mor (M,N) in the category of R-
modules. It is not only a set: it is also an R-module, since we may define f + g and
rf for r ∈ R by the rules (f + g)(m) = f(m) + g(m) and (rf)(m) = r

(
f(m)

)
.

We next want to define the notion of an A-algebra, where A is a commutative
ring. We shall say that R is an A-algebra if R itself is a commutative ring and is also
a (unital) A-module in such a way that for all a ∈ A and r, s ∈ R, a(rs) = (ar)s.
(Note that the for all a, b ∈ A and r ∈ R, we also have that a(br) = (ab)r,
but we don’t need to assume it separately: it is part of the definition of an A-
module.) In this situation we get a ring homomorphism from A → R that sends
a ∈ A to a · 1R. Conversely, given a ring homomorphism θ : A → R, the ring
R becomes an A-algebra if we define ar as θ(a)r. That is, to give a ring R the
structure of an A-algebra is exactly the same thing as to give a ring homomorphism
A → R. When R is an A-algebra, the homomorphism θ : A → R is called the
structural homomorphism of the algebra. A-algebras form a category: the A-algebra
morphisms (usually referred to as A-algebra homomorphisms) from R to S are the
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A-linear ring homomorphisms. If f and g are the structural homomorphisms of
R and S respectively over A and h : R → S is a ring homomorphism, it is an
A-algebra homomorphism if and only if h ◦ f = g.

Note that every commutative ring R with identity is a Z-algebra in a unique
way, i.e., there is a unique ring homomorphism Z → R. To see this, observe that
1 must map to 1R. By repeated addition, we see that n maps to n · 1R for every
nonnegative integer n. It follows by taking inverses that this holds for negative
integers as well. This shows uniqueness, and it is easy to check that the map that
sends n to n · 1R really is a ring homomorphism for every ring R.

By a semigroup S we mean a set together with an associative binary operation
that has a two-sided identity. (The existence of such an identity is not always
assumed. Some people use the term “monoid” for a semigroup with identity.)
We shall assume the semigroup operation is written multiplicatively and that the
identity is denoted 1S or simply 1. A group is a semigroup in which every element
has a two-sided inverse.

By a homomorphism of semigroups h : S → S′ we mean a function on the
underlying sets such that for all s, t ∈ S, h(st) = h(s)h(t) and such that h(1S) =
1S′ .

The elements of a commutative ring with identity form a commutative semi-
group under multiplication.

The set of vectors Nn with nonnegative integer entries forms a semigroup under
addition with identity (0, . . . , 0). We want to introduce an isomorphic semigroup
that is written multiplicatively. If x1, . . . , xn are distinct elements we can introduce
formal monomials xk11 · · ·xknn in these elements, in bijective correspondence with
the elements (k1, . . . , kn) ∈ Nn. (We can, for example, make all this precise by

letting xk11 · · ·xknn be an alternate notation for the function whose value on xi is
ki, 1 ≤ i ≤ n.) These formal monomials form a multiplicative semigroup that is
isomorphic as a semigroup with Nn: to multiply two formal monomials, one adds
the corresponding exponents. It is also innocuous to follow the usual practices of
omitting a power of one of the xi from a monomial if the exponent on xi is 0, of
replacing x1

i by xi, and of writing 1 for x0
1 · · · x0

n. With these conventions, xki is

the product of xi with itself k times, and xk1i · · · xknn is the product of n terms, of

which the i th term is xkii .

We can likewise introduce the multiplicative semigroup of formal monomials in
the elements of an infinite set: it can thought of as the union of what one gets from
its various finite subsets. Only finitely many of the elements occur with nonzero
exponents in any given monomial.

Not every commutative semigroup is isomorphic with the multiplicative semi-
group of a ring: for one thing, there need not be an element that behaves like 0. But
even if we introduce an element that behaves like 0, this still need not be true. The
infinite multiplicative semigroup of monomials in just one element, {xk : k ∈ N},
together with 0, is not the multiplicative semigroup of a ring. To see this, note that
the ring must contain an element to serve as −1. If that element is xk for k > 0,
then x2k = 1, and the multiplicative semigroup is not infinite after all. Therefore,
we must have that −1 = 1, i.e., that the ring has characteristic 2. But then x+ 1
must coincide with xk for some k > 1, i.e., the equation xk − x− 1 = 0 holds. This
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implies that every power of x is in the span of 1, x, . . . , xk−1, forcing the ring to be
a vector space of dimension at most k over Z2, and therefore finite, a contradiction.

Given a commutative semigroup S and a commutative ring A we can define
a functor G from the category of A-algebras to sets whose value on R is the set
of semigroup homomorphisms from S to R. If we have a homomorphism R → R′

composition with it gives a function from G(R) to G(R′). In this way, G is a covari-
ant functor to the category of sets. We want to see that G is representable in the
category of A-algebras. The construction is as follows: we put an A-algebra struc-

ture on the free A-module with free basis S by defining the product of
∑h
i=1 aisi

with
∑k
j=1 a

′
js
′
j , where the ai, a

′
j ∈ A and the si, s

′
j ∈ S, to be

∑
i, j(aia

′
j)(sisj)

where aia
′
j is calculated in A and sis

′
j is calculated in S. It is straightforward to

check that this is a commutative ring with identity 1A1S This ring is denoted A[S]
and is called the semigroup ring of S with coefficients in A. We identify S with
the set of elements of the form 1As, s ∈ S. It turns out that every semigroup
homomorphism φ : S → R (using R for the multiplicative semigroup of R), where
R is an A-algebra, extends uniquely to an A-algebra homomorphism A[S] → R.

It is clear that to perform the extension one must send
∑h
i=1 aisi to

∑h
i=1 aiφ(si),

and it is straightforward to verify that this is an A-algebra homomorphism. Thus,
restriction to S gives a bijection from HomA(A[S], R) to G(R) for every A-algebra
R, and so A[S] represents the functor G in the category of A-algebras.

We can now define the polynomial ring in a finite or infinite set of variables
{xi : i ∈ I} over A as the semigroup ring of the formal monomials in the xi with
coefficients in A.

We can also view the polynomial ring A[X ] in a set of variables X as arising
from representing a functor as follows. Given any A-algebra R, to give an A-
homomorphism from A[X ]→ R is the same as to give a function from X → R, i.e.,
the same as simply to specify the values of the A-homomorphism on the variables.
Clearly, if the homomorphism is to have value ri on xi for every xi ∈ X , the
monomial xk1i1 · · · x

kn
in

must map to rk1i1 · · · r
kn
in

, and this tells us as well how to map
any A-linear combination of monomials. If for example, only the indeterminates
x1, . . . , xn occur in a given polynomial (there are always only finitely many in
any one polynomial) then the polynomial can be written uniquely as

∑
k∈E akx

k

where E is the finite set of n-tuples of exponents corresponding to monomials
occurring with nonzero coefficient in the polynomial, k = (k1, . . . , kn) is a n-tuple

varying in E, every ak ∈ A, and xk denotes xk11 · · · xknn . If the value that xi has

is ri, this polynomial must map to
∑
k∈E akr

k, where rk denotes rk11 · · · rknn . It

is straightforward to check that this does give an A-algebra homomorphism. In
the case where there are n variables x1, . . . , xn, and every xi is to map to ri, the
value of a polynomial P under this homomorphism is denoted P (r1, . . . , rn), and
we refer to the homomorphism as evaluation at (r1, . . . , rn). Let H denote the
functor from A-algebras to sets whose value on R is the set of functions from X
to R. Then the polynomial ring A[X ] represents the functor H in the category of
A-algebras: the map from HomA(A[X ], R) to Mor (sets)(X , R) that simply restricts
a given A-homomorphism A[X ] → R to the set X gives a bijection, and this gives
the required natural isomorphism of functors.
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3. Lecture of September 14

By a multiplicative system S in a ring R we mean a subset of R that contains the
multiplicative identity element of R and that is closed under multiplication. Given
such a set S we next want to consider the problem of representing the functor LS in
the category of rings, where LS(T ) denotes the set of ring homomorphisms R→ T
such the image of every element of S is invertible in T . We shall show that this is
possible, and denote the ring we construct S−1R. It is called the localization of R
at S. It is constructed by enlarging R to have inverses for the elements of S while
changing R as little as possible in any other way.

We give two constructions of the localization of a ring R at a multiplicative
system S ⊆ R. In the first construction we introduce an indeterminate xs for every
element of S. Let A = R[xs : s ∈ S], the polynomial ring in all these indeterminates.
Let I be the ideal of A generated by all of the polynomials sxs − 1 for s ∈ S. The
composition of the homomorphisms R→ R[xs : s ∈ S] = A� A/I makes A/I into
an R-algebra, and we take S−1R to be this R-algebra. Note that the polynomials
we killed force the image of xs in S−1R to be an inverse for the image of s.

Now suppose that g : R → T is any ring homomorphism such that g(s) is
invertible in T for every element s ∈ S. We claim that R → T factors uniquely
R → S−1R → T , where the first homomorphism is the one we constructed above.
To obtain the needed map, note that we must give an R-homomorphism of A =
R[xs : s ∈ S] → T that kills the ideal I. But there is one and only one way to
specify values for the xs in T so that all of the polynomials sxs − 1 map to 0 in T :
we must map xs to g(s)−1. This proves that the map does, in fact, factor uniquely
in the manner specified, and also shows that S−1R represents the functor

LS = {g ∈ HomR(R, T ) : for all s ∈ S, g(s) is invertible}

in the category of rings, as required. Note that xs1 · · · xsk = xs1 ··· sk mod I, since
both sides represent inverses for the image of s1 · · · sk in S−1T . This means that
every element of S−1R is expressible as an R-linear combination of the xs. But we
can manipulate further: it is easy to check that the images of rs2xs1s2 and rxs1 are
the same, since they are the same after multiplying by the invertible element which
is the image of s1s2, and so r1xs1+r2xs2 = r1s2xs1s2+r2s1xs1s2 = (r1s2+r2s1)xs1s2
mod I. Therefore every element of S−1R can be written as the image of rxs for
some r ∈ R and s ∈ S. This representation is still not unique.

We now discuss the second construction. An element r of the ring R is called
a zerodivisor if ru = 0 for u ∈ R − {0}. An element that is not a zerodivisor
is a called a nonzerodivisor. The second construction is slightly complicated by
the possibility that S contains zerodivisors. Define an equivalence relation ∼ on
R × S by the condition that (r1, s1) ∼ (r2, s2) if there exists s ∈ S such that
s(r1s2 − r2s1) = 0. Note that if S contains no zerodivisors, this is the same as
requiring that r1s2 − r2s1 = 0. In the case where S contains zerodivisors, one does
not get an equivalence relation from the simpler condition. The equivalence class
of (r, s) is often denoted r/s, but we stick with [(r, s)] for the moment. The check
that one has an equivalence relation is straightforward, as is the check that the
set of equivalence classes becomes a ring if we define the operations by the rules
[(r1, s1)] + [(r2, s2)] = [(r1s2 + r2s1, s1s2)] and [(r1, s1)][(r2, s2)] = [(r1r2, s1s2)].
One needs to verify that the operations are well-defined, i.e., independent of choices
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of equivalence class representatives, and that the usual ring laws are satisfied. This
is all straightforward. The zero element is [(0, 1)], the multiplicative identity is
[(1, 1)], and the negative of [(r, s)] is [(−r, s)]. Call this ring B for the moment.
It is an R-algebra via the map that sends r to [(r, 1)]. The elements of S have
invertible images in B, since [(s, 1)][(1, s)] = [(s, s)] = [(1, 1)].

This implies that we have an R-algebra homomorphism S−1R→ B. Note that
it maps xs to [(1, s)], and, hence, it maps rxs to [(r, s)]. Now one can prove that
S−1R is isomorphic with B by showing that the map R × S → S−1R that sends
(r, s) to rxs is well-defined on equivalence classes. This yields a map B → S−1R
that sends [(r, s)] to the image of rxs. It is then immediate that these are mutually
inverse ring isomorphisms: since every element of S−1R is the image of an element
of the form rxs, it is clear that the composition in either order gives the appropriate
identity map.

It is easy to calculate the kernel of the map R → S−1R. By the definition of
the equivalence relation we used, (r, 1) ∼ (0, 1) means that for some s ∈ S, sr = 0.
The set I = {r ∈ R : for some s ∈ S, sr = 0} is therefore the kernel. If no element
of S is a zerodivisor in R, then the map R → S−1R is injective. One can think of
localization at S as being achieved in two steps: first kill I, and then localize at the
image of S, which will consist entirely of nonzerodivisors in R/I.

If R is an integral domain then S = R−{0} is a multiplicative system. In this
case, S−1R is easily verified to be a field, the fraction field of R. Localization may
be viewed as a generalization of the construction of fraction fields.

Localization and forming quotient rings are related operations. Both give R-
algebras that represent functors. One corresponds to homomorphisms that kill an
ideal I, while the other to homomorphisms that make every element in a multi-
plicative system S invertible. But the resemblance is even greater.

To explain this further similarity, we introduce the notion of an epimorphism
in an arbitrary category. In the category of sets it will turn out that epimorphisms
are just surjective maps. But this is not at all true in general. Let C be a category.
Then f : X → Y is an epimorphism if for any two morphisms g, h : Y → Z,
whenever g ◦f = h◦f then g = h. In the case of functions, this says that if g and h
agree on f(X), then they agree on all of Y . This is obviously true if f(X) = Y , i.e.,
if f is surjective. It is almost as obvious that it is not true if f is not surjective: let Z
have two elements, say 0 and 1. Let g be constantly 0 on Y , and let h be constantly
0 on f(X) and constantly 1 on its complement. Then g 6= h but g ◦ f = h ◦ f .

In the category of R-modules an epimorphism is a surjective homomorphism. In
the category of Hausdorff topological spaces, any continuous function f : X → Y is
an epimorphism provided that f(X) is dense in Y : it need not be all of Y . Suppose
that g : Y → Z and h : Y → Z agree on f(X). We claim that they agree on all
of Y . For suppose we have y ∈ Y such that g(y) 6= h(y). Then g(y) and h(y) are
contained in disjoint open sets, U and V respectively, of Z. Then g−1(U)∩h−1(V )
is an open set in Y , and is non-empty, since it contains y. It follows that it contains
a point of f(X), since f(X) is dense in Y , say f(x), where x ∈ X. But then
g
(
f(x)

)
∈ U , and h

(
f(x)

)
∈ V , a contradiction, since g

(
f(x)

)
= h

(
f(x)

)
is in

U ∩ V , while U and V were chosen disjoint.
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The category of rings also provides some epimorphisms that are not surjective:
both surjective maps and localization maps R → S−1R are epimorphisms. We
leave it as an exercise to verify that if two homomorphisms S−1R → T agree on
the image of R, then they agree on S−1T .

By the way, an epimorphism in Cop is called a monomorphism in C. Said
directly, f : X → Y is a monomorphism if whenever g, h : W → X are such that
f ◦ g = f ◦h then g = h. We leave it as an exercise to verify that a monomorphism
in the category of sets is the same as an injective function. This is also true in the
category of R-modules, and in the category of rings.

Here is an example of a fairly simple category in which there are underlying
sets and functions and a monomorphism that is not injective. An abelian group
(A, +) is called divisible if for every integer n 6= 0 and every b ∈ A, there exists an
element a ∈ A (it need not be unique) such that na = b. That, is multiplication by
n 6= 0 gives a surjection of A onto itself. Vector spaces over the rational numbers
are divisible, and arbitrary homomorphic images of divisible abelian groups are
divisible. In the full subcategory of abelian groups whose objects are the divisible
groups, the surjective map π : Q � Q/Z is a monomorphism. To see this, suppose
that f and g are homomorphisms from a divisible abelian group D to Q such that
π ◦ f = π ◦ g. We need to show that f = g. But then π ◦ (f − g) = 0, which implies
that the image of f − g is in the kernel Z of π. This image must be a divisible
subgroup of the integers. Hence, the image of f − g is {0}, and so f − g = 0 and
f = g, as required.

An ideal of a ring R is prime if and only if its complement is a multiplicative
system. (Note that our multiplicative systems are required to be non-empty.) If P
is a prime, the localization of R at P is denoted RP . We shall soon see that RP
has a unique maximal ideal, which is generated by the image of P . A ring with a
unique maximal ideal is called a quasilocal ring. Some authors use the term local,
but we shall reserve the term for a Noetherian quasilocal ring. A major theme in
commutative algebra is to use localization at various primes to reduce problems to
the case where the ring is quasilocal.

We want to make a detail comparison of the ideals of a ring R with the ideals
of the ring S−1R. But we first want to explain why rings with just one maximal
ideal are called “(quasi)local.”

Let X be a topological space and x a point of X. Consider the set of functions
from an open set containing x to R. We define two such functions to be equivalent
if they agree when restricted to a sufficiently small open set containing x. The
equivalence classes are referred to as germs of continuous functions at x, and they
form a ring. In this ring, the value of a germ of a function at a specific point is not
well-defined, with the exception of the point x. A germ that does not vanish at x
will, in fact, not vanish on an open set containing x, by continuity, and therefore has
an inverse (given by taking the reciprocal at each point) on an open set containing x.
Thus, the germs that do not vanish at x are all invertible, while the complementary
set, consisting of germs that do vanish at x, is an ideal. This ideal is clearly the
unique maximal ideal in the ring of germs. The ring of germs clearly reflects only
geometry “near x.” It makes sense to think of this as a “local” ring.
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An entirely similar construction can be made for C∞ R-valued functions defined
on an open set containing a point x of a C∞ manifold. The rings of germs is again
a ring with a unique maximal ideal, which consists of the germs that vanish at x.
One can make an entirely analogous construction of a ring of germs at a point for
other sorts of differentiable manifolds, where a different level of differentiability is
assumed. These are all quasilocal rings.

If X is Cn (or an analytic manifold — there are also more general kinds of
analytic sets) the ring of germs of holomorphic C-valued functions on an open set
containing x again has a unique maximal ideal consisting of the functions that
vanish at x. In the case of the origin in Cn, the ring of germs of holomorphic
functions may be identified with the convergent power series in n variables, i.e.,
the power series that converge on a neighborhood of the origin. This ring is even
Noetherian (this is not obvious), and so is a local ring in our terminology, not just
a quasilocal ring.

We now return to the problem of comparing ideals in R with those in S−1R.
Given any ring homomorphism f : R → T we may make a comparison using two
maps of ideals that always exist. Given an ideal I ⊆ R, IT denotes the ideal of T
generated by the image of I, which is called the extension or expansion of I to T .
The image of I is not usually an ideal. One must take T -linear combinations of
images of elements of I. For example, if we consider Z ⊆ Q, then 2Z is a proper
ideal of Z, but it is not an ideal of Q: the expansion is the unit ideal. The highly
ambiguous notation Ie is used for the expansion of I to T . This is sometimes
problematic, since T is not specified and their may be more than one choice. Also,
if e might be denoting an integer, Ie might be taken for a power of I. Nonetheless,
it is traditional, and convenient if the choice of T is clear.

If J is an ideal of T , we have already mentioned, at least in the case of primes,
that f−1(J) = {r ∈ R : f(r) ∈ J} is denoted Jc and called the contraction of J to
R. This notation has the same sorts of flaws and merits as the notation above for
expansions. It is always the case that f induces an injection of R/Jc ↪→ T/J . It is
trivial that I ⊆ (Ie)c = Iec, the contracted expansion, and that Jce = (Jc)e ⊆ J .

We now want to consider what happens when T = S−1R. In this case, in
general one only knows that I ⊆ Iec, but one can characterize Iec as {r ∈ R :
for some s ∈ S, sr ∈ I}. We leave this as an exercise. On the other hand, if
J ⊆ S−1R is an ideal, J = Jce. That is, every ideal of S−1R is the expansion of
its contraction to R. The reason is quite simple: if r/s ∈ J , then r/1 ∈ J , and
r will be in the contraction of J . But then r(1/s) = r/s will be in the expanded
contraction. Call an ideal I ⊆ R contracted with respect to the multiplicative
system S if whenever s ∈ S and sr ∈ I then r ∈ I. Expansion and contraction give
a bijection between ideals of R contracted with respect to S and ideals of S−1R.
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4. Lecture of September 16

Notice that the algebra map R→ S−1R provides a simple way of getting from
modules over S−1R to R-modules: in fact, whenever one has any R-algebra T with
structural homomorphism f : R → T , a T -module M becomes an R-module if we
define r ·m = f(r)m. This gives a covariant functor from T -modules to R-modules,
and is referred to as restriction of scalars. The functions that give homomorphisms
literally do not change at all, nor does the structure of each module as an abelian
group under +.

A sequence of modules

· · · →M ′
α−−−−→ M

β−−−−→ M ′′ → · · ·
is said to be exact at M if the image of α is equal to the kernel of β. A functor from
R-modules to T -modules is called exact if it preserves exactness: the functor may be
either covariant or contravariant. Restriction of scalars is an exact functor. Later,
we shall consider the problem of making a transition (i.e., of defining a functor)
from R-modules to T -modules when T is an R-algebra. This is more difficult: one
makes use of tensor products, and the functor one gets is no longer exact.

It is easy to see that S−1R = 0 iff 0 ∈ S iff some nilpotent element is in S.
The issue is whether 1 becomes equal to 0 after localization, and this happens if
and only if s · 1 = 0 for some s ∈ S.

Prime ideals of S−1R correspond bijectively, via expansion and contraction,
with primes of R that do not meet S. The key point is that if P is a prime not
meeting S, it is automatically contracted with respect to S: if su ∈ P with s ∈ S,
then since s /∈ P , we have that u ∈ P . The primes that do meet S all expand to
the unit ideal.

In particular, when S = R − P , for P prime, the prime ideals of RP = (R −
P )−1R correspond bijectively with the prime ideals of R that are contained in P
(this is equivalent to not meeting R − P ) under contraction and expansion. This
implies that PRP is the unique maximal ideal of RP , which was asserted earlier
without proof. In particular, RP is quasilocal.

It is straightforward to show that the map Spec (S−1R) to Spec (R) is a home-
omorphism of Spec (S−1R) with Y ⊆ Spec (R) where

Y = {P ∈ Spec (R) : S ∩ P = ∅}.

This has some similarities to the situation when one compares ideals of R and
ideals of R/I. Expansion and contraction give a bijection between ideals J of R
that contain I and ideals of R/I. The ideal J corresponds to J(R/I), which may
be identified with J/I. This bijection preserves the property of being prime, since
R/J is a domain if and only if (R/I)/(J/I) ∼= R/J is a domain. Thus, the map
Spec (R/I) → Spec (R) is a bijection of the former onto V (I). It is easy to verify
that it is, in fact, a homeomorphism of Spec (R/I) with V (I).

The notation Ra is used for S−1R where S = {1, a, a2, . . .}, the multiplicative
system of all powers of a. If R is a domain we may think of this ring as R[1/a] ⊆ L,
where L is the field of fractions of R.
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The notation RS for S−1R is in use in the literature, but we shall not use it in
this course.

Suppose that S and T are two multiplicative systems in R. Let ST be the
multiplicative system {st : s ∈ S, t ∈ T}. Note that the image of st has an
inverse in an R-algebra if and only if both the images of s and of t have inverses.
Let S′ be the image of S in T−1R and T ′ be the image of T in S−1R. Then

T ′
−1

(S−1R) ∼= (ST )−1R ∼= S′
−1

(T−1R). All three represent the functor from rings
to sets whose value on a ring A is the set of homomorphisms from R to A such that
the images of the elements of both S and T are invertible in A.

Let S be the image of S in R/I, and use bars over elements to indicate images
modulo I. Then S−1R/Ie ∼= S −1(R/I). The isomorphism takes the class of r/s
to r/s. Both represent the functor from rings to sets whose value on T is the set
of ring homomorphisms g : R → T that kill I and such that for all s ∈ S, g(s) is
invertible in T .

In the case of a prime ideal P , one has in particular that RP /PRP is the
localization of the domain R/P at the multiplicative system of all nonzero elements
(this is the image of R − P ), which is the same as the fraction field of the domain
R/P .

Theorem 2.1. Let S be a multiplicative system and I an ideal in the commu-
tative ring R. Assume that I ∩S = ∅. Then there exists a prime ideal P of R such
that I ⊆ P and P ∩ S = ∅. P may be taken to be any ideal that is maximal in the
set P = {P ⊆ R is an ideal : I ⊆ P and P ∩ S = ∅}.

Proof. Since S is a multiplicative system that does not meet I, no element
of S is nilpotent modulo I. Hence, S−1R/Ie 6= 0 has maximal ideals. Their
contractions, call one of them P , to R are certainly prime: they are precisely the
ideals of R that contain I and are maximal with respect to not meeting S, i.e., they
are the maximal elements of P. Thus, if S does not meet I, there is a prime ideal
P of R, as described, that contains I and does not meet S. �

Remark 2.2. One can give an alternative proof by arguing that P is a nonempty
poset (it contains I) and the union of a chain of ideals in P is in P. Hence, by
Zorn’s lemma, P has a maximal element, P . We leave it as an informal exercise to
show that the maximality of P implies it is prime. The argument in the first proof
of the result avoids this step. But one should note that the second proof is almost
the same as the first.

In particular, if a ∈ R is not nilpotent, then the multiplicative system of powers
of a does not contain 0, and there is a prime that does not meet this multiplicative
system. In particular, there is a prime ideal of R that does not contain a. From
this we see at once:

Corollary 2.3. The intersection of the prime ideals of R is the ideal of all
nilpotent elements of R. �

Corollary 2.4. The intersection of all the prime ideals of R that contain I
is the same as the ideal {a ∈ R : for some n ≥ 1, an ∈ I}. This ideal is called the
radical of I.
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Proof. If an ∈ I and P is prime with I ⊆ P , then an ∈ P and so a ∈ P . If
an /∈ I for all n then the image of a is not nilpotent in R/I. Therefore some prime
ideal P/I of R/I does not contain a. But this means that P is a prime ideal of R
that contains I but not a. More briefly put, simply apply Corollary 2.3 to R/I. �

The radical of I is denoted Rad (I) or
√
I. A ring is called reduced if the

only nilpotent element is 0, i.e., if the radical of the ideal (0) is the ideal (0). If N
denotes the ideal of all nilpotent elements of R, then R/N is called R reduced, and
denoted Rred. Notice that Spec (R/N)→ Spec (R) has image V (N), i.e., the map
is surjective as well as injective and is, in fact a homeomorphism.

The intersection of a nonempty chain of prime ideals is easily verified to be a
prime ideal (the same is true for the union, by the way). By Zorn’s lemma, every
prime ideal of R contains a minimal prime ideal of R, one that does not contain
any strictly smaller prime ideal. It follows that the intersection of all prime ideals
of R is the same as the intersection of the minimal prime ideals of R.

Corollary 2.5. The intersection of the minimal prime ideals of R is the ideal
of all nilpotent elements of R. �

A prime that is minimal in the partially ordered set V (I) is called a minimal
prime of I. We also have:

Corollary 2.6. The intersection of the minimal primes of I is Rad (I).

Proof. Apply Corollary 2.5 to R/I. �

Note that the ideal of nilpotents in R is not necessarily a prime ideal: R may
have many minimal primes. E.g., in R = Z/36Z, the ideal of nilpotents is generated
by [6], and Rred

∼= Z/6Z, which has two minimal primes, generated by the classes
of 2 and 3 respectively.

More generally, suppose that T is a unique factorization domain and that
f1, . . . , fn are irreducible elements of T generating mutually distinct prime ideals
fiT . Let g = fk11 · · · fknn where the ki are positive integers, and let f = f1 · · · fn.
Let R = T/gT . Then Rred

∼= T/fT , and there are n minimal primes: they are
generated by the respective images of the fi.

Corollary 2.7. There is an order-reversing bijection between the closed sets
of the Zariski topology on Spec (R) and the set of radical ideals of R.

Proof. Every closed set has the form V (I) for some ideal I, from the definition
of the topology, and I may be replaced by its radical. Therefore, it suffices to see
that the radical ideal I may be recovered from V (I). This is clear, since it is the
intersection of the primes in V (I). �

5. Lecture of September 18

I want to emphasize the difference between being finitely generated as an alge-
bra and being finitely generated as a module. When S is finitely generated as an
R-algebra it means that there are elements s1, . . . , sn ∈ S such that every element
of S is an R-linear combination of finitely many monomials in the elements si.
Each monomial has the form sk11 · · · sknn . The monomials include 1S (when all the
ki = 0). When S is generated as an R-algebra by s1, . . . , sn there is no smaller ring
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that contains the image of R and all of the si. It also means that the the R-linear
ring homomorphism of the polynomial ring R[x1, . . . , xn] to S that sends xi 7→ si
for every i is surjective. Note that in the polynomial ring R[x, y] the module gen-
erated by 1, x, y is just R+Rx+Ry: it is missing all monomials of higher degree.
If s1, . . . , sn generate S as an R-module, then every element of S can be written
in the form r1s1 + · · · + rnsn: there are no higher degree monomials in the sj in
the representation. When this happens, it is always true that the si generate R as
an S-algebra as well, i..e., generators of S as an R-module always generate S as an
R-algebra.

The ring Z[1/2] is finitely generated as a Z-algebra by 1/2. It contains 1/2k for
every integer k. But it is not finitely generated as a Z-module: any finitely generated
submodule consists of fractions whose denominators can be simultaneously cleared
by a single power of 2.

The polynomial ring in infinitely many variables over R is not finitely generated
over R: any purported finite set of generators only involves finitely many of the
variables, and the other variables cannot be obtained.

The field of rational numbers Q is not finitely generated as a Z-algebra: any
finitely generated subalgebra contains fractions involving only finitely many primes
in the denominator (those occurring in the denominators of the generators), and
will not contain the reciprocals of other primes.

The ring Z[
√

2] is finitely generated over Z not only as an algebra but also as

a Z-module. Every element can be written in the form a+ b
√

2, where a and b are
integers, and so 1,

√
2 generate it as a Z-module.

Let X be any non-empty set, let K be a field, and let R be the ring of functions
from X to K. We shall assume the fact there a bijection of ideals of R with filters on
X as described in 2.1. We want to observe that every prime ideal of R is maximal.
Suppose that F is the filter corresponding to a prime ideal P . If Y and Y ′ are
complementary subsets of X, i.e., if Y ∩ Y ′ = ∅ while Y ∪ Y ′ = X, let f be the
function that is 1 on Y and 0 on Y ′ and let g be the function 1R − f , which is 0
on Y and 1 on Y ′. Then fg = 0, so that either f ∈ P or g ∈ P . Thus, for every
subset Y of X, either Y or X − Y is already in F , but not both, since ∅ /∈ F .
But this implies that F is maximal: it cannot be contained in a larger filter that
does not contain ∅, for if Y /∈ F then X − Y ∈ F , and a filter that contains both
Y and X − Y must contain Y ∩ (X − Y ) = ∅. This shows that every prime ideal
of R is maximal. But then every prime ideal of R is minimal! If X is infinite,
the set of minimal primes is infinite — there is at least one for every point of X,
the functions that vanish at that point. But further analysis of the case where
X is infinite shows that the number of minimal primes is uncountable, even when
X is countable: they correspond to the ultrafilters, which are the points of the
Stone-Čech compactification of X with the discrete topology.

Remark 2.8. The following question is problem 14. on p. 308 in an under-
graduate abstract algebra text by W. E. Deskins [4]. The first part of the problem
asks the reader to show that if R ∼= S as rings, then R[x] ∼= S[x], where these are
polynomial rings in one variable. This is easy. The second part of this question
asks whether the converse is true. (Deskins was a professor at Michigan State Uni-
versity, by the way.) I have wondered on many occasions whether Deskins knew
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the answer. To avoid mistakes it may be better to ask, if R[x] ∼= S[y] is R ∼= S? I
have changed the letters to emphasize that an isomorphism between R[x] and S[y]
might not take x to y. If it does, then one does immediately get an induced isomor-
phism R[x]/xR[x] ∼= S[y]/yS[y], and this implies that R ∼= S. Without the extra
hypothesis, the problem does not seem easy to me. But I have sometimes been
wrong about such things. What do you think? Can you prove that R ∼= S or give
a counterexample? The question remains difficult even if both rings are assumed
to be finitely generated algebras over a field, and the isomorphism is assumed to
preserve the field. We shall return to this question later.

We now return to the study of the properties of the prime spectrum of a com-
mutative ring.

Theorem 2.9. If R is any commutative ring, then X = Spec (R) is quasicom-
pact.

Proof. . Let I be a family of ideals in R. Then U = {X−V (I) : I ∈ I} is an
open cover of X iff there is no prime P that is in all of the V (I), i..e, that contains
all the I ∈ I. This mean that U is an open cover iff the I in I generate the unit
ideal, which implies that 1 = i1 + · · · + in for some choice of I1, . . . , In in I and
i1 ∈ I1, . . . , in ∈ In. But this means that the {X − V (Ii): 1 ≤ i ≤ n} is a finite
subcover of U . �

We write D(A) := X − V (A) for A ⊆ R and D(a) := X − V (a), the open set
of primes not containing a ∈ R. We have that

X − V (I) =
⋃
a∈I

D(a),

so that every open set is a union of sets D(a), i.e., the sets D(a) are a base for
the Zariski topology. (A family of sets is a base for the open sets of a topology if
the open sets coincide with the unions, finite and infinite, of the sets in the base.)
Moreover, D(a) ∩ D(b) = D(ab), so this base is closed under finite intersection.
Since D(a) ≈ Spec (Ra), every open set of the form D(a) is quasicompact, and this
means that the quasicompact open subsets of X form a base. Each quasicompact
open set will be a union of sets D(a), and since it is quasicompact, the union can
be taken to be finite. A finite union of quasicompact sets is quasicompact, and so
the quasicompact open sets are precisely the sets that are finite unions of sets of
the form D(a). It follows that the intersection of two quasicompact open subsets
is quasicompact and open.

A non-empty topological space X is called irreducible if it is not the union of
two proper closed subsets, which is equivalent to the assumption that it is not the
union of finitely many proper closed subsets. Another equivalent statement is that
any two nonempty open sets meet, and this in turn is equivalent to the property
that every nonempty open set is dense. (Check all these equivalences.)

This does not happen much in Hausdorff spaces: an irreducible Hausdorff space
has exactly one point. If there were two, they would have disjoint open neighbor-
hoods U and V , and the complements would be proper closed sets whose union is
the whole space. But there are, typically, irreducible sets in Spec (R). A topological
space X is said to have a generic point x if there is a point x such that the closure of
{x} is all of X. That is, {x} is dense! Said yet another way, every nonempty open
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set contains x. In a T0 space like Spec (R), a generic point, if it exists, is unique.
If X has a generic point, it is irreducible: every non-empty open set contains the
generic point, and is therefore dense.

The converse is true in Spec (R).

Proposition 2.10. Spec (R) is irreducible if and only if the ideal of all nilpo-
tents N is prime, in which case N is the unique minimal prime of R, and is conse-
quently a generic point for Spec (R). R is a domain if and only if it is reduced and
Spec (R) is irreducible. In Spec (R), V (I) is irreducible if and only if the radical P
of I is prime, in which case V (I) = V (P ) has a generic point, namely, P .

Proof. The issues raised in the first and second sentences are really the same,
since killing the ideal of nilpotents N does not affect the question: Spec (R/N) ≈
Spec (R). Likewise, the statement about V (I) follows from applying the first two
statements to R/I. We may therefore assume that R is reduced. If R is a domain,
then it is clear that (0) is the unique minimal prime ideal of R. Now suppose
instead that Spec (R) is irreducible, but that R is not a domain. Choose nonzero
elements a, b ∈ R such that ab = 0. Then every prime ideal contains a or contains
b, and so Spec (R) is the union of the closed sets V (a) and V (b). Since neither a
nor b is nilpotent, both of these closed sets are proper closed sets. This contradicts
the assumption that Spec (R) is irreducible. �

We have already observed that there is an order-reversing bijection between the
radical ideals of R and the closed sets in Spec (R). This bijection restricts to give
an order-reversing bijection between Spec (R), the set of prime ideals of R, and the
irreducible closed subsets of Spec (R). The prime ideal P corresponds to V (P ).

Note also that:

(1) V (I) = V (I ′) if and only if
(2) I and I ′ are contained in all the same primes if and only if
(3) the primes in V (I) have the same intersection as those in V (I ′) if and only if
(4) the radical of I and the radical of I ′ are equal.

Putting all this together, we now know the following about Spec (R): it is a qua-
sicompact T0 space in which the quasicompact open sets are closed under finite
intersection and form a base for the topology. Moreover, every irreducible closed
subset has a generic point. The converse is true, i.e., every topological space with
these properties occurs as Spec (R) for some commutative ring R. See [8], where
this is first proved.





CHAPTER 3

Embedding in products of domains, integral and
module-finite extensions, height, and Krull

dimension

1. Lecture of September 21

An infinite product indexed by a set may be thought of as functions from the
index set such that the value at an element u of the index set is taken in the
factor corresponding to u. When the product consists of rings, a ring structure is
introduced using coordinate-wise addition and multiplication.

Let Y denote either the set of all primes of R or the set of minimal primes of R.
Suppose that R is reduced, so that the intersection of the primes in Y is the zero

ideal. There is a ring homomorphism R→
∏
P∈Y

R/P that sends the element r ∈ R

to the element in the product whose P -coordinate is the image r + P of r in R/P
for all P ∈ Y . Since the intersection of the primes in Y is (0), this homomorphism
is injective. We therefore have:

Corollary 3.1. R is reduced if and only if it is isomorphic with a subring of
a product (which may be infinite) of integral domains.

Each of these integral domains R/P may be enlarged to field, frac (R/P ), where
frac (D) denotes the fraction field of the integral domain D. Thus, in Corollary 3.1,
we can replace “integral domain” by “field.” A ring is reduced if and only if it is a
subring of a product of fields.

The partial ordering of the prime ideals of R can be recovered from the topology
of Spec (R), because P ⊆ Q if and only if Q is in the closure of {P} if and only
if the closure of P contains the closure of Q. We may also recover the partially
ordered set of primes under ⊆ as the poset of irreducible closed subsets under ⊇.

The next segment of the course will deal with the interactions between the
notion of an integral extension of a ring and the theory of Krull dimension.

We shall use ⊂ to indicate strict containment of sets. Let P0 ⊂ P1 ⊂ · · · ⊂ Pd
be a chain of primes in a ring R. By the length of the chain we mean the integer
d. This is the number of strict inclusions and is one smaller than the number
of distinct prime ideals in the chain. By the Krull dimension of the ring R we
mean the supremum of lengths of finite strictly ascending chains of prime ideals
of R. Note that this is the same as the supremum of lengths of finite strictly
descending chains of irreducible closed sets in Spec (R). (This is not so different
from one characterization of dimension of a finite-dimensional vector space: it is the
supremum of lengths of chains of strictly descending vector subspaces.) It may be

37
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+∞. We need a convention for the case where R is the 0 ring: in that case we are
taking the least upper bound of an empty set of integers. We make the convention
that the dimension is −1 in that case. Another possible convention would be to
make the dimension −∞.

Note that a ring has dimension 0 if it is nonzero and any two distinct prime
ideals are incomparable. The latter condition is equivalent to the condition that
every prime ideal is maximal, and also to the condition that every prime ideal is
minimal. A field has dimension 0. A principal ideal domain that is not a field has
dimension 1: the ideal (0) is the unique minimal prime. All other prime ideals are
maximal. We often use the abbreviation PID for “principal ideal domain.”

In exploring the notion of dimension, we shall prove that every ring that is
finitely generated as an algebrta over a field or a PID has finite dimension. We
shall prove that every local ring (Noetherian quasilocal ring) has finite dimension.
In both these cases we shall characterize dimension in other ways. We shall show
that the polynomial ring in n variables over a field has dimension n.

There exist Noetherian rings of infinite Krull dimension. They do not arise
readily: one has to work at giving an example.

An important tool in the study of dimension is the theory of integral ring
extensions. We shall also use this theory to prove Hilbert’s Nullstellensatz.

Let S be an R-algebra with structural homomorphism f : R→ S. An element
s ∈ S is called integral over R if for some positive integer d we have that

sd = rd−1s
d−1 + · · · + r1s+ r0 · 1S

for suitable elements rj of R, i.e., sd ∈ Rsd−1 + · · · + R1S . If we multiply by s,
we see that sd+1 is in the R-span of sd, . . . , 1S , and sd is not needed, because it is
in the R-span of its predecessors. Thus sd+1 is in the R-span of sd−1, . . . , 1S . We
may continue in this way to prove by a straightforward induction that st is in the
R-span of sd−1, . . . , 1S for all t.

Thus, the fact that s is integral over R is equivalent to the assertion that the
R-submodule of S spanned by the powers of s (included 1S as the 0 th power) is
finitely generated as an R-module. (Note that any set of generators will involve only
finitely many powers of s, and that these powers of s will lie among the elements
sd−1, . . . , 1 for any d � 0.) Let A denote the image of R in S. Then another
equivalent statement is that the ring A[s] is a finitely generated A-module, and yet
another is that s satisfies a monic polynomial (i.e., one with leading coefficient 1)
with coefficients in A, say sd + ad−1s

d−1 + · · · + a1s + a0 = 0 where every ai has
the form f(ri) for some element ri ∈ R. From this definition, it is clear that s is
integral over R if and only if it is integral over the image A = f(R) of R in S. Thus,
questions about integrality reduce, for the most part, to the case where R ⊆ S, and
we usually assume this without much comment in the proofs.

Note that 1/2 is not integral over Z: its d th power is not a Z-linear combination

of lower powers for any d. On the other hand in Z[
√

2] the element
√

2 is integral

over Z: it satisfies the monic polynomial equation x2 − 2 = 0. Note that Z[
√

2] =

Z + Z
√

2 is spanned over Z by 1 and
√

2.

S is said to be integral over R if every element of S is integral over R. If
R ⊆ S and S is integral over R then S is called an integral extension of R. S is
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said to be module-finite over R if S is finitely generated as an R-module. This is
much stronger than the requirement that S be finitely generated as an R-algebra.
If R ⊆ S and S is module-finite over R, then S is called a module-finite extension
of R. We want to explore the connection between module-finite extensions and
integral extensions.

We need to extend aspects of the theory of determinants to arbitrary commu-
tative rings. If (rij) is an n× n matrix with entries in R, we define

det (rij) =
∑
π∈Sn

sgn (π)r1,π(1)r2,π(2) · · · rn,π(n)

where Sn is the set of permutations of {1, 2, . . . , n} and sgn (π) is 1 if π is an even
permutation −1 if π is an odd permutation.

Certain facts about determinants follow from polynomial identities in the en-
tries. To prove them for any ring, it suffices to prove them for polynomial rings over
the integers, and since the problem remains the same if we think over the fraction
field, we see that it is enough to prove the result over a field of characteristic 0.
For example, suppose we want to prove that A and its transpose have the same
determinant. If one knows this when A is matrix of indeterminates over Z, one gets
the general case by taking a homomorphism from Z[xij ]→ R that maps xij to rij
for all choices of i, j. The result that det(AB) = det(A) det(B) can be proved sim-
ilarly: one starts with the case where A and B are two matrices of indeterminates.
One can similarly prove that if two rows (or columns) are identical the determinant
is 0, and that switching two rows or columns reverses the sign.

Let Aij denote the submatrix of A obtained by deleting the i th row and j th
column. The determinant of Aij is called the i, j minor of A, and (−1)i+j det(Aij)
is called the i, j cofactor. The classical adjoint of A is the matrix whose i, j entry is
the j, i cofactor of A: it is also referred to as the transpose of the cofactor matrix.
We denote it adj(A). The determinant of a matrix can be found by multiplying
each element of the i th row by its cofactor and summing: this called expansion by
minors with respect to the i th row. There is a similar expansion with respect to
any column. Then A adj(A) = det(A)In, where In is the n × n identity matrix.
Each entry of the product on the left is the determinant of a matrix obtained by
expanding with respect to a row. If the entry is off diagonal, the matrix whose
determinant is being expanded has two rows equal. If the entry is on the diagonal,
one gets one of the expansions for det(A) by minors. A similar argument using
columns shows that adj(A) A = det(A)I.

These results are valid for any commutative ring R. If the case of a field of
characteristic 0 is taken as known, they can be deduced from that case by the type
of argument discussed above, using maps of polynomial rings.

Here is another illustration of this principle. We can prove the Cayley-Hamilton
theorem, that a matrix satisfies its characteristic polynomial, is valid over any
commutative ring with identity. It is sufficient to show this for an n × n matrix
of indeterminates X = (xij) over the integers, working in the integral domain
Z[xij : 1 ≤ i, j ≤ n], and since we may think over the fraction field F of this
domain, the result follows for all commutative rings if one knows the field case: we
can map S = Z[xij : 1 ≤ i, j ≤ n] to the ring in which we are interested so that the
xij map to the entries of a given matrix. Without assuming the field case, we can
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now prove the theorem as follows: assume, for the moment, that over an algebraic
closure of the field F the matrix X has n distinct eigenvalues. Then the matrix is
diagonalizable, and it suffices to check that a similar diagonal matrix satisifies its
characteristic polynomial. But this follows from the fact that all the eigenvalues
satisfy the characteristic polynomial of the matrix.

It remains to prove that the eigenvalues of X are distinct. For an arbitrary
matrix over a domain, one may test whether the eigenvalues are distinct over an
algebraic closure of the fraction field as follows. Consider the product of the squares
of the differences of the eigenvalues. This is a symmetric function of the eigenval-
ues, and so may be formally expressed as a polynomial in the elementary symmetric
functions of the eigenvalues. These are the same as the coefficients of the character-
istic polynomial, and so are polynomials over Z in the entries of the matrix. Hence,
there is a polynomial D in the variables xij with integer coefficients that has the
following property: if one substitutes elements aij of a domain A for the xij , then
the matrix (aij) has distinct eigenvalues over the algebraic closure of the fraction
field of A if and only if D(aij) 6= 0. It now follows that D(xij) 6= 0 for our matrix of
indeterminates X. In fact, even if we replace the off-diagonal entries xij , i 6= j by
0 (more precisely, we are applying the “substitution” ring homomorphism from the
polynomial ring S = Z[xij : 1 ≤ i, j ≤ n] to its subring Z[xii : 1 ≤ i ≤ n] that maps
xij to 0 when i 6= j and maps every xii to itself) , we get a matrix that evidently
has the distinct eigenvalues x11, . . . , xnn.

Note that if M is an R-module, then Mn, written as column vectors of size n,
is a left module over the ring of n × n matrices over R: in particular, if A, B are
n× n matrices over R and V ∈Mn, (AB)V = A(BV ).

The fact that for an n × n matrix A over a commutative ring R one has
adj(A) A = det(A)In has the following consequence:

Lemma 3.2. Let A = (rij) be an n × n matrix over R and let V be an n ×
1 column matrix such that AV = 0. Then det(A) kills every entry of V , i.e.,
det(A)V = 0.

Proof. det(A)V = det(A)InV = adj(A)AV = adj(A)0 = 0. �

We note that if x is an indeterminate over the ring R and B is an n×n matrix
over R, then det(xIn − B) ∈ R[x] is a monic polynomial of degree n in x with
coefficients in R. The product of the entries of the main diagonal provides a unique
term of degree n in x, namely, xn, while the product of any other n entries can
involve x at most to the n−1 st power. As in the case of elementary linear algebra,
this polynomial is called the characteristic polynomial of the matrix B. We can
now prove:

Theorem 3.3. Let S be module-finite over the ring R. Then every element of
S is integral over R.

Proof. We may replace R by its image in S, and so assume that R ⊆ S. Let
s1, . . . , sn be a finite set of generators for S as an R-module. Since we may enlarge
this set of generators as we please, we may assume that s1 = 1. Let s ∈ S be any
element. Then for every i we have an equation

ssi =

n∑
j=1

rijsj
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with coefficients rij in R, simply because ssj is some element of S and so can be
written as an R-linear combination of elements of s1, . . . , sn. Let In be the n × n
identity matrix, let V be the n× 1 column vector whose entries are s1, . . . , sn, and
let B = (rij). Then these equations can be written in matrix form as sIV = BV
or (sI −B)V = 0. Applying Lemma 3.2 with A = sI −B, we find that det(sI −B)
kills all the entries of V , one of which is s1 = 1, and so det(sI − B) = 0. This
implies that s is a root of the characteristic polynomial of B over R, and so s is
integral over R. �

Proposition 3.4. Let R → S → T be ring homomorphisms such that S is
module-finite over R with generators s1, . . . , sm and T is module-finite over S with
generators t1, . . . , tn. Then the composition R → T is module-finite with the mn
generators sitj, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Proof. Every element of t can be written as
∑n
j=1 σjtj for suitable elements

σj ∈ S, and each σj can be written as
∑m
i=1 rijsi for suitable elements rij of R.

Substituting in the expression for t shows that the elements sitj span T as an
R-module. �

Corollary 3.5. The elements of S integral over R form a subring of S.

Proof. Replace R by its image in S and so assume R ⊆ S. Let s, s′ be
elements of S integral over R. Then R[s] is module-finite over R and, since s′ is
integral over R it is certainly integral over R[s]: use the same monic polynomial
to see this. Thus, (R[s])[s′] = R[s, s′] is module-finite over R[s], and so, by the
preceding Corollary, it is module-finite over R. Thus, s ± s′ and ss′, which are in
R[s, s′], are integral over R. �

This depends on the characteristic polynomial method that was used to prove
Theorem 3.3 above. A bit of further analysis of the proof shows that if s, s′ satisfy
monic polynomial equations of degrees m and n over R, the every element of R[s, s′]
satisfies a monic polynomial equation of degree mn over R. It can be shown that,
in general, one cannot do better.

If F is a finite algebraic field extension of the rational numbers the elements
of F that are integral over Z are referred to as the algebraic integers of F , and
form a ring O=OF . The study of such rings is the branch of mathematics known as
algebraic number theory.

We note the process of forming the integral closure of one ring in another
commutes with localization:

Proposition 3.6. Let R→ S be a ring homomorphism, let W be a multiplica-
tive system in R, and let B denote the subring of S consisting of elements integral
over R. Then the subring C of elements of W−1S integral over W−1R is W−1B.

Here, W−1S and W−1B may be thought of as the localizations with respect to
the image of W . This is not necessary, as we may also think of S, B as R-modules.

Proof. Clearly, W−1B ⊆ C. Say s/w′ ∈ C, where s ∈ S and w′ ∈ W .
Then s/1 ∈ C, and it suffices to show s/1 ∈ W−1B. Take an equation of integral
dependence of s/1 on W−1R. Multiplying by the product of the denominators
produces a similar equation except that the leading coefficient is in the image of
W , not monic, and the coefficients, other than the first, are in the image of R.
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This equation holds in W−1S. Multiplying by another element of W we obtain an
equation over S: wsn + r1s

n−1 · · · + rn = 0, where the rj ∈ R. Multiply by wn−1

to obtain (ws)n + r1(ws)n−1 + · · · + wj−1rj(ws)
n−j + · · · + wn−1r0 = 0 in S, so

that ws ∈ B. This implies s/1 and, hence, s/w′ are in W−1B. �

.
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2. Lecture of September 23

We next observe:

Theorem 3.7. Let S be an R-algebra. Then S is module-finite over R if and
only if S is finitely generated as an R-algebra and integral over R. For S to be
module-finite over R, it suffices if S is generated as an algebra over R by finitely
many elements each of which is integral over R.

Proof. We have already seen that module-finite extensions are integral, and
it is clear that they are finitely generated as R-algebras.

For the other half, it suffices to prove the final statement, and we may suppose
that R ⊆ S and that S = R[s1, . . . , sn]. R[s1] is module-finite over R by one of our
characterizations of when an element is integral, and S is module-finite over R[s1]
by induction on n. The result now follows because a module-finite extension of a
module-finite extension of R is module-finite over R. �

A poset is called directed if for any two elements x, y of the poset there exists
z in the poset such that x ≤ z and y ≤ z. A union of a family of sets, subgroups,
submodules, subrings or subalgebras is called a directed union if any two of them
are contained in a third: the underlying sets form a directed poset under ⊆. Then
any finite union of them is contained in one of them.

Corollary 3.8. S is integral over R if and only if it is a directed union of
module-finite extensions of R.

Proof. “If” is clear, since every element of S will be in one of the module-finite
extensions and therefore integral over R. For “only if,” note that S is the directed
union of its finitely generated R-subalgebras, each of which will be module-finite
over R. �

Observe that Z[
√
p : p > 1 is prime] is integral over Z but not module-finite

(and hence not finitely generated as a Z-algebra). In fact, adjoining the square roots
of the several primes even to Q does not introduce the square roots of any other
primes. Similarly, if K is a field and x is an indeterminate, the ring K[x1/2n

: n ∈ N]
is integral over K[x] but is neither module-finite nor finitely generated as an algebra
over K[x].

If R ⊆ S are rings, a prime Q of S that contracts to a prime P of R is said to
lie over P .

Lemma 3.9. Let R ⊆ S be domains and let s ∈ S − {0} be integral over R.
Then s has a nonzero multiple in R.

Proof. Consider an equation of integral dependence for s on R of degree n.
Since s 6= 0, we must have that one of the lower coefficients ri is not 0: let h be the
least value of i such that rh 6= 0, so that ri = 0 for i < h < n. Then the equation
can be rewritten as sh(sn−h+ · · ·+rh+1s+rh) = 0. Since s 6= 0 and S is a domain,
we have that sn−h + · · · + rh+1s + rh = 0, so that rh = s(−sn−h1 − · · · − rh+1),
which shows that rh is a nonzero multiple of s in R. �

Remark 3.10. For the proof of the next theorem, the following observation
about characteristic polynomials is needed. Let M = (rjk) be an n × n matrix
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with entries in a ring R, and let x be an indeterminate. Then the characteristic
polynomial det(xIn −M) has the form

xn − s1x
n−1 + s2x

n−2 − · · ·+ (−1)tstx
n−t + · · ·+ (−1)nsn.

where st is the sum of the t × t minors of M that are symmetrically placed with
respect to the main diagonal, that is, the numbers of the rows used in determining
the minor are the same as the numbers of the columns used in determining the
minor. To see this, think of the determinant of xIn−M as the sum of n! products,
as usual. The only products that yield an xn−t term are those that use x in precisely
n − t terms from the main diagonal and t terms that come from either entries off
the diagona or scalar terms of entries on the diagonal. let S be the set of numbers
indexing the diagonal entries from which we are using x, Multiplying these diagonal
entries together yields a monic polynomial fS whose highest degree term is xn−t.
This polynomial is multiplied by the various products of t terms chosen from −M
(if we pick another term from the diagonal, we multiply only be the constant part)
satisfying the additional condition that they come only from rows and columns
other than those indexed by S. Thus, these terms are precisely those obtained
obtained from expanding the t× t submatrix of −M whose rows and columns are
indexed by S′ := {1, 2, . . . , n}− S. It is straightforward to see that what one gets
as the coefficient of fS is therefore (−1)t times the t × t minor of M indexed by
the rows and columns of S′. The result stated above about st now follows from
summing over all choices of n−t elements S of {1, 2, . . . , n}. Note that if all entries
of the matrix are in an ideal I, then st ∈ It.

The following result is crucial in our first proof of the lying over theorem.

Theorem 3.11. Let S be an integral extension of R, I ⊆ R an ideal, and u ∈
IS. Then u satisfies a monic polynomial equation un+i1u

n−1 + · · ·+in−1u+in = 0
where it ∈ It for 1 ≤ t ≤ n.

Proof. We have that u =
∑n
t=1 stit, with the st ∈ S and the it ∈ I. We may

therefore replace S by the smaller ring generated over R by u and the elements st.
This ring is module-finite over R. Thus, there is no loss of generality in assuming
that S is module-finite over R, with generators s1, . . . , sn, and, as earlier, we may
enlarge the set of generators so that we may assume that s1 = 1. It is easy to
see that IS = Is1 + · · · + Isn, the set of linear combinations of s1, . . . , sn with
coefficients in I: each element is for i ∈ I and s ∈ S has this form because each
element of S is an R-linear combination of s1, . . . , sn. If u ∈ IS, then every usj is
in IS, and so there are n equations

usj =

n∑
k=1

ijksk.

Let V be the n × 1 column matrix with entries s1, . . . , sn and let B be the n × n
matrix (ijk). Then the same argument that we gave earlier shows that u satisfies
the characteristic polynomial of B, which has the form

xn + i1x
n−1 + i2x

n−2 + · · · + in

where it is in It ⊆ R for every t, 1 ≤ t ≤ n by Remark 3.10 just above. �

Theorem 3.12 (Lying over theorem). Let S be an integral extension of R.
Then for every prime P of R, there are primes of S that contract to P , and they
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are mutually incomparable. In particular, the map Spec (S) → Spec (R) is onto.
For every ideal I of R, the contraction of IS to R is contained in Rad I, and so, if
I is radical, IS ∩R = I.

Proof. We prove the last statement first. Let u ∈ IS∩R, Consider the monic
equation that u satisfies given by the preceding theorem. After we substitute u for
x, the leftmost term of the equation is un while the other terms are in I. This
implies that un ∈ I and so u ∈ Rad I, as required.

In particular, if I = P is prime then R−P is a multiplicative system in R ⊆ S,
and PS does not meet it, since PS ∩ R = P . Therefore there is a prime ideal Q
of S that contains PS and is disjoint from R − P . Since P ⊆ PS, we see that
Q ∩R = P .

It remains only to show that two primes lying over P ⊆ R cannot be compa-
rable. Suppose to the contrary that Q0 ⊂ Q both lie over P in R. The trick here
is to pass to R/P ⊆ S/Q0. This extension is still integral: given s ∈ S, it satisfies
a monic equation over R, and s + Q0 satisfies the same equation with coefficients
considered mod P . Now the nonzero prime ideal Q/Q0 lies over the prime ideal
(0) in R/P . Thus, it suffices to show that if R ⊆ S are domains, then a nonzero
prime ideal Q of S cannot lie over (0) in R. This is immediate from Lemma 3.9:
any nonzero element of Q has a nonzero multiple in R. �

Example 3.13. The ring of functions from an infinite set X to Z/2Z is integral
over Z/2Z: every element satisfies x2 − x = 0. It has uncountably many minimal
primes, mutually incomparable and all lying over (0) in Z/2Z.
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3. Lecture of September 25

We give another proof of the lying over theorem that does not involve the
eigenvalue trick. Suppose that R ⊆ S is integral and that P ∈ Spec (R).

Quite generally, suppose R ⊆ S is integral and let W be a multiplicative system
in R. It is easy to check that W−1R ⊆ W−1S and that the extension is still
integral: W−1S is generated over W−1R by the elements s/1, and these satisfy
monic polynomials over the image of R in W−1R.

We apply this here with W = R − P . Let S1 = W−1S. If Q1 is a prime of S1

lying over PRP , then the contraction Q of Q1 to S will lie over P , since PRP lies
over P . Thus, we have reduced to the case where R is quasilocal with maximal ideal
P . It now suffices to show that PS 6= S, for then any maximal ideal of S containing
PS will be prime, and its contraction to R will contain the maximal ideal P but
not 1, forcing the contraction to be P . Consider the family of ideals of R contained
in P whose expansion to S is not all of S. This family contains (0), and the union
of a chain in the family is again in the family: if 1 ∈ S is a linear combination of
finitely many elements from the union, these elements will come from just finitely
many of the ideals in the family, and will all lie in the largest of them. Therefore
this family has a maximal element I. Consider IS ∩ R = J . Then I ⊆ J , and
we must have J = I or else JS ⊆ IS 6= S contradicts the maximality of I. Then
R/I → S/IS is injective and still integral, and R/I is quasilocal. Therefore we
may replace R ⊆ S by R/I ⊆ S/IS. If P = (0) we are done. If not, then choose
a ∈ P −{0}. Then the maximality of I implies that aS = S (or else we could have
enlarged I ⊆ R using a preimage of a). This means that there is an element b of S
such that ab = 1. But b is integral over R, so that there is an equation

bn = rn−1b
n−1 + rn−2b

n−2 + · · ·+ r1b+ r0

Since b = a−1, when we multiply both sides by an−1 we get that

b = rn−1 + rn−2a+ · · ·+ r1a
n−2 + r0a

n−1

which shows that a−1 = b ∈ R. Thus, a has an inverse in R, contradicting the
assumption that a ∈ P − {0}. �

Corollary 3.14 (Going up theorem). Let R ↪→ S be an integral extension
and let

P0 ⊂ P1 ⊂ · · · ⊂ Pd
be a chain of prime ideals of R. Let Q0 be a prime ideal of S lying over P0. Then
there is a chain of prime ideals

Q0 ⊂ Q1 ⊂ · · · ⊂ Qd

of S such that for all t, Qt lies over Pt.

Proof. It suffices to construct Q1 ⊃ Q0 lying over P1: the result then follows
by a straightforward induction on d. Consider R/P0 ⊆ S/Q0. This is an integral
extension, and P1/P0 is a prime ideal of R/P0, so there is a prime ideal of S/Q0

that lies over it: it will have the form Q1/Q0 for some prime ideal Q1 of S. It is
clear that Q0 ⊂ Q1, and it is easy to verify that that Q1 lies over P1 in R. �

Corollary 3.15. If R ↪→ S is an integral extension then dimR = dimS.
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Proof. Let Q0 ⊂ · · · ⊂ Qd be a chain of prime ideals of S. Their contractions
will give a chain of prime ideals of the same length in R: they will be distinct,
because comparable primes cannot contract to the same prime ideal. This shows
that dimS ≤ dimR.

On the other hand, given a finite chain of primes in R, the going up theorem
implies the existence of a chain of prime ideals of S of the same length, so that
dimS ≥ dimR. �

We next want to observe that if the functors hX and hY are isomorphic, this
yields an isomorphism X ∼= Y . In fact, we prove much more. Note that any
morphism f : Y → X gives a natural transformation T f from hX to hY : the needed
map from hX(Z) = Mor (X,Z) → Mor (Y, Z) = hY (Z) sends g : X → Z to g ◦ f .
Notice that the map hX(X) = Mor (X,X)→ Mor (Y,X) = hY (X) associated with
T f sends 1X to f . The key point is that every natural transformation T : hX → hY
arises in this way, uniquely (uniqueness will be obvious, since we have already seen
how to recover f from T f ). Given T , let f = TX(1X) ∈ Mor (Y, X). For all Z,
TZ : hX(Z) = Mor (X,Z) → hY (Z) = Mor (Y,Z). Fix g : X → Z. Then the
definition of a natural transformation yields a commutative diagram:

Mor (X,X)
hX(g)−−−−→ Mor (X,Z)

TX

y yTZ

Mor (Y,X) −−−−→
hY (g)

Mor (Y,Z)

We can compute the image of 1X in Mor (Y,Z) two ways. Using the top and right
arrows, we get TZ(g ◦ 1x) = TZ(g). Using the left and bottom arrows, we get g ◦ f .
Thus, TZ(g) = g ◦ f always, which is exactly what we wanted to show. But then
natural transformations hX → hY and hY → hX whose composition in either order
is the identity natural transformation (from hX → hX or from hY → hY must come
from morphisms f : Y → X and f ′ : X → Y whose composition in either order is
the identity on X or Y .

A very useful consequence of this discussion is that the object representing
a functor is unique, up to isomorphism. This establishes literally hundreds of
isomorphisms. For example, if S is a multiplicative system in R with image S in

R/I, the isomorphism S−1R/IS−1R ∼= S
−1

(R/I) is a consequence of the fact that
both represent, in the category of rings, the functor that assigns to the ring T all
homomorphisms from R→ T such that I maps to 0 in T and S maps into the units
of T .

Let f : R → S be a ring homomorphism, and let f∗ := Spec (f) : Spec (S) →
Spec (R) be the usual map given by contraction. Let Y = Spec (S) and X =
Spec (R). Given a map of sets g : Y → X, and a point x ∈ X, the set g−1(x) is
called the fiber of g over x: it is simply the set of points of Y that map to x. Thus,
the fiber of the function f∗ = Spec (f) over P ∈ Spec (R) is precisely the set of
primes of S lying over P in R. This set of primes is homeomorphic with Spec of

(R− P )−1S/P e ∼= (R− P )−1(S/PS),

where R− P is the image of R − P in S/PS. The ring (R − P )−1S/P e is called
the fiber of R→ S over P . (This is really terminology from the theory of schemes,
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and the term scheme-theoretic fiber is also used.) Alternatively, it may be defined
as the canonically isomorphic ring (R− P )−1(S/PS). Note that it is an S-algebra.
Its primes correspond exactly to primes of S that contain PS and are disjoint from
R− P , which is exactly the condition for them to lie over P in R. (R− P )−1S/P e

is also an algebra over RP /PRP (which may be identified with fraction field of the
domain R/P ).

If R → S is integral (respectively, module-finite), then RP /PRP → (R −
P )−1S/P e is also integral (respectively, module-finite). Up to multiplication by
elements coming from units of R, every element of the (R − P )−1S/P e comes
from S, and for the image of an element of S we may use the same equation of
integral dependence that it satisfied over R, taking the images of the coefficients
in RP /PRP . In the case where S is spanned over R by s1, . . . , sn, the images of
s1, . . . , sn span (R− P )−1S/P e over RP /PRP .

We want to obtain a bound for the number of primes lying over P in the case
of a module-finite extension.

We first prove two preliminary results.

Two ideals I, J of a ring R are called comaximal if I+J = R. Ideals I1, . . . , In
of R are called pairwise comaximal if for all j 6= k, Ij + Ik = R. Note that
if m1, . . . ,mn are mutually distinct maximal ideals of R, then they are pairwise
comaximal.

We recall that the product ideal IJ is the ideal generated by all the elements
ij for i ∈ I and j ∈ J . Each element of IJ is a sum of the form i1j1 + · · ·+ ikjk for
some positive integer k and elements i1, . . . , ik ∈ I and j1, . . . , jk ∈ J .

Lemma 3.16 (Chinese remainder theorem). If I1, . . . , In are pairwise comaxi-
mal in the ring R, then

I1 · · · In = I1 ∩ · · · ∩ In.
Let J = I1 · · · In. The ideals

I1I2, I3, . . . , In

are also pairwise comaximal. Moreover, the map

R/J → R/I1 × · · · ×R/In
that sends r + J to (r + I1, . . . , r + In) is a ring isomorphism.

Proof. First consider the case where n = 2. Choose i1 ∈ I1 and i2 ∈ I2
such that i1 + i2 = 1. If u ∈ I ∩ J then u = u · 1 = u(i1 + i2) = ui1 + ui2. But
ui1 ∈ I1I2 because u ∈ I2, and ui2 ∈ I1I2 because u ∈ I1. Thus, u ∈ I1I2. The map
R→ R/I1×R/I2 that sends r to (r+I1, r+I2) is a ring homomorphism that clearly
has kernel I1 ∩ I2 = I1I2. It therefore induces an injection R/I1I2 ↪→ R/I1 × R2.
To see that this map is surjective, let (r1 + I1, r2 + I2) in the image be given. Then
r1i2 + r2i1 maps to this element: mod I1, r1i2 + r2i1 ≡ r1 · 1 + r2 · 0 ≡ r1, and the
calculation mod I2 is exactly similar.

To prove the second statement, it clearly suffices to show that I1I2 is comaximal
with Ij for j ≥ 3. Choose i1 ∈ I1 and u ∈ Ij such i1 +u = 1, and choose i2 ∈ I2 and
v ∈ Ij such that i2+v = 1. Multiply these equations. Then i1i2+i1v+ui2+uv = 1,
and i1i2 ∈ I1I2 while i1v + ui2 + uv ∈ Ij .
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The general case of the ring isomorphism now follows by induction on n. By
the induction hypothesis,

R/J = R/
(
(I1I2)I3 · · · In

) ∼= (R/(I1I2)
)
×R/I3 × · · · ×R/In

and R/(I1I2) ∼= R/I1 ×R/I2 by the case n = 2 already established. �

If R = Z, the principal ideals a1Z, . . . anZ are pairwise comaximal if and only if
the integers a1, . . . , an are relatively prime in pairs, and we get the classical Chinese
remainder theorem.

Theorem 3.17. Let R be a reduced K-algebra that is module-finite over the
field K. This simply means that R is a finite-dimensional vector space over K.
Then R is a product of finite algebraic field extensions L1 × · · · × Ln of K. R has
n maximal ideals, the kernels of the n product projections R � Li, 1 ≤ i ≤ n, and
n, the number of maximal ideals, is at most the dimension of R as K-vector space.

Proof. Since K has dimension 0 and R is integral over K, R has dimension 0.
Thus, every prime ideal is maximal. Let m1, . . . ,mh be any subset of the maximal
ideals of R. By the Chinese remainder theorem, R/(m1 · · ·mh) ∼= R/m1 × · · · ×
R/mh. Let Li = R/mi. Li is a field and finite-dimensional as a K-vector space, and
so it is a finite algebraic extension of K. As a K-vector space, R/m1× · · · ×R/mh

is the direct sum over K of the Li, which shows that h is at most the K-vector
space dimension of R/(m1 · · ·mh), and therefore is also at most the K-vector space
dimension of R. This means that the number of maximal ideals of R is at most
the K-vector space dimension of R. Now suppose that m1, . . . ,mn are all the
maximal ideals of R. Since R is reduced, the intersection of the mi is (0). Thus,
R ∼= R/(0) ∼= R/m1 × · · · ×R/mn. �

Corollary 3.18. Let S be module-finite over R with n generators. The number
of prime ideals of S lying over a prime P of R is at most n.

Proof. By our earlier remarks, we may replace R → S by RP /PRP →
(RP )−1S/P e, and n does not increase. But now R = K is a field, and S is a
finite-dimensional K-vector space of dimension at most n. Passing to Sred can only
decrease its K-vector space dimension, while the number of prime ideals (which are
all maximal) does not change, and now we may apply the preceding result. �
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4. Lecture of September 28

If P is a prime ideal of R, by the height of P we mean the supremum of lengths
of finite strictly ascending chains of primes contained in P . It is immediate that
the height of P is the same as the Krull dimension of the quasilocal ring RP . It
should be clear that the dimension of R is the same as the supremum of heights of
all prime ideals, and that this will be the same as the supremum of heights of all
maximal ideals.

Corollary 3.19. If R ⊆ S is an integral extension and Q is a prime ideal of
S lying over a prime P in R, then the height of P is bigger than or equal to the
height of Q.

Proof. A chain of distinct primes contained in Q will contract to a chain of
distinct primes contained in P . �

A much harder problem is this: suppose that S is integral over R and we are
given a chain

Pn ⊃ Pn−1 ⊃ · · · ⊃ P0

of primes in R, and a prime Qn of S lying over Pn. Can we find a chain

Qn ⊃ Qn−1 ⊃ · · · ⊃ Q0

of S such that Qi lies over Pi for every i? This turns out to need additional
hypotheses even when R is a domain. In order to formulate the correct hypothesis
on R needed here, we must discuss the notion of an integrally closed domain.

The set of elements of S ⊇ R that are integral over R was shown earlier to be
a ring. This ring is called the integral closure of R in S.

We shall say that a domain R is integrally closed or normal if every element
of the fraction field of R that is integral over R is in R. The integral closure of a
domain R in its fraction field is called the the integral closure or normalization of
R.

A unique factorization domain is normal. To see this, suppose that a/b is a
fraction integral over R but not in R. We may assume that it has been written in
lowest terms, so that a and b have no common divisor other than units, and b is
not a unit. If it satisfies the equation

(a/b)d + rn−1(a/b)d−1 + · · ·+ r0 = 0

with the ri ∈ R we may multiply through by bd to get the equation

ad + rn−1a
d−1b+ · · ·+ r0b

d = 0.

Every term other than the leftmost is divisible by b, and so b | ad. Any prime factor
of b must divide ad and therefore a, a contradiction, since a/b is in lowest terms. �

In particular, any principal ideal domain, as well as any polynomial ring over
a field or a principal ideal domain, is normal.

If K is a field, R = K[x2, x3] is not normal. x = x3/x2 is in the fraction field,
and is integral over K[x2, x3], since z = x is a root of z2 − x2 = 0. The integral
closure of R is K[x].
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The ring Z[
√

5] is not integrally closed. The element τ =
1 +
√

5

2
is in the

fraction field, and is integral, since it is a root of x2 − x− 1 = 0. It is not obvious
but not difficult to show that Z+Zτ is integrally closed, and is the integral closure
of Z[

√
5]. (Suppose that a + b

√
5 is integral over Z[

√
5] and hence over Z, where

a, b ∈ Q. It follows that a−b
√

5 will satisfy the same monic polynomial over Z that
a+b
√

5 does, and so is also integral over Z. Adding, we find that a+b
√

5+a−b
√

5 =
2a is integral over Z, and therefore in Z. Thus, a is either k or k + 1/2, where k

is an integer. By subtracting a suitable integer linear combination of
√

5 and τ ,
we get an element of the form c

√
5, integral over Z, such that c is rational. It will

therefore suffice to show that if c is rational and c
√

5 is integral over Z, then c is
an integer. Write c = m/n in lowest terms. Then 5c2 is rational and is integral
over Z and therefore is an integer, i.e., n2 | 5m2. If 5 |n then it does not divide m,
and this is impossible. If 5 does not divide n, then n2 |m2, so that c is a rational
number whose square is an integer, and it follows that c is an integer. �)

We can now state the result we aim to prove:

Theorem 3.20 (Going down theorem). Let R be a normal integral domain,
and let S be integral over R. Suppose that no nonzero element of R is a zerodivisor
in S, i.e., that S is torsion-free as an R-module. Let

Pn ⊃ Pn−1 ⊃ · · · ⊃ P0

be a chain of primes in R, and let Qn be a prime ideal of S lying over Pn. Then
there is a chain of primes

Qn ⊃ Qn−1 ⊃ · · · ⊃ Q0

of S such that Qi lies over Pi for every i.

We need some preliminaries before we can prove this.

Proposition 3.21. Let A be a ring and A[x] the polynomial ring in one variable
over A.

(a) If f and g are nonzero polynomials of A[x] with degrees n and d and leading
coefficients a and b respectively, then if either a or b is not a zerodivisor in A,
the degree of fg is d + n and its leading coefficient is ab. In particular, the
conclusion holds if f or g is monic.

(b) (Division algorithm) Let g be any polynomial and f a monic polynomial in
R[x] of degree d. Then one can write g = qf + r, where q, r ∈ A[x] and either
r = 0 or the degree of r is < d. This representation is unique.

(c) c Let R ⊆ S be a ring extension and let f , g be as in (b), with f monic. Then
g is a multiple of f in R[x] if and only if it is a multiple of f in S[x].

Proof. It is clear that fg has at most one term of degree d + n, namely
abxd+n, with all other terms of lower degree, and that it has such a term provided
that ab 6= 0, which is true if either a or b is not a zerodivisor. This proves part (a).

To prove existence in part (b), we perform long division in the usual way. To
make this precise, first note that if g = 0 or has degree < d , we may take q = 0
and r = g. Otherwise, let axn be the highest degree term in g, where a 6= 0 is in
R. Then g1 = g − axn−df has smaller degree than g, and so can be written in the
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form q1f + r by induction on the degree of g. But then g = (axn−d + q1)f + r, as
required.

It remains to prove uniqueness. But if qf + r = q′f + r′ both satisfy the
condition, then (q − q′)f = r′ − r is 0 or has degree smaller than that of f , which
is impossible from part (a) unless q − q′ = 0, in which case r′ − r = 0 as well.

To prove part (c), note that we can perform the division algorithm thinking in
R[x] or in S[x]. By uniqueness, the result is the same. If g is a multiple of f in
S[x] the remainder must be zero, and then the same holds in R[x]. �

Note in connection with part (a) that if A = Z/(4) and 2 denotes the image of
2 in A, then ( 2x+ 1)( 2x+ 1) = 1 in A[x].
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5. Lecture of September 30

Proposition 3.22. Let R be an integrally closed domain with fraction field K
and let S be a domain containing R. Suppose that s ∈ S is integral over R. Let
f(x) ∈ K[x] be the minimal monic polynomial of s over K. Then f(x) ∈ R[x], and
for any polynomial g(x) ∈ R[x] such that g(s) = 0, f(x) | g(x) in R[x].

Proof. Choose an algebraically closed field L that contains the fraction field
of S. Thus, K ⊆ L as well. s satisfies some monic polynomial h(x) with coefficients
in R. It follows that f(x) |h(x) in K[x]. Therefore, every root of f in L is a root
of h(x). It follows that all the roots of f are integral over R. The coefficients of
f are elementary symmetric functions of the roots of f . Therefore, the coefficients
of f are elements of K that are integral over R. Since R is normal, they are in R.
Now suppose that g(x) is any polynomial of R[x] such that g(s) = 0. We know
that f(x) | g(x) in K[x]. The fact that f(x) | g(x) in R[x] follows from part (c) of
the preceding proposition. �

We are now ready for the proof of the going down theorem.

Proof. We have an integrally closed domain R ⊆ S where S is integral over
R and the nonzero elements of R are not zerodivisors in S. We are given a prime
Q of S lying over P in R, and a prime P0 of R with P0 ⊂ P . We want to show that
there is a prime Q0 ⊂ Q such that Q0 lies over P0. The general case of the going
down theorem then follows by a straightforward induction.

We begin by showing that there is a prime ideal q ⊆ S such that q ⊂ Q and
q lies over the prime ideal (0) in R. To see this, consider the multipicative system
W = (R− {0})(S −Q) in S. Because the elements of R− {0} are not zerodivisors
in S and the elements of S − Q are not zero, the multiplicative system W does
not contain 0. This means that there is a prime ideal q of S disjoint from W . In
particular, since R−{0} ⊆W , we must have that q∩R = (0), and since S−Q ⊆W ,
we must have that q ⊆ Q. Since Q lies over P and P0 ⊂ P , P 6= (0), and this means
that q ⊂ Q. We now replace S by S/q. Since q does not meet R, we still have
an injection R ↪→ S/q, and we may replace R by its image in S/q and so assume
that R ⊆ S/q. This extension is obviously still integral: the monic equation over R
satisfied by s ∈ S is also satisfied by its image in S/q. We replace Q by Q/q, which
still lies over P . If we can find a prime of S/q contained in Q/q that lies over P0,
it will have the form Q0/q for some prime Q0 of S with Q0 ⊆ Q. Then Q0 will lie
over P0 in R and we will also have Q0 ⊆ Q. Since P0 ⊂ P , we actually have that
Q0 ⊂ Q.

Therefore, we may assume without loss of generality that R ⊆ S is an extension
of domains and that S is integral over R. This stronger condition replaces the
assumption that nonzero elements of R are not zerodivisors in S. Let A = R− P0

and B = S−Q. To complete the proof, we shall show that the multiplicative system
AB does not meet the ideal P0S. This implies that there is a prime ideal Q0 of
S containing P0S and disjoint from AB ⊇ A ∪ B, so that P0 ⊆ Q0 and Q0 meets
neither R−P0 nor S −Q. But this means that Q0 lies over P0 and is contained in
Q, as required.
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Suppose that a ∈ A and b ∈ B are such that ab ∈ P0S. By Theorem 3.11,
ab satisfies a monic polynomial equation g1(x) in one variable x such that all co-
efficients of the equation except the leading coefficient are in P0 (not just in P0S).

This means that b is a root of the polynomial g(x) := g1(ax) over R. Note that
the leading coefficient of g(x) is a power of a, and that all other coefficients are in
P0.

Think of K = frac (R) as contained in frac (S) = L. Since b satisfies the
algebraic equation g(b) = 0, it is algebraic over K, and has a monic minimal
polynomial f(x) with coefficients in K that is irreducible in K[x]. By the preceding
Lemma, this polynomial has coefficients in R, since R is normal. It divides g(x) in
K[x], because g(x) has coefficients in R ⊆ K, and f(x) is the minimal polynomial
of b.

Since f(x) is monic, our result on the division algorithm implies that f(x)
divides g(x) in R[x] as well: let us say that g(x) = f(x)q(x), where all three have
coefficients in R. We now consider coefficients mod P0, which means, in effect ,
that we are working in R[x], where R = R/P0. Let a be the image of a in R: since
a ∈ R − P , a 6= 0 in R/P . Then, mod P0, g(x) has the form adxd, since all lower
coefficients are in P0. This implies that the monic polynomial f must become xk

mod P0, where k is its degree. This means, thinking over R, that f(x) is monic
of degree k with all lower coefficients in P0: say f(x) = xk + pk−1x

k−1 + · · · + p0,
where the pj ∈ P0.

Since b is a root of f(x), we have that bk = −pk−1b
k−1 − · · · − p0 ∈ P0S ⊆ Q,

and so b ∈ Q, which is a contradiction! Thus, AB does not meet P0S, and we are
done. �

Corollary 3.23. Let R be an integrally closed domain, S an integral extension
of R that is torsion-free over R, and Q a prime ideal of S that lies over P in R.
Then the height of Q is equal to the height of P .

Proof. We have already seen that the height of Q is at most the height of
P . Conversely, given a chain of primes contained in P we may use the going down
theorem, starting with the largest prime in the chain, to construct a chain of primes
in S that lies over it and is contained in Q, and this shows that the height of Q is
at least as big as the height of P . �

Let’s look at two examples. Consider R = K[x] ⊆ K[x, y]/(y2 − y, xy) = S.
This is integral, since y satisfies a monic equation. It is an extension: we can map
this larger algebra back to K[x] by sending x 7→ x and y 7→ 0, and the composition
is the identity on K[x]. The element 1 − y generates a minimal prime Q of the
larger ring containing x and not y: we can see that it is minimal, because a smaller
prime cannot contain (1− y) and cannot contain y either (or else Q would contain
both y and 1 − y), while y(1 − y) = 0 in the quotient. But (1 − y)S contracts to
xK[x], which has height one. The problem here is that x is a zerodivisor in S,
which shows that one cannot omit the hypothesis that S be torsion-free over R in
the statement of the going down theorem.

In the example above, R is normal. We next consider an example where both
rings are domains but R is not normal: in fact, S is the integral closure of R. Let
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K be a field, let S = K[x, y], and let

R = K[x(1− x), y, xy] ⊆ S.
S is integral over R since it is generated over K[y] ⊆ R by x, and z = x satisfies
the monic polynomial z2− z+x(1−x) = 0, which has coefficients in R. x is in the
fraction field of R, since it is equal to xy/y. Let Q = (1 − x, y)S, which is easily
seen to lie over

P =
(
x(1− x), y, xy

)
R,

a maximal ideal of R, and let P0 be the contraction of xS to R. Then

P0 =
(
x(1− x), xy

)
R.

We claim that no primeQ0 contained inQ lies over P0. For any prime of S contained
in Q cannot contain x, for x /∈ Q. But since Q0 must contain both x(1 − x) and
xy (these elements are in P0) and it does not contain x, it must contain both 1− x
and y, which forces it to be equal to Q. But then it lies over P , not P0. This
shows that one cannot omit the hypothesis that R be normal in the statement of
the going down theorem.





CHAPTER 4

Noether normalization, Hilbert’s Nullstellensatz,
and dimension in finitely generated algebras over

a field

1. Lecture of October 2

We will focus for a while on the properties of finitely generated algebras over a
field K, which are sometimes also called affine algebras over K. One of the main
tools is the Noether normalization theorem, Theorem 4.2, and our next objective
is to develop some preliminary results needed to prove it.

The following result implies that, after a change of variables, any nonzero poly-
nomial in R = K[x1, . . . , xn], the polynomial ring in n variables over a field K,
becomes a nonzero scalar times a polynomial that is monic in xn with coefficients
in A = K[x1, . . . , xn−1] ⊆ R, where we think of R as A[xn]. We may also do this
with any one of the other variables. This simple trick, or method, provides a wealth
of information about algebras finitely generated over a field. It will be the key to
our proofs of the Noether normalization theorem and Hilbert’s Nullstellensatz.

Consider this example: the polynomial x1x2 is not monic in either variable.
But there is an automorphism of the polynomial ring in two variables that fixes x2

and maps x1 to x1 + x2. (Its inverse fixes x2 and maps x1 to x1 − x2.) The image
of x1x2 is (x1 +x2)x2 = x2

2 +x1x2. As a polynomial in x2 over K[x1], this is monic.
Note that we may also think of the effect of applying an automorphism as a change
of variables.

More generally, if D is any ring, R = D[x1, . . . , xn] is a polynomial ring over
D, and g1(xn), . . . , gn−1(xn) are arbitrary elements of D[xn] ⊆ R, then there is
a D-automorphism φ of R such that xi 7→ yi = xi + gi(xn) for i < n and while
xn = yn is fixed. The inverse automorphism is such that xi 7→ xi− gi(xn) while xn
is again fixed. This means that the elements yi are algebraically independent and
generate D[x1, . . . , xn]. They are “just as good” as our original indeterminates.

Lemma 4.1. Let D be a domain and let f ∈ D[x1, . . . , xn]. Let N ≥ 1 be an
integer that bounds all the exponents of the variables occurring in the terms of f .

Let φ be the K-automorphism of D[x1, . . . , xn] such that xi 7→ xi + xN
i

n for i < n
and such that xn maps to itself. Then the image of f under φ is a polynomial
whose sole highest degree term in xn is a nonzero element c of D times a power of
xn. Hence, the image of f is a unit of Dc times a monic polynomial in xn over
Dc[x1, . . . , xn−1].

Proof. Consider any nonzero term of f , which will have the form cαx
a1
1 xa22 · · ·xann ,

where α = (a1, . . . , an) and cα is a nonzero scalar in D. The image of this term

57
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under φ is

cα(x1 + xNn )a1(x2 + xN
2

n )a2 · · · (xn−1 + xN
n−1

n )an−1xann ,

and this contains a unique highest degree term in xn: it is the product of the highest
degree terms coming from all the factors, and it is

cα(xNn )a1(xN
2

n )a2 · · · (xN
n−1

n )an−1xann = cxan+a1N+a2N
2+···+an−1N

n−1

n .

The exponents that one gets on xn in these largest degree terms coming from dis-
tinct terms of f are all distinct, because of uniqueness of representation of integers
in base N . Thus, no two exponents are the same, and no two of these terms can
cancel. Therefore, the degree m of the image of f is the same as the largest of the
numbers

an + a1N + a2N
2 + · · ·+ an−1N

n−1

as α = (a1, . . . , an) runs through n-tuples of exponents occurring in nonzero terms
of f , and for the choice α0 of α that yields m, cα0

xmn occurs in φ(f), is the only
term of degree m, and and cannot be canceled. It follows that c−1

α0
φ(f) is monic

of degree m in xn when viewed as a polynomial in xn over Dc[x1, . . . , xn−1], as
required. �

We shall say that a polynomial in R[x] is essentially monic if the leading co-
efficient is a unit, i.e., an invertible element, in R. We may talk about when a
polynomial in several variables is monic or essentially monic in one of the variables.
If the ring is is A[x1, . . . , xn], and we choose the variable xn, think of the ring as
R[xn], where R = A[x1, . . . , xn−1]. The division algorithm, Proposition 3.21(b),
holds without any change of wording if f is assumed to be essentially monic instead
of monic.

1.1. Algebraic independence and transcendence bases. Let R be an
A-algebra and z1, . . . , zd ∈ R. We shall say that the elements z1, . . . , zd are al-
gebraically independent over A if the unique A-algebra homomorphism from the
polynomial ring A[x1, . . . , xd] → R that sends xi to zi for 1 ≤ i ≤ n is an isomor-
phism. An equivalent statement is that the mononomials za11 · · · z

ad
d as (a1, . . . , ad)

varies in Nd are all distinct and form a free basis for the A-submodule of R that they
span: of course, this free A-submodule is A[z1, . . . , zd]. The failure of the zj to be
algebraically independent means precisely that there is some nonzero polynomial
f(x1, . . . , xd) ∈ A[x1, . . . , xd] such that f(z1, . . . , zd) = 0.

Note that when D ⊆ R are rings and W is a multiplicative system in D, we
have that W−1D ↪→ W−1R. (The element d/w maps to 0 if and only if d/1 maps
to 0, in which case w′d = 0 for some element of w′ ∈ W thinking in R. But this
means w′d = 0 in D as well, and so d/1 = 0 and d/w = 0 in W−1D.)

We can now show:

Theorem 4.2 (Noether normalization theorem). Let D be a domain and let R
be any finitely generated D-algebra. Then there exist a nonzero element c ∈ D an
algebraically independent elements z1, . . . , zd in Rc over Dc such that Rc is module-
finite over its subring Dc[z1, . . . , zd], which is isomorphic to a polynomial ring (d
may be zero).

Hence, if D is a field K, every finitely generated K-algebra is isomorphic with
a module-finite extension of a polynomial ring!
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Proof. We use induction on the number n of generators of R over D. If
n = 0 then R = D. We may take d = 0. Now suppose that n ≥ 1 and that we
know the result for algebras generated by n − 1 or fewer elements. Suppose that
R = K[θ1, . . . , θn] has n generators. If the θi are algebraically independent over D
then we are done: we may take d = n and zi = θi, 1 ≤ i ≤ n. Therefore we may
assume that we have a nonzero polynomial f(x1, . . . , xn) ∈ K[x1, . . . , xn] such that
f(θ1, . . . , θn) = 0. Instead of using the original θj as generators of our K-algebra,
note that we may use instead the elements

θ′1 = θ1 − θNn , θ′2 = θ2 − θN
2

n , . . . , θ′n−1 = θn−1 − θN
n−1

n , θ′n = θn

where N is chosen for f as in the preceding Lemma. With φ as in that Lemma,
we have that these new algebra generators satisfy φ(f) = f(x1 + xNn , . . . , xn−1 +

xN
n−1

n , xn), which we shall write as g. Let c ∈ D − {0} be the coefficient of
the highest degree term of g in xn. Then, over Dc, c

−1g is an equation of in-
tegral dependence for θ′n/1 over Dc[θ1, . . . , θn−1] ⊆ Rc, Thus, θ′n is integral over
Dc[θ

′
1, . . . , θ

′
n−1] = S, and so Rc is module-finite over S. Note that we can invert

an element c′/ct of Dc by inverting c′. Since S has n − 1 generators over Dc, we
have by the induction hypothesis for some c′ ∈ D − {0}, that Sc′ is module-finite
over a polynomial ring Dcc′ [z1, . . . , zd] ⊆ Sc′ , and then Rcc′ is module-finite over
Dcc′ [z1, . . . , zd] as well. �

Note that if K ⊆ L are fields, the statement that L is module-finite over K is
equivalent to the statement that L is a finite-dimensional vector space over K, and
both are equivalent to the statement that L is a finite algebraic extension of K.

Also notice that the polynomial ring R = K[x1, . . . , xd] for d ≥ 1 has dimension
at least d: (0) ⊂ (x1)R ⊂ (x1, x2)R ⊂ · · · ⊂ (x1, . . . , xd)R is a strictly increas-
ing chain of prime ideals of length d. Later we shall show that the dimension of
K[x1, . . . , xd] is exactly d. But for the moment, all we need is that K[x1, . . . , xd]
has dimension at least one for d ≥ 1.

Corollary 4.3. Let R be a finitely generated algebra over a field K, and
suppose that R is a field. Then R is a finite algebraic extension of K, i.e., R is
module-finite over K.

Proof. By the Noether normalization theorem 4.2, R is module-finite over
some polynomial subring K[z1, . . . , zd]. If d ≥ 1, the polynomial ring has dimension
at least one, and then R has dimension at least one, a contradiction. Thus, d = 0,
and R is module-finite over K. Since R is a field, this means precisely that R is a
finite algebraic extension of K. �

Corollary 4.4. Let K be an algebraically closed field, let R be a finitely
generated K-algebra, and let m be a maximal ideal of R. Then the composite map
K → R� R/m is an isomorphism.

Proof. R/m is a finitely generated K-algebra, since R is, and it is a field.
Thus, K → R/m gives a finite algebraic extension of K. Since K is algebraically
closed, it has no proper algebraic extension, and so K → R/m must be an isomor-
phism.

Corollary 4.5 (Hilbert’s Nullstellensatz, weak form). Let R = K[x1, . . . , xn]
be a polynomial ring over and algebraically closed field K. Then every maximal
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ideal m of R is the kernel of a K-homomorphism K[x1, . . . , xn] → K, and so is
determined by the elements λ1, . . . , λn ∈ K to which x1, . . . , xn map. This maximal
ideal is the kernel of the evaluation map f(x1, . . . , xn) 7→ f(λ1, . . . , λn). It may
also be described as the ideal (x1 − λ1, . . . , xn − λn)R.

Proof. Since γ : K ∼= R/m, the K-algebra map R → R/m, composed with
γ−1, gives a map R� K whose kernel is m. �

Thus, when K is algebraically closed, we have a bijection between the points
of Kn and the maximal ideals of K[x1, . . . , xn].

Corollary 4.6 (Hilbert’s Nullstellensatz, alternate weak form). Let f1, . . . , fn
be polynomials in K[x1, . . . , xn], where K is algebraically closed. Then the fi gener-
ate the unit ideal (i.e., we have 1 =

∑
t gtft for suitable polynomials gt) if and only

if the polynomials fi do not vanish simultaneously, i.e., if and only if the algebraic
set V (f1, . . . , fn) = ∅.

Proof. If the fi do not generate the unit ideal, the ideal they generate is con-
tained in some maximal ideal of K[x1, . . . , xn]. But the functions in that maximal
ideal all vanish at one point of Kn, a contradiction. On the other hand, if the fi all
vanish simultaneously at a point of Kn, they are in the maximal ideal of polynomi-
als that vanish at that point: this direction does not need that K is algebraically
closed. �

We want to compare the notations V (S) and V(S): the first is for any subset
S of any ring, and it is the set of all primes containing S. The second is for
polynomial rings K[x1, . . . , xn], and then it is the set of points where the given
polynomials vanish. If we think of these points as corresponding to a subset of
the maximal ideals of the ring (it corresponds to all maximal ideals when the
field is algebraically closed), we have that V(S) is the intersection of V (S) with
the maximal ideals corresponding to points of Kn, thought of as a subset of Kn.
Suppose that for every y ∈ Kn we let my = {f ∈ K[x1, . . . , xn] : f(y) = 0}. Then
my is a maximal ideal of K[x1, . . . , xn] whether K is algebraically closed or not.
When K is algebraically closed, we know that all maximal ideals have this form.
This gives an injection Kn → Spec (R) that sends y to my. The closed algebraic
sets of Kn are simply the closed sets of Spec (R) intersected with the image of Kn,
if we identify that image with Kn. Thus, the algebraic sets are the closed sets of
a topology on Kn, which is called the Zariski topology. It is the inherited Zariski
topology from Spec (R). Note that V(I) = {y ∈ Y : my ∈ V (I)}.

In these notes we are using the notations V and V to avoid any possible con-
fusion. However, in the literature authors often use the same notation for both,
depending on the context to make clear which is meant.

Theorem 4.7 (Hilbert’s Nullstellensatz, strong form). Let K be an algebraically
closed field and let R = K[x1, . . . , xn] be the polynomial ring in n variables over
K. Suppose that g, f1, . . . , fs ∈ R. Then g ∈ Rad (f1, . . . , fs) if and only if
V(g) ⊇ V(f1, . . . , fs), i.e., if and only if g vanishes at every point where the fi
vanish simultaneously.

Proof. It is clear that gN =
∑s
i=1 gifi implies that g vanishes wherever the

all of the fi vanish: at such a point y, we have that g(y)N = 0 and so g(y) = 0.
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The more interesting implication is the statement that if g does vanish whenever
all the fi vanish then g has a power that is in the ideal generated by the fi. The
following method of proof is called Rabinowitsch’s trick. Introduce an extra variable
z and consider the polynomials f1, . . . , fs, 1 − gz ∈ K[x1, . . . , xn, z]. There is no
point of Kn+1 where these all vanish: at any point where the fi vanish (this only
depends on what the first n coordinates of the point are), we have that g vanishes
as well, and therefore 1−gz is 1−0 = 1. This means that f1, . . . , fs, 1−gz generate
the unit ideal in K[x1, . . . , xn, z], by the weak form of Hilbert’s Nullstellensatz that
we have already established. This means that there is an equation

1 = H1(z)f1 + · · ·+Hs(z)fs +H(z)(1− gz)
where H1(z), . . . , Hs(z) and H(z) are polynomials in K[x1, . . . , xn, z]: all of them
may involve all of the variables xj and z, but we have chosen a notation that em-
phasizes their dependence on z. But note that f1, . . . , fs and g do not depend on z.
We may assume that g 6= 0 or the result is obvious. We now define a K[x1, . . . , xn]-
algebra map φ from K[x1, . . . , xn, z], which we think of as K[x1, . . . , xn][z], to the
ring K[x1, . . . , xn][1/g] = K[x1, . . . , xn]g, which we may think of as a subring of the
fraction field of K[x1, . . . , xn]. This ring is also the localization of K[x1, . . . , xn] at
the multiplicative system {1, g, g2, . . .} consisting of all powers of g. Note that every
element of K[x1, . . . , xn]g can be written in the form u/gh, where u ∈ K[x1, . . . , xn]
and h is some nonnegative integer. We define the K[x1, . . . , xn]-algebra map φ sim-
ply by specifying that the value of z is to be 1/g. Applying this homomorphism to
the displayed equation, we find that

1 = H1(1/g)f1 + · · ·+Hs(1/g)fs +H(1/g)(1− 1)

or
1 = H1(1/g)f1 + · · ·+Hs(1/g)fs.

Since each of the Hi(1/g) is in K[x1, . . . , xn]g, we can choose a positive integer N
so large that each of the gi = gNHi(1/g) ∈ K[x1, . . . , xn]: there are only finitely
many denominators to clear. Multiplying the most recently displayed equation by
gN gives the equation gN = g1f1 + · · · + gnfn with gi ∈ K[x1, . . . , xn], which is
exactly what we wanted to prove. �
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2. Lecture of October 5

Corollary 4.8. Let R → S be a homomorphism of finitely generated K-
algebras. Then every maximal ideal of S contracts to a maximal ideal of R.

Proof. Suppose that the maximal ideal n of S contracts to the prime P in
R, so that K ⊆ R/P ⊆ S/n. Then S/n is a finite algebraic extension of K, i.e., a
finite dimensional K-vector space, and so the domain R/P is a finite-dimensional
K-vector space, i.e., it is module-finite over K, and therefore it is a domain of
dimension 0, which forces it to be a field. �

Remark 4.9. The result above is not true if S is a finitely generated algebra
over a larger field L ⊃ K that is transcendental over K. For example, let K be
any field, let R = K[x], a polynomial ring in one variable, let L = K(t), where t
is transcendental, and let S = L[x], so that R ⊆ S. The principal ideal (x− t)S is
maximal in S, but lies over the prime ideal (0) in R, which is not maximal.

An element x 6= 0 of a ring R is called prime if it generates a prime ideal. This
means that x is not a unit and if x | (rr′) with r, r′ ∈ R, then x | r or x | r′. An
element x 6= 0 is called irreducible if it is not a unit and cannot be written as the
product of two elements neither of which is a unit. In a domain, prime elements are
always irreducible. (If x is prime and x = fg, then x divides f or g, say f = xf1,
and then x(1− f1g) = 0 . Since x 6= 0, g is a unit.) In a UFD, irreducible elements
are prime, so that the two notions agree, and every element factors uniquely as a
product of finitely many primes, where “uniquely” means up to the order of the
factors and adjustments for multiplication by units: one may alter a factorization
by multiplying one of the factors by a unit and another by its inverse. Thus if
f = f1 · · · fn = g1 · · · gn then there is a permutation π of {1, . . . , n} and there are
units α1, . . . , αn of R such that gπ(j) = αjfj , 1 ≤ j ≤ n, and α1 · · ·αn = 1. Note
also that if a non-unit f divides an irreducible g, so that g = fu, then u must be a
unit. In particular, if one irreducible divides another, they are associates, i.e., each
is a unit times the other.

Proposition 4.10. Let R be a UFD. Then every nonzero prime ideal of R
contains a prime ideal generated by an irreducible element, and a prime ideal of R
has height one if and only if it is generated by an irreducible element.

Proof. Let Q be any nonzero prime ideal, and let f ∈ Q − {0}. Then f can
be factored into irreducible factors, say f = f1 · · · fk, and since this product is in
Q, at least one of the factors, say fi, is in Q. Then fi generates a prime ideal
contained in Q. This shows that a prime ideal cannot possibly have height one
unless it is generated by an irreducible element. Finally, if P = fR is generated by
an irreducible element but contains a smaller nonzero prime ideal, that prime will
in turn contain a prime generated by a nonzero irreducible element g. But then
f | g, which implies that they are the same, up to unit factors. �

In any ring R, a chain of prime ideals P0 ⊂ P1 ⊂ · · · ⊂ Pn is called saturated if
for all i, 0 ≤ i < n, there is no prime strictly between Pi and Pi+1.

Theorem 4.11. Let R be an integral domain finitely generated as an algebra
over the field K. Choose z1, . . . , zd ∈ R such that R is module-finite over the poly-
nomial ring K[z1, . . . , zd]. Then dim R = d. In fact, the height of every maximal
ideal of R is d. In particular, the height of every maximal ideal in K[z1, . . . , zd] is
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d. Moreover, every saturated chain of primes in R from (0) to a maximal ideal m
has length d.

Proof. We first prove that the dimension of R is d by induction on d. We
know at once that dimR = dimA, where A = K[z1, . . . , zd], and we have already
seen that dimA ≥ d. It will suffice to show that dimA ≤ d. Consider any chain of
primes of A. We can assume that the two smallest primes in it are P and 0, where
P is a height one prime generated by an irreducible element f . There will be a chain
of length one less in A/P . Therefore, it suffices to show that dimA/P = d− 1.

But after a change of variables we may assume that f is monic in zd over
K[z1, . . . , zd−1], and therefore A/P is integral over K[z1, . . . , zd−1].

Thus, the dimension of R is d. We can use almost the same argument to show
by induction that every saturated chain from (0) to a maximal ideal m of R has
length d, but we must make use of the going down theorem for this. Note that this
statement evidently implies that the height of m is d. Fix a maximal ideal m of R
and consider a saturated chain contained in m, say

(0) ⊂ Q1 ⊂ · · · ⊂ Qk = m.

We want to show that k = d. Since the chain is saturated, we know that Q1 has
height one in R. But the contraction of Q1 to A = K[z1, . . . , zd] must have height
one as well (this uses the going down theorem), and so must be generated by a single
irreducible polynomial f . As before, we may assume, after a change of variables,
that f is monic in zd over K[z1, . . . , zd−1]. Now,

(0) = Q1/Q1 ⊂ Q2/Q1 ⊂ · · ·Qk/Q1 = m/Q1

is a saturated chain of primes in the domain R/Q1 from (0) to the maximal ideal
m/Q1. But R/Q1 is module-finite over A/fA, which in turn is module-finite over
K[z1, . . . , zd−1], and so has dimension d−1. It follows from the induction hypothesis
that k − 1 = d− 1, and so k = d. �

We review the notions of transcendence basis and transcendence degree. Let
K ⊆ L be fields. By Zorn’s lemma, any set of elements of L algebraically indepen-
dent over K can be enlarged to a maximal such set, which is called a transcendence
basis for L over K. Such a basis will be empty if and only if L is algebraic over K.
If {xλ : λ ∈ Λ} is a transcendence basis, then L contains a subring K[xλ : λ ∈ Λ]
which is isomorphic with a polynomial ring in variables corresponding to the xλ,
and it also contains the fraction field, denoted K(xλ : λ ∈ Λ) of that polynomial
ring, which is called a pure transcendental extension of K. It is easy to see that L
is algebraic over K(xλ : λ ∈ Λ) (a transcendental element could be used to enlarge
the transcendence basis), and so every field extension can be obtained in two steps:
a pure transcendental extension followed by an algebraic extension. Either step
might just consist of a trivial field extension. The key fact that we have not yet
proved but will prove in the sequel is that any two transcendence bases have the
same cardinality, which is called the transcendence degree of L over K. We are
primarily interested in the case where the transcendence degree is finite, which it
always is when L is finitely generated as a field over K. However, we treat the
general case.
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An alternative characterization of a transcendence basis for the field L over
its subfield K is that it is a set of algebraically independent elements in L over K
generating a subfield L0 of L such that L is algebraic over L0.

We sketch the proof that any two transcendence bases for L over K have the
same cardinality. (The reader already familiar with this material or not interested
in the proof may skip this and the next two paragraphs. ) It suffices to show that if
X is a set of algebraically independent elements of L and Y is a transcendence basis,
then there is an injection f : X ↪→ Y , such that X ∪

(
Y − f(X)

)
is a transcendence

basis for L over K. That is, one may replace a certain subset of Y with the same
cardinality as X with the elements of X and still have a transcendence basis. This
will imply that the cardinality of X is at most that of Y . Given two transcendence
bases, it follows that the cardinality of each is at most that of the other, so that
they have the same cardinality.

Consider all injections g : X0 → Y , where X0 is a (possibly empty) subset of
X, such that X0 ∪

(
Y − g(X0)

)
is a transcendence basis for L. These are partially

ordered by the rule (X0, g0) ≤ (X1, g1) if X0 ⊆ X1 and the restriction of g1 to
X0 is g0. Every chain (Xi, gi)i∈I has an upper bound: there is a unique function
g on X =

⋃
iXi which extends all of the given functions. It is easy to see that

one has algebraic independence for the elements of X ∪
(
Y − g(X)

)
and that L

is algebraic over the field that they generate. (Any element of L is algebraic over
a field generated by finitely many of the yj ∈ Y . Those that get replaced by xk
when we take the union have already been replaced for some sufficiently large Xi in
the union.) By Zorn’s Lemma, there is a maximal pair (X0, g) with the specified
property.

We want to see that X0 is all of X. If not, choose x ∈ X − X0. Then x is
algebraic over K

(
X0 ∪

(
Y − g(X0)

))
, and so satisfies a polynomial equation over

this field. We may clear denominators to obtain a polynomial F over K in x and
finitely many of the variables in X0 ∪

(
Y − g(X0)

)
such that x actually occurs in

F . The polynomial F must involve at least one element of Y − g(X0), or else X
would not be an algebraically independent set. This means that we can choose
y ∈ Y − g(X0) that occurs in F . But then, using F , we see that y is algebraic over
the field generated over K by X0∪{x}∪

(
Y − g(X0)−y

)
, and we extend g to g′ on

X1 = X∪{x} by letting g′(x) = y. We still have algebraic independence: if we omit
x, that is clear, while if an algebraic relation involves x, then x is algebraic over the
field generated by the others, and that implies that y is as well, a contradiction. L
is algebraic over the field generated by these new elements, because y is. �

From the definition of transcendence degree and what we have already proved,
we have at once:

Corollary 4.12. Let R be a domain finitely generated as an algebra over a
field K. Then dimR is the transcendence degree of frac (R) over K.

Proof. R is module-finite over a polynomial ring K[z1, . . . , zd] for some inte-
ger d, which means that frac (R) is algebraic over the pure transcendental extension
K(z1, . . . , zd) of K. Thus, the transcendence degree is d, which we already know
to be equal to dimR. �

It was an open question for a considerable time whether, in any commutative
ring, there could be saturated chains of distinct finite lengths joining two primes.
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M. Nagata gave the first counter-example: he constructed a Noetherian domain
of dimension 3 having a unique maximal ideal m with saturated chains (0) ⊂
P1 ⊂ P2 ⊂ m of length 3 and also 0 ⊂ Q ⊂ m of length 2. Cf.[13],Appendix
A1., Examples of bad Noetherian rings. In [8] it is shown that the spectrum of
a commutative ring can be any finite partially ordered set. However, examples of
such behavior in Noetherian rings are not easily come by. The Noetherian rings
that arise in algebraic geometry, number theory, and several complex variables all
have a property introduced by A. Grothendieck called excellence, which implies
that saturated chains joining P to Q when P ⊂ Q all have the same length.

However, one does not need to look at pathological examples to find instances
where maximal ideals have different heights: this happens in the polynomial ring
in one variable over a PID, if the PID has a unique maximal ideal. Such PIDs are
of great importance, and we digress briefly to discuss them.

Let V be a principal ideal domain with just one maximal ideal P . Such rings
are called discrete rank one valuation domains, but it is common practice to refer
to them more briefly as discrete valuation rings, and, unless otherwise specified,
we shall do that here. Note that if S is any principal ideal domain and Q is any
nonzero prime ideal of S, then SQ is a discrete valuation ring. The acronym DVR
is used for discrete valuation ring. In a DVR, the maximal ideal is principal. Let
t be the generator. This is the only prime element (up to multiplication by units).
Thus, every nonzero element f can be written uniquely as αtn, where α is a unit.
The non-negative integer n is called the order of f , often written ord f . Note that
if f, g 6= 0, then

(1) ord (fg) = ord f + ord g,

and that and if f + g is not zero as well, then

(2) ord (f + g) ≥ min {ord f, ord g}

with equality if ord f 6= ord g. Localizing V at any nonzero element in the maximal
ideal gets rid of the only nonzero prime in V , and produces the fraction field of V . In
particular, Vt is the fraction field. We can extend the order function from V −{0} to
Vt−{0} by letting ord (f/tn) = ord (f)−n. This is easily checked to be independent
of the representation of the element as a fraction, and the displayed properties (1),
(2) of ord continue to hold. The function ord from frac (V ) − {0} � Z is called
the valuation associated to V . Note that V is 0 together with the set of elements of
frac (V ) of nonnegative order, and that the maximal ideal of V is 0 together with
the set of elements of positive order, while the set of units of V coincides with the
subset of frac (V ) of elements of order 0.

Conversely, given a field F and a surjective function ord : F − {0} � Z such
that for all f, g ∈ F − {0},

(1) ord (fg) = ord f + ord g,

and for all f, g ∈ F − {0} such that f + g 6= 0,

(2) ord (f + g) ≥ min {ord f, ord g}

with equality if ord f 6= ord g, the set of elements in F on which ord is nonnegative
together with 0 is a subring of F . The elements of positive order together with 0
form a unique maximal ideal, which is generated by any element of order 1, and
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every nonzero element is a unit times a power of that generator. Thus, every such
function determines a unique DVR for which it is the associated valuation.

One can consider functions on a field with the properties displayed above taking
values in a totally ordered abelian group other than Z. When the set of values is
the group Z⊕ r (with a suitable order: we are not giving all the details here) one
refers to a discrete rank r valuation ring. When the set of values is, for example
the rational numbers, the valuation is no longer discrete. In these lectures, unless
otherwise specified, we shall assume that any given valuation has Z as the set of
values, and that all given discrete valuation rings are rank one discrete valuation
domains.

The ring of formal power series K[[t]] in one variable over a field K is a discrete
valuation ring with maximal ideal generated by t. The key point is that a power
series with a nonzero constant term has an inverse. This comes down to the case
where the constant term is 1. The point is that if the power series is 1 + tf then
the formal expression 1− tf + t2f2− t3f3 + · · · can be given a meaning as a power
series, because although the sum looks infinite, there are only finitely many terms
involving a given power of t, and this gives the inverse of 1 + tf .

The localization of the integers at the prime ideal generated by p, where p is a
prime integer, is also a DVR, with maximal ideal generated by p. This ring is the
set

{m/n : m, n ∈ Z, p - n} ⊆ Q.
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3. Lecture of October 7

Examples. If V is a DVR with maximal ideal tV , then in V [x], which is a UFD, the
element tx− 1 generates a maximal ideal: V [x]/(tx− 1) ∼= V [1/t] = Vt = frac (V ),
a field. On the other hand, the chain (0) ⊂ (x)V [x] ⊂ (x, t)V [x] shows that
(x, t)V [x] is a maximal ideal of height at least 2 (and we shall see later that the
height is exactly 2).

Also, consider R = K[x, y, z]/I, where I = (xy, xz) = (x) ∩ (y, z). In this
ring, every prime contains either the image x of x or both of the images y, z of
y and z. Then P = (x)R is a minimal prime of R with R/(x)R ∼= K[y, z], and
P ′ = (y, z)R is a minimal prime of R with R/(y, z)R ∼= K[x]. Saturated chains
from P to a maximal ideal correspond to saturated chains from (0) to a maximal
ideal in K[y, z] and have length two while saturated chains from P ′ to a maximal
ideal correspond to saturated chains from (0) to a maximal ideal in K[x], and have
length one.

We do have the following:

Theorem 4.13. Let R be a finitely generated algebra over the field K.

(a) The dimension of R is the same as the maximum cardinality of a set of elements
of R that is algebraically independent over K.

(b) If P ⊆ Q are primes of R, all saturated chains of primes from P to Q have the
same length.

(c) Suppose that R is a domain. Then all saturated chains from 0 to a prime ideal
P have length equal to height P , and all saturated chains from P to a maximal
ideal have length equal to dim(R/P ). Moreover heightP + dim(R/P ) = dimR.
For any two primes P ⊆ Q, every saturated chain from P to Q has length
heightQ− heightP .

Proof. We first prove (c). Choose any saturated chain from (0) to P : suppose
that it has length k. Also choose any saturated chain from P to a maximal ideal m:
this corresponds to a saturated chain from (0) = P/P to m/P in R/P , and so has
length dim(R/P ). Putting these two chains together gives a saturated chain in R
from 0 to m of length k + dim(R/P ), and this saturated chain has length equal to
dim(R). Thus, k + dim(R/P ) = dimR, and so all saturated chains from (0) to P
have the same length, dimR−dim(R/P ), which must be the same as the height of P .
Finally, a saturated chain from P to Q corresponds to a saturated chain from (0) =
P/P to Q/P in R/P . Its length is therefore dim(R/P ) − dim

(
(R/P )/(Q/P )

)
=

dim(R/P ) − dim(R/Q) which we may rewrite as
(
dimR − heightP ) − (dimR −

heightQ) = heightQ − heightP , as required. (b) is obvious because saturated
chains from P to Q in R correspond to saturated chains from (0) = P/P to Q/P
in the domain R/P .

Finally, to prove (a), first note that, by the Noether normalization theorem, R
is module-finite over a polynomial ring K[z1, . . . , zd], and then d = dimR. This
shows that there exist dimR algebraically independent elements in R. To see
that there cannot be more, suppose that K[x1, . . . , xh] ⊆ R, where x1, . . . , xh are
algebraically independent. Then the set K[x1, . . . , xh] − {0} is a multiplicative
system of R not containing 0, and so there exists a prime ideal P of R disjoint from
it. This means that P ∩K[x1, . . . , xh] = (0), and this implies that the composite
map K[x1, . . . , xh] ↪→ R � R/P is injective. Then dimR ≥ dim(R/P ), which is



68 4. NOETHER NORMALIZATION, HILBERT’S NULLSTELLENSATZ, AND DIMENSION

the transcendence degree of frac (R/P ) over K, and since K[x1, . . . , xh] ↪→ R/P ,
the transcendence degree is ≥ h, which shows that dimR ≥ h, as required. �

Because heightP = dimR−dim(R/P ) in a domainR that is a finitely generated
K-algebra, the height of a prime is also called its codimension.

Theorem 4.14. Let R be any finitely generated algebra over the field K. The
every prime ideal and, hence, every radical ideal is the intersection of the maximal
ideals that contain it. It follows at once that for any ideal I, the intersection of the
maximal ideals containing I is Rad (I).

Proof. Since every radical ideal is the intersection of the primes that contain
it, it is clear that we need only prove this for prime ideals P . Suppose that u /∈ P is
in every maximal ideal that contains P . Then the image of u in R/P is a nonzero
element that is in every maximal ideal. We therefore may reduce at once to the case
where R is a domain, P = (0), and we need only show that there is no element u
that is in every maximal ideal. By Noether normalization, R is then module-finite
over Noether normalization theorem a polynomial ring A = K[x1, . . . , xd]. The
nonzero element u will have a nonzero multiple in A, by Lemma 3.9, which was
used in the incomparability part of the proof of the lying over theorem, and we may
assume without loss of generality that u ∈ A − {0}. Since every maximal ideal of
R lies over a maximal ideal of A, it suffices to show that a nonzero element u of a
polynomial ring A cannot be in every maximal ideal.

If K is infinite we need only consider maximal ideals that arise as the set of
polynomials that vanish at a point of Kd: if u were in all of these, it would be a
nonzero polynomial that vanishes everywhere. (This does not happen. One can use
induction on the number of variables. In the case of one variable, the degree bounds
the number of roots. In the case of d variables, view the polynomial as a polynomial
in xd with coefficients in K[x1, . . . , xd−1]. At least one coefficient is nonzero, and
by the induction hypothesis will not vanish at some point (λ1, . . . , λd−1) ∈ Kd−1.
Substitute these λi for the xi, 1 ≤ i ≤ d− 1. This produces a nonzero polynomial
in xn, and there will be values for xn for which it does not vanish.)

If the field K is finite, pick a point (λ1, . . . , λd) of the algebraic closure L of
K at which u does not vanish: the algebraic closure is infinite. Then K[λ1, . . . , λd]
is a finite algebraic extension of K, and so a field, and evaluation at (λ1, . . . , λd)
gives a surjection K[x1, . . . , xd] � K[λ1, . . . , λd] that does not kill u. The kernel
is a maximal ideal not containing u. �

We noted earlier that when working with finitely generated K-algebras, max-
imal ideals contract to maximal ideals. For any commutative ring R, we may let
MaxSpec (R) denote the space of maximal ideals of R in the inherited Zariski topol-
ogy. This is not a functor, in that maximal ideals need not contract to maximal
ideals (the ideal (0) ⊆ Q is maximal, but its contraction to Z is not). But when
both rings are finitely generated K-algebras and one has f : R→ S, the restriction
of Spec (f) to MaxSpec (S) gives a map into MaxSpec (R).

It is worth noting that for a finitely generated K-algebra R, there is bijection
of the closed sets in Spec (R) with the closed sets in MaxSpec (R) that sends V (I)
to its intersection with MaxSpec (R). The reason is that the set of maximal ideals
in V (I) ∈ Spec (R) is dense, and so determines V (I). The closure of a set of primes
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{Pσ}σ∈Σ is the smallest closed set V (J) that contains them all, which is given by
the largest ideal J such that J ⊆ Pσ for all σ, and thus the closure is V (

⋂
σ∈Σ Pσ).

In a finitely generated K-algebra, the intersection of the maximal ideals containing
I is Rad (I), by the result we just proved, and so the closure of the set of maximal
ideals containing I is V

(
Rad (I)

)
= V (I).

Thus, Spec (R) and MaxSpec (R) are very closely related when R is a finitely
generated K-algebra. They have “the same” closed sets, but there are “extra
points” thrown in when one looks at Spec (R).





CHAPTER 5

Chain conditions on rings and modules

1. Lecture of October 9

A partially ordered set is said to satisfy the ascending chain condition or ACC
if, equivalently:

(1) Every strictly ascending chain is finite.
(2) Every infinite non-decreasing chain is eventually constant.
(3) Every non-empty subset has a maximal element.

That (2) implies (1) is obvious, and (1) implies (2) because in a counter-example
to (2) one may omit the duplicated terms. (3) implies (1) is clear because because
an infinite strictly ascending chain is a non-empty subset with no maximal element.
The fact that (1) implies (3) is slightly more subtle, and actually uses a weak version
of the axiom of choice. If one has a non-empty subset with no maximal element one
can construct a strictly ascending sequence of elements recursively as follows. Let
x1 be any element in the set. Assume that x1, . . . , xn have been chosen and form a
strictly ascending chain. Then choose xn+1 to be any element of the subset strictly
larger than xn. This must be possible, or else xn would be a maximal element.
Note that in this process we need to make countably many choices.

A partially ordered set is said to satisfy the descending chain condition or DCC
if, equivalently:

(1) Every strictly descending chain is finite.
(2) Every infinite non-increasing chain is eventually constant.
(3) Every non-empty subset has a minimal element.

Of course, a poset satisfies DCC if and only if the poset obtained by reversing
the order has ACC. A linearly ordered set with DCC is the same thing as a well-
ordered set.

A module M over a ring R is said to satisfy ACC or to be Noetherian (after
Emmy Noether) if its partially ordered set of submodules under ⊆ has ACC, and
M is said to have DCC or to be Artinian or Artin (after Emil Artin) if its partially
order set of submodules under ⊆ has DCC.

71
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Proposition 5.1. The following conditions on a module M over a ring R are
equivalent:

(a) M has ACC, i.e., M is Noetherian.
(b) Every nonempty family of submodules of M has a maximal element
(c) Given any set S of elements of M spanning a submodule N of M , there is a

finite subset of S spanning N .
(d) Given any infinite sequence of elements of M spanning a submodule N , some

finite initial segment of the sequence spans N .
(e) Every submodule of M is finitely generated as an R-module.

Proof. We already know that (a) and (b) are equivalent, while (c) follows
from (b) applied to the family of submodules generated by finite subsets of S (the
empty subset spans 0), for if N0 is spanned by the finite set S0 ⊆ S is maximal
among these but different from N , we can choose s ∈ S not in N0 and then S ∪{s}
spans a larger submodule than N0. It is clear that (c) implies (d), since any finite
subset of the sequence is contained in some initial segment. To see that (d) implies
(e), let N ⊆ M be any submodule, and suppose that it is not finitely generated.
We construct an infinite sequence recursively as follows. Choose a nonzero element
u1 ∈ N . If u1, . . . , un have been chosen such that for every i, 1 < i ≤ n, ui is not
in the span of its predecessors, note that since Ru1 + · · · + Run = Nn 6= N , we
can choose un+1 ∈ N −Nn. We have now constructed a sequence that contradicts
condition (d). Finally, to see that (e) implies (a), note that if M has a non-
decreasing chain of submodules Ni, the union N is finitely generated. Then for all
sufficiently large i, all of the generators are in Ni, and so the sequence is constant
from some point on. �

Recall that 0→ N →M → Q→ 0 is a short exact sequence of R-modules if N
injects into M and is the kernel of M → Q, which is surjective. In studying short
exact sequences we might as well replace N by its image and assume that N ⊆M .
The hypothesis then means that the induced map M/N → Q is an isomorphism,
so that one might as well assume that Q = M/N . We may make this transition in
a proof without comment.

Lemma 5.2. Let 0 → N → M → Q → 0 be a short exact sequence of R-
modules.

(a) Let M0 ⊆ M1 ⊆ M be submodules, and suppose that M1 ∩ N = M0 ∩ N and
that the images of M0 and M1 in Q are the same. Then M0 = M1,

(b) M is Noetherian if and only if both N and Q are.
(c) M is Artinian if and only if both N and Q are.
(d) A finite direct sum of Noetherian (respectively, Artinian) modules is Noetherian

(respectively, Artinian).

Proof. To prove (a), suppose that u ∈ M1. Then some element v ∈ M0 has
the same image as u in Q. It follows that v − u = w maps to 0 in Q, and so is in
M1 ∩N = M0 ∩N . Thus, u = v − w ∈M0, as required.

To prove (b), suppose first that M is Noetherian. An increasing chain in N
is an increasing chain in M , and so N is Noetherian. The inverse images in M of
the modules in an increasing chain in Q form an increasing chain in M , and so Q
is Noetherian. Suppose, conversely, that N and Q are both Noetherian, and that
one has an increasing chain in M . The intersections of the modules in the chain
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with N are eventually constant, and the images of the modules in Q are eventually
constant. It follows from part (a) that the chain in M is eventually constant.

The proof of (c) is exactly the same, with the word “increasing” replaced
throughout by the word “decreasing.” (d) follows by induction from the case of
a direct sum of two modules, which in turn follows from the (b) or (c) applied to
the short exact sequence 0→M1 →M1 ⊕RM2 →M2 → 0. �

A ring R is called Noetherian (respectively, Artinian or Artin) if it has that
property as a module over itself. Since the R-submodules of R are the ideals of R,
this is equivalent to assuming that the ideals of R satisfy ACC (respectively, DCC).
Also, a ring is Noetherian iff every ideal is finitely generated.

Note that in part (a) of the Lemma, the condition that M0 ⊆ M1 is needed.
To see why, let K be an infinite field and consider the short exact sequence

0→ Ke1 → Ke1 ⊕Ke2 → Ke2 → 0

where Ke1 ⊕ Ke2
∼= K2 is a two-dimensional vector space with basis e1, e2. Let

Mλ be the span of the vector e1 + λe2, where λ ∈ K − {0}. The Mλ are mutually
distinct lines in K2 (and they are mutually incomparable), but they all intersect
Ke1 in 0 and they all have image Ke2 in Ke2.

1.1. Annihilators. Let R be a ring and M an R-module. Let F be a subset
of R and U a subset of M . By the annihilator of F in M , denoted AnnMF , we
mean {m ∈ M : for all f ∈ F, fm = 0}. This is easily verified to be an R-
submodule of M . Moreover, if I is the ideal generated by F , AnnMF = AnnMI.
If F = {f} consists of a single element, we may write AnnMf for AnnM{f}. Note
that AnnMF =

⋂
f∈F AnnMf .

Similarly, by the annihilator of U in R we mean {r ∈ R : for all u ∈ U, ru =
0}. This is easily checked to be an ideal of R. If N is the submodule of M
generated by U , we have that AnnRU = AnnRN . Moreover, if U = {u} consists of
a single element, we may write AnnRu for AnnR{u}. Again, note that AnnRU =⋂
u∈U AnnRu.

If M is the cyclic module Ru we have a surjection R � Ru such that 1 7→ u.
The kernel is precisely AnnRu, and it follows that Ru ∼= R/AnnRu.

Proposition 5.3. A module M over a Noetherian ring R is Noetherian iff it
is finitely generated. A module M over a ring R is Noetherian if and only if it is
finitely generated and R/AnnRM is a Noetherian ring.

Proof. If R is Noetherian then so is each finitely generated free module, since
such a module is a finite direct sum of copies of R, and every finitely generated
module is a homomorphic image of a finitely generated free module.

If M is finitely generated and R/AnnRM is Noetherian, we may think of M
as a module over R/AnnRM , and then it is clear from the first part that M is
Noetherian.

Now suppose that M is Noetherian. It is obviously finitely generated: call the
generators m1, . . . ,mn. Then M⊕n is Noetherian, and we can map R → M⊕n by
sending r ∈ R to (rm1, . . . , rmn). The element r is in the kernel if and only if
it kills all the generators of M , which is equivalent to killing M . Thus, there is
an injection of R/AnnRM into the Noetherian module M⊕n, and so R/AnnRM is
Noetherian, as required. �
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We next want to prove that polynomial rings over a field are Noetherian. We
shall give two proofs: the first is not standard. We next observe:

Lemma 5.4. If R is Noetherian and S is a module-finite extension of R, then
every intermediate ring R ⊆ B ⊆ S is module-finite over R, and is a Noetherian
ring.

Proof. S is a Noetherian R-module, and B is an R-submodule of S and
therefore finitely generated. It is a Noetherian R-module. Since any ideal of B is
an R-submodule of B, the fact that B has ACC for R-submodules implies that it
has ACC for ideals. �

Theorem 5.5 (Hilbert basis theorem). The polynomial ring R in n variables
over a field K is Noetherian. Hence, every finitely generated K-algebra is Noether-
ian.

Proof. The second statement follows from the first because every finitely gen-
erated K-algebra is a homomorphic image of a polynomial ring.

We use induction on n. Let I be a nonzero ideal of R and f ∈ I−{0}. To show
that I is finitely generated, it suffices to show that I/fR is finitely generated in
R/fR: if g1, . . . , gk are elements of I whose images gi in I/fR generate I/fR, then
g1, . . . , gk together with f generate I. But we may assume that f is monic in xn
when viewed as an element of K[x1, . . . , xn−1][xn], so that R/fR is module-finite
over K[x1, . . . , xn−1], which is Noetherian by the induction hypothesis. It follows
that R/fR is Noetherian. �

The proof above has an analogue that proves that proves that convergent power
series rings (i.e., those converging on a neighborhood of a specified point) in finitely
many variables over the real or complex numbers are Noetherian. An additional
tool, the Weierstrass preparation theorem, is needed. See [14] pp. 142–148 or [13]
pp. 190–194.

Our second proof has the advantage that it works whenever the base ring is a
Noetherian ring, not necessarily a field.

Theorem 5.6 (Hilbert basis theorem). Let R be a Noetherian ring. Then every
finitely generated R-algebra is Noetherian.

Proof. Since the rings considered are homomorphic images of polynomial
rings in finitely many variables over R, we need only consider the case of a poly-
nomial ring. By induction on the number of variables, it suffices to prove that if R
is Noetherian, then R[x] is Noetherian. Let J ⊆ R[x] be an ideal. For t ∈ N, let

It ⊆ R be the set of elements of R that occur as leading coefficient of a polynomial
of degree t in J , together with 0. It is easy to see that It is an ideal of R, and that
It ⊆ It+1 since the leading coefficient of xf is the same as the leading coefficient
of f . Thus, we can choose k such that Ik = Ik+1 = · · · = Ik+m = · · · . For each
t, 0 ≤ t ≤ k, choose polynomials ft,1, . . . ft,ht

∈ J of degree t whose leading coef-
ficients generate It. We claim that the ft,s generate J . Let J0 be the ideal they
generate, and suppose that g ∈ J−J0 is of smallest possible degree. If g is of degree
t ≤ k we may subtract an R-linear combination j0 of the fts (thus, j0 ∈ J0), that
will cancel the leading term of g, and this will not introduce any terms of degree
larger than t. Since g−j0 ∈ J0 (since g has minimum degree for elements in J−J0),
we have that g ∈ J0, a contradiction.
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If the degree of g is d > k, we can give essentially the same argument: now
we subtract off an R-linear combination of the polynomials xd−kfk,s to cancel the
highest degree term. �

Corollary 5.7. A ring S finitely generated over a Noetherian ring R is Noe-
therian.

Proof. If S has n generators overR, it is a homomorphic image ofR[x1, . . . , xn].
�
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2. Lecture of October 12

The study of rings of invariants of groups acting on rings, especially polynomial
rings, played a large role in the development of commutative algebra. Both finite
groups and subgroups of the general linear group over a field were of particular
interest, and a very substantial literature developed describing generators and re-
lations for the rings of invariants or fixed rings of the actions. Emmy Noether’s
study of the Noetherian property was motivated in part by her proof of the fol-
lowing theorem in the case where K is a field. The proof is no different when
K is a Noetherian ring. If a group G acts by ring automorphisms on a ring R,
RG := {r ∈ R : for all g ∈ G, g(r) = r} denotes the ring of invariant elements.

Theorem 5.8 (Emmy Noether). Let K be a Noetherian ring (in particular, K
may be a field) and let G be a finite group acting by K-automorphisms on a finitely
generated K-algebra R. Then the ring of invariants RG ⊆ R is finitely generated
as a K-algebra and, therefore, Noetherian.

Proof. We may replace K by its image in R and we henceforth assume that
K ⊆ R. Suppose that R = K[u1, . . . , un] (these elements are not necessarily
algebraically independent) and let {g1, . . . , gs} denote the elements of G, which is
a group of order s. We may assume that g1 is the identity element in G. For every i,
the elements g1(ui), . . . , gs(ui) are permuted by the action of a given element g ∈ G,
and so the elementary symmetric functions ei,j , 1 ≤ i ≤ n, 1 ≤ j ≤ s, of them are
all in RG. Let B = K[eij : 1 ≤ i ≤ n, 1 ≤ j ≤ s] ⊆ RG ⊆ R. B is evidently a
finitely generated K-algebra, and, therefore, Noetherian. Moreover, each generator
ui of R over K is integral over B: it satisfies the equation

∏s
j=1(X − gj(ui) = 0,

since the first factor is X−g1(ui) = ui, and the coefficients of this monic polynomial
in X, are, after the first, up to sign, the eij ∈ B. Since the ui generate R over
K, they certainly generate R over B, and it follows from Theorem 3.7 that R is
module-finite over B. By Lemma 5.4, B ⊆ RG ⊆ R is Noetherian as B-module
and, hence, finitely generated as a K–algebra. �

Note that while a monic polynomial of degree d over a field or domain has
at most d roots, nothing like this is true in rings with zerodivisors. For example,
consider the ring of functions from an arbitrary set X taking values in a field K.
This ring is reduced: the only nilpotent is the 0 function. But the functions on X
taking on only the values 0 and 1 all satisfy the degree 2 monic equation z2−z = 0.
There is one such function for every subset of X (the function that is 1 on that
subset and 0 elsewhere). If X is countably infinite, the number of solutions of
z2 − z = 0 is uncountable.

From the Hilbert basis theorem (second version) we have at once:

Corollary 5.9. A finitely generated algebra over a PID is Noetherian. �

Proposition 5.10. A localization of a Noetherian ring at any multiplicative
system is Noetherian.

Proof. The ideals of S−1R are in bijective order-preserving correspondence
with the ideals of R that are contracted with respect to S. �

Since fields and principal ideal domains are Noetherian and the class of Noe-
therian rings is closed under taking homomorphic images, localizations, and finitely
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generated algebras, we have quite a few examples. Later we shall see that formal
power series rings in finitely many variables over Noetherian rings are Noetherian.

2.1. Rings that are direct summands. Sometimes one has the situation
that ι : R ↪→ S and the map ι splits as a map of R modules, so that the isomorphic
image of R in S is a direct summand of S as an R-module. We note the following:

Proposition 5.11. If ι : R ↪→ S splits as a map of R-modules the following
hold.

(a) Every ideal I of R is contracted from S.
(b) The map Spec (S)→ Spec (R) is surjective.
(c) If S is Noetherian, then R is Noetherian.
(d) If S is Artinian, then R is Artinian.
(e) If S is a normal domain, then R is a normal domain.
(f) If W is a multiplicative system in R, then W−1R ↪→W−1S splits over W−1R.

Proof. For simplicity, replace R by its image in S, so that we may assume
that ι is the inclusion map R ⊆ S. Let θ denote a splitting, so that θι is the identity
map on R.

(a) If r =
∑n
j=1 fjsj , where the fj ∈ I and the sj ∈ S, we have r = θ(r) =∑n

j=1 fjθ(sj) ∈ I.

(b) If P is a prime of R, PS ∩ R = P , and so PS is disjoint from R − P ⊆ S.
A prime of S containing PS and disjoint from R− P will lie over P .

(c) and (d). An infinite strictly ascending (or descending) chain of ideals in
R would extend to such a chain in S: note that if I ⊂ J strictly in R, IS ⊂ JS
strictly in S, since the contractions to R are different.

(e) Suppose a, b ∈ R with a 6= 0 and b/a is integral over S. Then it is also
in frac (S) and integral over S, and, hence, b/a = s ∈ S, since S is normal. Then
b = as ∈ aS ∩ R = aR, by part (a), so that as = ar for some r ∈ R. But the
s = r = b/a ∈ R, as required.

(f) The map W−1S →W−1R induced by θ (which sends s/w 7→ θ(s)/w) agrees
with the identity map when s ∈ R. �

Example 5.12. Let S be an N-graded ring. If d is a positive integer, the subring
R =

⊕
n∈N Snd spanned by all forms whose degree is a multiple of d is called the

d th Veronese subring of S. This ring is a direct summand of S as an R-module:
one may use as an R-module complement the span W of all forms whose degree
is not a multiple of d. The product of a form whose degree is a multiple of d and
one whose degree is not a multiple of d is not a multiple of d. Thus, S = R ⊕W .
Consequently, if S is normal, then R is normal.

One may apply this in the case where S is the polynomial ring in s variables
over a field. If s > 1 and d > 1, these Veronese subrings are not unique factorization
domains. For example, if n = 2 and d = 2, S = K[x1, x2] and R = K[x2

1, x1x2, x
2
2].

The fact that (x1x2)2 = (x2
1)(x2

2) shows that R is not a UFD.

Example 5.13. If S is a ring and G is a group with n elements acting on S by
ring automorphisms such that the image of n is invertible in S (e.g., if S contains
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a field whose characteristic does not divide n) then R = SG is a direct summand
of S as an R-module. A retraction is give by ρ : S → R where

ρ(s) :=
1

n

∑
g∈G

g(s).

ρ is called the Reynolds operator.

2.2. Noetherian induction. . Suppose that we want to prove a theorem
about Noetherian modules (or Noetherian rings). One can assume that one has
a counter-example M . Consider the family of all submodules N of M such that
M/N is a counterexample, i.e., satisfies the hypothesis but not the conclusion of the
theorem. This family contains the 0 submodule, and so is non-empty. Therefore it
has a maximal element. One may therefore work with M/N instead of M , and now
one may assume that every proper quotient of M satisfies the theorem. In case R
is a ring, one is looking at quotients R/I and they are also rings. This method of
proof is called Noetherian induction. Here is an example:

Theorem 5.14. Every Noetherian ring has only finitely many minimal primes.
Hence, every ideal of a Noetherian ring has only finitely many minimal primes.

Proof. The second statement follows from the first by passing to the ring R/I.
By Noetherian induction, we may assume that every proper quotient of R has only
finitely many minimal primes. Clearly, we may assume that any nilpotent element
in R is 0. If R is a domain, we are done: the only minimal prime is (0). If R is not
a domain we can choose nonzero elements x, y such that xy = 0. Every minimal
prime of R either contains x or contains y. If the former holds it corresponds to a
minimal prime of R/xR, and there are only finitely many of these by the hypothesis
of Noetherian induction. Likewise, if it contains y it corresponds to a minimal prime
of R/yR, and again, there are only finitely many minimal primes in R/yR by the
hypothesis of Noetherian induction. �

We next return to the discussion of algebraic sets, and give another strong form
of Hilbert’s Nullstellensatz.

We now have available the theorem that the polynomial ring K[x1, . . . , xn]
is Noetherian. For every set of polynomials S ⊆ K[x1, . . . , xn], V(S) = V(I),
where I is the ideal generated by S, and V(I) = V(Rad I), since V(fn) = V(f),
always. Since every ideal is finitely generated, we may choose finitely many elements
f1, . . . , fm that generate I, or any ideal with the same radical as I, and then
V(S) = V(f1, . . . , fm) = V(f1) ∩ · · · ∩ V(fm). We are now ready to prove another
strong form of Hilbert’s Nullstellensatz. If X is any subset of Kn, we write I(X) =
{f ∈ K[x1, . . . , xn] : for all x ∈ X, f(x) = 0}. Note that if X = {x} has one point,
then I({x}) = mx, the maximal ideal consisting of all functions that vanish at x.
Also note that I(X) =

⋂
x∈X mx, and is always a radical ideal. These statements

are all valid even without the assumption that K is algebraically closed. When K
is algebraically closed, we can also state the following:

Theorem 5.15 (Hilbert’s Nullstellensatz, second strong form). Let K be an
algebraically closed field, and consider the polynomial ring R = K[x1, . . . , xn] and
algebraic sets in Kn. The functions V and I give a bijective order-reversing corre-
spondence between radical ideals of R and closed algebraic sets in Kn.
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Proof. Let I be a radical ideal. We may write I = (f1, . . . , fm)R for suitable
fj . We must show that I

(
V(I)

)
= I. The left hand side consists of all polynomials

that vanish everywhere that the fi vanish, and the earlier strong form of Hilbert’s
Nullstellensatz that we proved says precisely that if g vanishes on V(f1, . . . , fm),
then g ∈ Rad (f1, . . . , fm) = (f1, . . . , fm) in this case, since we assumed that
I = (f1, . . . , fm) is radical.

What remains to be shown is that if X is an algebraic set then V
(
I(X)

)
= X.

But since X is an algebraic set, we have that X = V(I) for some radical ideal I.
Consequently, V

(
I(X)

)
= V

(
I
(
V(I)

))
= V(I), since I

(
V(I)

)
= I, by what we

proved just above, and V(I) = X. �
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3. Lecture of October 14

Proposition 5.16. In X = Spec (R) where R is Noetherian, every closed set
Z has finitely many maximal closed irreducible subsets, and it is the union of these.
This union is irredundant, i.e., none of the maximal closed irreducible sets can be
omitted. The maximal closed irreducible subsets of Z are the same as the maximal
irreducible subsets of Z.

If K is an algebraically closed field, the same statements apply to the closed
algebraic sets in Kn.

Proof. The maximal irreducible closed subsets of Z correspond to the minimal
primes P1, . . . , Pn of the radical ideal I such that V (I) = Z, and this shows that
Z is the union of the maximal irreducible closed sets Zi = V (Pi) contained in Z.

On the other hand, if Z is a finite union of mutually incomparable irreducible
closed sets Zi, then every irreducible subset W of Z is contained in one of them, for
W is the union of the closed subsets W ∩Zi, and so we must have W = W ∩Zi for
some i, and thus W ⊆ Zi. This proves that the Zi are maximal irreducible subsets,
and that none of them can be omitted from the union: if Zj could be omitted it
would be contained in the union of the others and therefore contained in one of the
others.

The proof for the case of algebraic sets in Kn is the same. �

In both contexts, the maximal irreducible closed subsets in Z are called the
irreducible components of Z.

Irreducible closed algebraic sets in Kn, when K is algebraically closed, are
called algebraic varieties. (To be precise, they are called affine algebraic varieties,
but we shall not be dealing in this course with the other kinds. These include
the irreducible closed algebraic sets in a projective space over K, which are called
projective varieties, irreducible open sets in an affine variety, which are called quasi-
affine varieties, and irreducible open sets in a projective variety, which are called
quasi-projective varieties. The last type includes the others already mentioned.
There is also an abstract notion of variety which is more general, but the most
important examples are quasi-projective.)

The notation AnK is used for Kn to emphasize that is being thought of as an
algebraic set (rather than as, say, a vector space).

Examples. In A2
K , V(x1x2) = V(x1)∩V(x2) gives the representation of the algebraic

set which is the union of the axes as an irredundant union of irreducible algebraic
sets. This corresponds to the fact that in K[x, y], (xy) = (x) ∩ (y). Now consider
A6
K where the variables are x1, x2, x3, y1, y2, y3, so that our polynomial ring is

R = K[x1, x2, x3, y1, y2, y3]. Instead of thinking of algebraic sets as lying in A6
K ,

we shall think instead of them as sets of 2 × 3 matrices, where the values of the

variables xi and yj are used to create a matrix as shown:

(
x1 x2 x3

y1 y2 y3

)
Let

∆1 = x2y3 − x3y2, ∆2 = x1y3 − x3y1 and ∆3 = x1y2 − x2y1 be the three 2 × 2
minors of this matrix. Consider the algebraic set V(∆2,∆3). We may think of
this as the algebraic set of 2 × 3 matrices such that the minor formed from the
first two columns and the minor formed from the first and third columns vanish.
If a matrix is in this set, there are two possibilities. One is that the first column
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is zero, in which case the two minors involved do vanish. The second case is
that the first column is not zero. In this case, the second and third columns are
multiples of the first column, and this implies that ∆1 vanishes. From this we
obtain that V(∆2, ∆3) = V(x1, y1)∪V(∆1, ∆2, ∆3). This does turn out to be the
decomposition of V(∆2, ∆3) as an irredundant union of irreducible components.
The hardest part here is to show that V(∆1, ∆2, ∆3) is irreducible.

A topological space is called Noetherian if it satisfies DCC on closed sets. Thus,
Spec (R) is Noetherian iff the radical ideals of R have ACC, which is, of course true
if R is Noetherian.

Proposition 5.17. A subspace Y of a Noetherian topological space X is Noe-
therian. A Noetherian space is quasicompact. A topological space X is Noetherian
if and only if every open subspace is quasicompact, in which case every subspace is
quasicompact. In a Noetherian topological space, every closed subset is the finite
irredundant union of its maximal closed irreducible subsets, which are the same as
its irreducible subsets.

Proof. For the first statement, it suffices to show that a non-increasing se-
quence of closed sets Yi in Y is stable, and we can write Yi = Zi ∩ Y , where Zi is
closed in X. Then the sequence Z1, Z1 ∩ Z2, . . . , Z1 ∩ · · · ∩ Zn, . . . is eventually
stable in X, and the intersection of the n th term with Y is Y1 ∩ · · · ∩ Yn = Yn.

Consider next a family of closed sets in X with FIP. We must show the inter-
section is non-empty. We may assume without loss of generality that the family is
closed under intersection. But it has a minimal element, and this must be contained
in all of the sets, or we could intersect further, contradicting minimality.

Clearly, if X is Noetherian, then every subset is Noetherian and hence quasi-
compact, and so is every open subset. It suffices to show that if every open subset
is quasicompact, then X is Noetherian. If not, let Z1 ⊃ Z2 ⊃ · · · ⊃ Zn ⊃ · · · be a
strictly decreasing sequence of closed sets. Call the intersection Z. Then X − Z is
open, and is the strictly increasing union of the open sets X − Zn. This gives an
open cover with no finite sub-cover, contradicting the quasicompactness of X.

Finally, let Z be any closed set in X. If it is not a finite union of irreducibles,
take a minimal counter-example. If Z itself is irreducible, we are done. If not then
Z = Z1 ∪ Z2, where these are proper closed subsets, and hence each is a finite
union of irreducibles, since Z is a minimal counterexample. Once we have Z as a
finite union of irreducibles, we can omit terms until we have Z as an irredundant
finite union of irreducibles, say Z = Z1 ∪ · · · ∪ Zn. Now, if Y is an irreducible
set contained in Z, it must be contained in one of Zi, since it is the union of its
intersections with the Zi, which shows that the Zi are the maximal irreducible sets
contained in Z, as well as the maximal irreducible closed sets contained in Z. �

3.1. The category of closed algebraic sets. We next want to make the
closed algebraic sets over an algebraically closed field K into a category. Suppose
we are given X ⊆ Kn and Y ⊆ Km. We could write AnK instead of Kn and AmK
instead of Km. We define a function f : X → Y to be regular if it there exist
polynomials g1, . . . , gm ∈ K[x1, . . . , xn] such that for all points x ∈ X, f(x) =(
g1(x), . . . , gm(x)

)
. Thus, the function f can be given by a polynomial formula in

the coordinates. It is easy to verify that the identity function is regular and that
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the composition of two regular functions is regular. The closed algebraic sets over
K become a category if we define Mor (X, Y ) to be the set of regular functions
from X to Y .

It may seem a bit artificial to require that a map of X ⊆ AnK to Y ⊆ AmK be
induced by a map from AnK to AmK (the polynomials gj in the definition of regular
map actually give a map Kn → Km that happens to take X into Y ). However,
this is not much different from the situation in topology.

Most of the objects of interest in topology (compact manifolds or compact
manifolds with boundary) are embeddable as closed sets in Rn for some n. If
X ⊆ Rn and Y ⊆ Rm, then every continuous function from X to Y is the restriction
of a continuous function from Rn → Rm. To see this, think about the composition
X → Y ⊆ Rm. The function X → Rm is given by an m-tuple of continuous
functions from X to R. But a continuous function from a closed set X ⊆ Rn to
R does extend to a continuous function from Rn to R: this is the Tietze extension
theorem, and uses only that Rn is a normal topological space.

We now enlarge the category of algebraic sets slightly. Given an algebraic set
X and mutually inverse set bijections α : X ′ → X and β : X → X ′ we shall think
of these maps as giving X ′ the structure of an algebraic set. We define a map
f : X ′ → Y to be regular if f ◦ β is regular, and a map g : Y → X ′ to be regular if
α ◦ g is regular.

Of course if we have also given, say, Y ′, the structure of an algebraic set via
mutually inverse set isomorphisms γ : Y ′ → Y and δ : Y → Y ′ with an algebraic
set Y , then f : X ′ → Y ′ is regular if γ ◦ f ◦ β is a regular function from X to Y ,
while g : Y ′ → X ′ is regular if α ◦ g ◦ δ is a regular function from Y to X.

More generally, given any category in which the objects have underlying sets
and the morphisms are functions on the underlying sets with, possibly, some further
restrictive property (groups and group homomorphisms, rings and ring homomor-
phisms, and topological spaces and continuous maps are examples), one can make
an entirely similar construction: given a bijection α : X ′ → X one can introduce
an object with underlying set X ′ into the category in such a way that α is an iso-
morphism of that new object with X. In the case of rings, one uses the bijection
to introduce addition and multiplication on X ′: one adds elements of X ′ by taking
the images of the elements in X, adding them in X, and then applying the inverse
bijection to the sum to get an element of X ′. One introduces multiplication in X ′

in an entirely similar way.

Given a closed algebraic set X ⊆ AnK , the regular functions to K (i.e., to A1
K)

have the structure of a K-algebra: the restrictions of polynomials g1 and g2 to X
have a sum (respectively, a product) that is regular because it is the restriction
of g1 + g2 (respectively, g1g2). This ring is called the coordinate ring of X and is
denoted K[X]. It is a reduced finitely generated K-algebra: if a power of a function
is 0, all of its values are nilpotent in K and therefore 0 in K, so that the function
is identically zero. The coordinate ring is generated over K by the images of the
n functions represented by the variables x1, . . . , xn. The function xi assigns to a
point in X its i th coordinate, and so the functions xi are referred to as coordinate
functions, which explains why the K-algebra they generate is called the coordinate
ring.
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K[X] is a homomorphic image of K[x1, . . . , xn] under the K-algebra homo-
morphism that sends the function given by a polynomial g ∈ K[x1, . . . , xn] to its
restriction to X. The kernel of this K-algebra homomorphism is the ideal I(X) of
all polynomial functions that vanish on X, and so we have a K-algebra isomorphism
K[x1, . . . , xn]/I(X) ∼= K[X].

In fact, F = Mor ( , A1
K) is a contravariant functor from algebraic sets to

reduced finitely generated K-algebras. Given a map of algebraic sets f : X → Y
there is a K-algebra homomorphism f∗ : K[Y ] → K[X] induced by composition;
for each g : Y → A1

K , we let f∗(g) = g ◦ f : X → A1
K .

Now consider the functor G = HomK-alg( , K) from reduced finitely gener-

ated K-algebras to algebraic sets. Here the subscript indicates that we are deal-
ing with K-algebra homomorphisms. For this to make sense, we have to give
HomK-alg(R, K) the structure of an algebraic set: we do this by choosing a finite set

of algebra generators r1, . . . , rn for R over K, and then mapping HomK-alg(R, K)

to AnK by sending φ ∈ HomK-alg(R, K) to the n-tuple
(
φ(r1), . . . , φ(rn)

)
∈ AnK .

We shall see below that the set of values of this map is a closed algebraic set in
AnK , and that, up to isomorphism, this algebraic set is independent of the choice
of a finite set of generators for R over K. Thus, HomK-alg(R, K) has the struc-

ture of an algebraic set. Moreover, HomK-alg( , K) is a contravariant functor:

if h : R → S is a K-algebra homomorphism, we get a map h∗ : HomK-alg(S, K)

to HomK-alg(R, K) induced by composition: h∗(θ) = θ ◦ h. We shall see that

this makes G = HomK-alg( ,K) into a contravariant functor from reduced finitely

generated K-algebras to closed algebraic sets over K.

Note that the elements of HomK-alg(R, K) correspond bijectively with the

maximal ideals of R: the maximal ideal is recovered from a given homomorphism
as its kernel. On the other hand, we have already seen that for any maximal ideal
m, K → R/m is an isomorphism µ when K is algebraically closed, and we may
compose R→ R/m with µ−1 to obtain a K-algebra homomorphism R� K whose
kernel is the specified maximal ideal m. Note that if we have θ : S � K and we
compose with f : R→ S, the kernel of the composition R→ S � K is the same as
the contraction of the kernel of θ to R. Thus, the functor MaxSpec is isomorphic
with G = HomK-alg( ,K), and so we could have worked with this functor instead

of G. In particular, we can give every MaxSpec (R) the structure of an algebraic
set.

Our main result in this direction is:

Theorem 5.18. The procedure for giving HomK-alg(R, K) the structure of an

algebraic set described above does produce a bijection with an algebraic set, and
changing the choice of the finite set of generators for R produces an isomorphic
algebraic set. F and G as described above are contravariant functors such that G◦F
is isomorphic with the identity functor on closed algebraic sets over K, and F ◦G is
isomorphic with the identity functor on reduced finitely generated K-algebras. Thus,
the category of closed algebraic sets and regular functions over the algebraically
closed field K is anti-equivalent to the category of reduced finitely generated K-
algebras.
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4. Lecture of October 16

Proof. We first note that the points of the closed algebraic set X corre-
spond bijectively in an obvious way with the elements of HomK-alg(K[X], K),

and, likewise, with the maximal ideals of K[X]. Think of K[X], as usual, as
K[x1, . . . , xn]/I(X). The maximal ideals of this ring correspond to maximal ideals
of K[x1, . . . , xn] containing I(X). Each such maximal ideal has the form my for
some y ∈ AnK , and the condition that y must satisfy is that I(X) ⊆ my , i.e., that
all functions in I(X) vanish at y, which says that y ∈ V

(
I(X)

)
. By our second

strong version of Hilbert’s Nullstellensatz (Lecture of October 12), V
(
I(X)

)
= X.

We next note that our procedure for assigning the structure of an algebraic
set to HomK-alg(R, K) really does give an algebraic set, which is independent, up

to isomorphism, of the choice of the set of generators of R as a K-algebra. To
see this, let r1, . . . , rn be one set of generators of R. Map K[x1, . . . , xn] � R
using the unique K-algebra homomorphism that sends xi 7→ ri, 1 ≤ i ≤ n. Let
I be the radical ideal which is the kernel of this homomorphism, so that R ∼=
K[x1, . . . , xn]/I. The set we assigned to HomK-alg(R, K) is {

(
h(r1), . . . , h(rn)

)
:

h ∈ HomK-alg(R, K)}. Each K-homomorphism h is uniquely determined by its

values on the generators r1, . . . , rn. An n-tuple (λ1, . . . , λn) can be used to define
a K-homomorphism if and only if the elements of I vanish on (λ1, . . . , λn), i.e., if
and only if (λ1, . . . , λn) ∈ V(I). This shows that our map from HomK-alg(R, K)}
to Kn gives a bijection of HomK-alg(R, K)} with the algebraic set V(I).

Now suppose that r′1, . . . , r
′
m are additional elements of R. For every r′j we can

choose gj ∈ K[x1, . . . , xn] such that r′j = gj(r1, . . . , rn). The new algebraic set that
we get by evaluating every element h ∈ HomK-alg(R, K)} on r1, . . . , rm , r

′
1, . . . , r

′
m

is preciselyX ′ = {
(
λ1, . . . , λn, g1(λ), . . . , gm(λ)

)
: λ ∈ X}, where λ = (λ1, . . . , λn).

The map X → X ′ that sends λ = (λ1, . . . , λn) to
(
λ1, . . . , λn, g1(λ), . . . , gm(λ)

)
is given in coordinates by the polynomials x1, . . . , xn, g1, . . . , gm , and so is a mor-
phism in the category of algebraic sets. Likewise, the map X ′ → X which is simply
projection on the first n coordinates is given by polynomials in the coordinates, and
these are mutually inverse morphisms of algebraic sets. Thus, X ∼= X ′, as required.

This handles the case where one set of generators is contained in another. But
now, if r1, . . . , rn and r′1, . . . , r

′
m are two sets of generators, we may compare the

algebraic set given by r1, . . . , rn with that given by r1, . . . , rn, r
′
1, . . . , r

′
m, and

then the latter with the algebraic set given by r′1, . . . , r
′
m. This completes the

proof of the independence of the algebraic set structure that we are assigning to
HomK-alg(R, K) from the choice of K-algebra generators for R.

If R = K[X] and we choose as generators ri the restrictions of the coordinate
functions xi to R, then the algebraic set we get from HomK-alg(K[X], K) is X

itself, and this is the same identification of X with HomK-alg(K[X], K) that we

made in the first paragraph. Thus, if we let SX : X → HomK-alg(K[X], K) as in

that paragraph, we get an isomorphism of algebraic sets, for we may use the re-
stricted coordinate functions as the generators to place the algebraic set structure
on HomK-alg(K[X], K) = (G ◦ F)(X). We claim that SX is a natural transforma-

tion from the identity functor on the category of algebraic sets over K to G ◦F . We
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need to see that if θ : X → Y is a morphism of algebraic sets, then (G ◦F)(θ) is the
same as θ once we identify HomK-alg(K[X], K) with X and HomK-alg(K[X], K)

with Y . Let φx (resp., φ′y) denote evaluation as at x ∈ X (resp., y ∈ Y ). We need

to show that
(
(G ◦F)(θ)

)
(φx) = φ′θ(x) for all x ∈ X. Now, F(θ) acting on v ∈ K[Y ]

is v ◦ θ, and G applied to F(θ) acts by composition as well, so that its value on φx
is the map that sends v ∈ K[Y ] to (v ◦θ)(x) = v

(
θ(x)

)
, which is evaluation at θ(x),

as required.

Finally, we need to see that F ◦ G is isomorphic to the identity functor on
finitely generated reduced K-algebras. The map sends R to K[HomK-alg(R, K)]

where HomK-alg(R, K) is viewed as a closed algebraic set as discussed above. Each

element r of R maps to a function fr on the set HomK-alg(R, K) by the rule

fr(u) = u(r). It is immediate that this is a K-algebra homomorphism: call it
TR. We shall show that the TR give an isomorphism of the identity functor with
F ◦ G. We first need to show that every TR is an isomorphism. We use the fact
that R ∼= K[x1, . . . , xn]/I for some radical ideal I, with the coordinate functions
as generators, and it suffices to consider the case where R = K[x1, . . . , xn]/I. This
identifies HomK-alg(R, K) with V(I), and the needed isomorphism follows from

the fact that K[V(I)] ∼= K[x1, . . . , xn]/I
(
V(I)

)
= K[x1, . . . , xn]/I, again by the

second strong form of Hilbert’s Nullstellensatz, Theorem 5.15.

The last step is to check that T is a natural transformation. Consider a K-
algebra homomorphism α : R → S. Choose a K-algebra homomorphism γ of
polynomial ring A = K[y1, . . . , ym] onto R with kernel I and a K-algebra ho-
momorphism δ of a polynomial ring B = K[x1, . . . , xn] onto S with kernel J .
Without loss of generality, we may assume that R = A/I, S = B/J . Choose
g1, . . . , gm ∈ K[x1, . . . , xn] such that the image of yj in R maps to the image of gj
in B, 1 ≤ j ≤ m, so that α is induced by the K-algebra map A→ B that sends yj
to gj , 1 ≤ j ≤ m. The corresponding map of algebraic sets V(J)→ V(I) is given in
coordinates by the gj . Finally, the induced map K[V (I)] ∼= A/I

(
V(I)

)
= A/I to

K[V (J)] ∼= B/I
(
V(J)

)
= B/J is induced by composition with the map given

by the polynomials g1, . . . , gm. This means that the image of an element of
A/I represented by P (y1, . . . , ym) ∈ A is represented by the coset in B/J of
P (g1, . . . , gm) ∈ B, and this shows that with the identifications we are making,
F ◦ G(α) is α, which is exactly what we need. �

Remark 5.19. Given closed algebraic sets X ⊆ Y where Y ⊆ Kn we have
K[x1, . . . , xn] � K[Y ] → K[X], where the maps K[x1, . . . , xn] → K[Y ] and
K[x1, . . . , xn] → K[X] are both surjections, with kernels I(Y ) and I(X), respec-
tively. This means that K[Y ] → K[X] is as surjection whose kernel is simply
the ideal of regular functions on Y that vanish on X. Every surjection of finitely
generated reduced K-algebras arises, up to K-algebra isomorphism, from such an
inclusion of closed algebraic sets.

Given an algebraic set X over an algebraically closed field K, we define dim (X)
to be the same as dim (K[X]). The dimension of a ring is the supremum of the
dimensions of its quotients by minimal primes. Thus, dim (X) is the same as
the supremum of the dimensions of the irreducible components of X. Evidently,
dim (X) is also the same as the supremum of lengths of chains of irreducible closed
subsets of X. We define the dimension of X near a point x ∈ X to the be the



86 5. CHAIN CONDITIONS ON RINGS AND MODULES

supremum of the dimensions of the irreducible components of X that contain x.
If the corresponding maximal ideal of R = K[X] is m = mx, this is also the
dimension of Rm: it has minimal primes P corresponding precisely to the irreducible
components V (P ) that contain x, and the length of any saturated chain from P to
m = dim (Rm/PRm) = dim (R/P ) = the dimension of the irreducible component
V (P ), from which the result follows.

There are at least three ways to think of an algebra R over a commutative ring
ring K. It is worth considering all three points of view. One is purely algebraic:
R is an abstract algebraic environment in which one may perform certain sorts of
algebraic manipulations.

A second point of view is to think of R, or rather some topological space
associated with R, as a geometric object. We have seen explicitly how to do this
when R is a finitely generated reduced K-algebra and K is an algebraically closed
field. But a geometric point of view, introduced by A. Grothendieck, can be taken
in great generality, when R is any commutative ring. In Grothendieck’s theory of
schemes, a geometric object Spec (R), is introduced that has more structure than
just the topological space of prime ideals of R that we have talked about here. The
geometric point of view has been very effective as a tool in commutative algebra,
even if one is only interested in seemingly purely algebraic properties of rings.

The third point of view is simplest when R is a finitely generated algebra over
a Noetherian ring K (and it simplest of all when K is a field). In this case one
has that R = K[x1, . . . , xn]/(f1, . . . , fm). Now let S be any K-algebra. Then
HomK-alg(R, S) is in bijective correspondence with the set of solutions of the set

of m simultaneous equations

f1(x1, . . . , xn) = 0
· · ·

(∗) · · ·
· · ·

fm(x1, . . . , xn) = 0

in Sn, for to give aK-homomorphism fromR to S is the same as to give an n-tuple of
elements of S (which will serve as the values of the homomorphism on the images of
the variables x1, . . . , xn) that satisfy these equations. The set of homomorphisms
HomK-alg(R, S) is called the set of S-valued points of the scheme Spec (R) in

scheme theory: since we don’t have that theory available, we shall simply refer to
it as the set of S-valued points of R. Recall again that K can be any Noetherian
ring here. This point of view can be extended: we do not need to assume that R
is finitely generated over K, nor that K is Noetherian, if we allow infinitely many
variables in our polynomial ring, and infinite families of polynomial equations to
solve. Thus, very generally, a K-algebra may be thought of as an encoded system of
equations. When one takes homomorphisms into S, one is solving the equations in
S. A different way to say this is the following: suppose that we start with a system
of equations over K, and define a functor from K-algebras to sets that assigns to
every K-algebra S the set of solutions of the family of equations such that the
values of the variables are in S. If one forms the polynomial ring in the variables
occurring and then the quotient by the ideal generated by the polynomials set equal
to 0 in the equations, the resulting K-algebra represents this functor.
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Here is an example. Let B = R[X, Y, Z]/(X2 + Y 2 + Z2 − 1) = R[x, y, z],
and let S = B[U, V, W ]/(xU + yV + zW ) = R[x, y, z, u, v, w]. We can also form
B in a single step as R[X, Y, Z, U, V, W ]]/(X2 + Y 2 + Z2 − 1, XU + Y V + ZW ).
The R-homomorphisms from B or R-valued points of B correspond to the set
{(a, b, c) ∈ R3 : a2 + b2 + c2 = 1}: the real 2-sphere of radius one centered at
the origin in R3. The R-valued points of S correspond to pairs (a, b, c), (d, e, f)
such that (a, b, c) ∈ S2 and (a, b, c) · (d, e, f) = 0, which means that the vector
(d, e, f) represents a tangent vector to the sphere at the point (a, b, c). That is,
the R-valued points of S correspond to the points of the tangent bundle to the
real 2-sphere. It turns out that if T is a new indeterminate over S and T1, T2, T3

are three new indeterminates over A, then S[T ] ∼= A[T1, T2, T3], but that S is not
isomorphic with A[T1, T2]. This answers the question raised by the exercise in the
book of Deskins [4] discussed in Remark 2.8. One key point is that the direct sum
of the tangent bundle to the 2-sphere and a trivial line bundle is a trivial vector
bundle of rank 3, but that the tangent bundle to the 2-sphere is non-trivial: in
fact, it has no non-vanishing section. This last statement amounts to the assertion
that there is no non-vanishing continuous field of tangent vectors on a 2-sphere.
Sometimes this is expressed by saying “You can’t comb the hair on a billiard ball.”
The question as to whether S[T ] ∼= S′[T ′] implies S ∼= S′ appears to be purely
algebraic. There may be a moral in the fact that the simplest counter-example
requires some substantial knowledge from topology.
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5. Lecture of October 19

5.1. Formal power series rings. We next want to explore the notion of a
(formal) power series ring in finitely many variables over a ring R, and show that it
is Noetherian when R is. But we begin with a definition in much greater generality.

Let S be a commutative semigroup (which will have identity 1S = 1) written
multiplicatively. We shall assume that S has the following property: (#) For

all s ∈ S, {(s1, s2) ∈ S × S : s1s2 = s} is finite.

Thus, each element of S has only finitely many factorizations as a product
of two elements. For example, we may take S to be the set of all monomials
{xk11 · · · xknn : (k1, . . . , kn) ∈ Nn} in n variables. We construct a ring denoted
R[[S]]: we may think of this ring formally as consisting of all functions from S
to R, but we shall indicate elements of the ring notationally as (possibly infinite)
formal sums

∑
s∈S rss, where the function corresponding to this formal sum maps

s to rs for all s ∈ S. Addition is performed by adding corresponding coefficients,
while (

∑
s∈S rss)(

∑
s′∈S rs′s

′) is defined to be∑
t∈S

( ∑
s,s′∈S,ss′=t

rsrs′
)
t.

Heuristically, this is what one would get by distributing the product in all pos-
sible ways, and then “collecting terms”: this is possible because, by (#), only
finitely many terms rsrs′ss

′ occur for any particular t = ss′. The ring has iden-
tity corresponding to the sum in which 1S has coefficient 1 = 1R and all other
coefficients are 0. It is straightforward to verify all the ring laws and the commu-
tativity of multiplication. R[S], the semigroup ring defined earlier, is a subring:
it may be identified with the formal sums in which all but finitely many coeffi-
cients are 0. One frequently omits terms with coefficient 0 from the notation. If
S = {xk11 · · · xknn : (k1, . . . , kn) ∈ NN}, the notation R[[x1, . . . , xn]] is used instead
of R[[S]]: one writes generators for S inside the double brackets instead of S itself.

If S and S′ both satisfy (#), so does the product semigroup S×S′, and one has
the isomorphism (R[[S]])[[S′]] ∼= R[[S×S′]]. If the coefficient of s′ in an element of
the former is

∑
s∈S rs,s′s for every s′ ∈ S′, one identifies

∑
s′∈S′(

∑
s∈S rs,s′s)s

′ with∑
(s,s′)∈S×S′ rs,s′(ss

′). It is straightforward to check that this is an isomorphism.

The ring R[[x1, . . . , xn]] is referred to as a (formal) power series ring over R,
and the xi are called formal or analytic indeterminates to indicate that two power
series agree if and only if their corresponding coefficients are all identical.

In the case of two finite semigroups of monomials, the fact that R[[S × S′]] ∼=
(R[[S]])[[S′]] implies that

(R[[x1, . . . , xn]])[[y1, . . . , ym]] ∼= R[[x1, . . . , xn, y1, . . . , ym]].

In particular, for n ≥ 2,

R[[x1, . . . , xn]] ∼= (R[[x1, . . . , xn−1]])[[xn]].
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Of course, there is a completely analogous statement for polynomial rings, with
single brackets replacing double brackets. However, note that while

(R[[x1, . . . , xn]])[y1, . . . , ym] ↪→ (R[y1, . . . , ym])[[x1, . . . , xn]],

the opposite inclusion always fails when R is not 0 and m, n ≥ 1. First, to see the
inclusion, note that if one has a homomorphism h : R → T there is an induced
homomorphism R[[x1, . . . , xn]]→ T [[x1, . . . , xn]]: apply h to every coefficient. Let
T = R[y1, . . . , ym] and h be the inclusion R ⊆ T to get an injection

R[[x1, . . . , xn]]→ (R[y1, . . . , ym])[[x1, . . . , xn]].

Now extend this homomorphism of R[[x1, . . . , xn]]-algebras to the polynomial ring

(R[[x1, . . . , xn]])[y1, . . . , ym]

by letting yi map to yi ∈ (R[y1, . . . , ym])[[x1, . . . , xn]]. To see that the inclusion is
typically strict, note that

∑∞
t=0 y

t
1x
t
1 is an element of (R[y1, . . . , ym])[[x1, . . . , xn]]

but is not in (R[[x1, . . . , xn]])[y1, . . . , ym], where every element has bounded degree
in the yj . Both rings inject into R[[x1, . . . , xn, y1, . . . , ym]].

Also note that formation of power series does not commute with localizaton.
For example, if K is a field and x, y are indetermnates, the inclusion

(K[y][[x]])[1/y] ⊂ (K[y][1/y])[[x]]

is strict. For any element on the left hand side, we can clear all the occurrences of
y in the denominator by multiplying by a single power of y. On the right hand side
there are examples like

∑
n=0

1
ynx

n (and much worse ones, like
∑
n=0

1
ynn xn).

Theorem 5.20. If R is Noetherian ring then the formal power series ring
R[[x1, . . . , xn]] is Noetherian.

Proof. By induction on the number of variables one reduces at once to proving
that S = R[[x]] is Noetherian. Let J ⊆ R[[x]] be an ideal. Let It denote the set of
elements r of R such that rxn is the term of least degree in an element of J , together
with 0. This is easily verified to be an ideal of R. If f ∈ J is not zero, and rxn is the
least degree term in f , then rxn+1 is the least degree term in xf ∈ J . This shows
that {It}t≥0 is a non-decreasing sequence of ideals of R. Since R is Noetherian, we
may choose k ∈ N such that Ik = Ik+1 = · · · = Ik+m = · · · , and then for 0 ≤ t ≤ k
we may choose f1,t, . . . , fht, t ∈ J such that each fi,t has smallest degree term of
the form ri,tx

t and the elements ri,t, . . . , rht,t are a finite set of generators of It.
We claim that the finite set of power series fi,t, 0 ≤ t ≤ k, 1 ≤ i ≤ ht, generates
J . Let J0 be the ideal they generate, and let u ∈ J be given. We may subtract an
R-linear combination of the fi,0 from u to get an element of J whose lowest degree
term is in degree at least one (or such that the difference is 0). We continue in this
way so long as we have a lowest degree term of degree less than k: if the degree
is t < k, we may increase it by subtracting an R-linear combination of the fi, t.
Thus, after subtracting an element of J0 from u, we may assume without loss of
generality that the lowest degree term in u occurs in degree ≥ k (or else u is 0, but
then there is nothing to prove). It will suffice to prove that this new choice of u is
in J0. We claim more: we shall show that in this case, u is in the ideal generated
by the fi,k = fi. Let h = hk. We recursively construct the partial sums (which are

polynomials) of power series gi such that u =
∑h
i=1 gifi.
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Put slightly differently and more precisely, we shall construct, for every i, 1 ≤
i ≤ h, by induction on m ∈ N, a sequence of polynomials gi,m(x) ∈ R[x] with the
following properties:

(1) Every gi,m has degree at most m.
(2) If m1 < m2 then gi,m1

is the sum of the terms of degree at most m1 that
occur in gi,m2

. Given (1), this is equivalent to the condition that for all m ≥ 0,
gi,m+1 − gi,m has the form rxm+1 for some r ∈ R, which may be 0.

(3) For every m, the lowest degree term in u −
∑h
i=1 gi,mfi has degree at least

k +m+ 1 (or else the difference is 0).

Notice that conditions (1) and (2) together imply that for every i, the gi,m are
the partial sums of a formal power series, where the m th partial sum of a power
series

∑∞
j=0 rjx

j is defined to be
∑m
j=0 rjx

j .

To begin the induction, note that the least degree term of u occurs in degree k
or higher. Therefore the coefficient of xk in u is in the ideal generated by the lowest
degree coefficients of f1, . . . , fh, and it follows that there are elements r1,0, . . . , rh,0
of R such that the lowest degree term of u −

∑h
i=1 ri,0fi occurs in degree at least

k + 1 (or the difference is 0). We take gi,0 = ri,0, 1 ≤ i ≤ h.

Now suppose that the gi,s have been constructed for 1 ≤ i ≤ h, 0 ≤ s ≤ m
such that conditions (1), (2), and (3) are satisfied. We shall show that we can

construct gi,m+1 so that (1), (2), and (3) are satisfied. Since u′ = u−
∑h
i=1 gi,mfi

has lowest degree term of degree at least m + k + 1, the coefficient of xm+k+1

is in the R-span of the coefficients of xk in the polynomials fi, and so we can

choose elements ri,m+1 ∈ R so that u′ −
∑h
i=1 ri,m+1x

m+1fi has lowest degree
term in degree at least m + k + 2 (or is 0). It follows that if we take gi,m+1 =
gi,m + ri,m+1x

m+1 for 1 ≤ i ≤ h, then (1) and (2) are satisfied, and (3) is as well

because u −
∑h
i=1 gi,m+1fi = u′ −

∑h
i=1 ri,m+1x

m+1fi has lowest degree term in
degree at least m + k + 2 (or the difference is 0). For each i, 1 ≤ i ≤ h, let gi be
the formal power series whose partial sums are the gi,m.

We claim that u =
∑h
i=1 gifi. It suffices to show that the coefficients on

corresponding powers of x are the same on both sides. Neither side has a nonzero
term involving xt for t < k. On the other hand, for all m ≥ 0, the coefficient of
xk+m on the right will not change if we replace every gi on the right by gi,m, since
gi − gi,m involves only terms of degree strictly bigger than m + k + 1. Thus, it

suffices to show that for all m ≥ 0, the difference u−
∑h
i=1 gi,mfi has coefficient 0

on xm+k, and this is true by part (3). But the fi = fi,k are in J0, so that u ∈ J0,
as required. �

It is also true that the subring of C[[x1, . . . , xn]] (respectively, R[[x1, . . . , xn]])
consisting of power series that converge on a neighborhood of the origin in Cn
(respectively, Rn) is a Noetherian ring with a unique maximal ideal, generated by
x1, . . . , xn. These rings are denoted C〈〈x1, . . . , xn〉〉 and R〈〈x1, . . . , xn〉〉, respec-
tively.

The Noetherian property of the ring C〈〈x1, . . . , xn〉〉 is of considerable useful-
ness in studying functions of several complex variables: this is the ring of germs of
holomorphic functions at a point in Cn. We shall not give the proof of the Noe-
therian property for convergent power series rings here: proofs may be found in
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[14] pp. 142–148 and [13] pp. 190–194. The operations of taking quotients, local-
ization, forming polynomial rings in finitely many variables, and forming formal
power series rings in finitely many variables have immensely increased the class of
examples of Noetherian rings available to us. We may perform several iterations of
these operations on a known Noetherian ring to create new examples, and the order
in which the operations are done usually matters, although two operations of the
same kind can be combined into one, and localization commutes with formation of
quotient rings.

Here is a simple example of a ring that we have not looked at yet: Vp =
Z[[x]]/(x− p), where p is a positive prime integer. We shall see later that this ring
is a PID with a unique maximal ideal, i.e., a discrete valuation ring, in which p
generates the maximal ideal. In this ring, we can make sense of a formal power
series in p with integer coefficients: the same power series can be written down
with x replacing p, and so has a meaning in Z[[x]], and it therefore represents an
element of the quotient. For example, 1 + p + p2 + p3 + · · · can be interpreted as
the image of 1 + x + x2 + x3 + · · · in the quotient. It turns out that the value of
1 +p+p2 +p3 + · · · is an inverse for 1−p, just as if p were a small real number and
we were using the formula for the sum of an infinite geometric progression. The ring
Vp is called the ring of p-adic integers: these rings have considerable importance in
number theory. It turns out that every element of Vp can be represented uniquely
in the form

∑∞
t=0 atp

t where where every ai is an integer satisfying 0 ≤ ai ≤ p− 1.
We shall return to this example later when we study complete local rings.

A construction that arises frequently in commutative algebra is the colon ideal.
We give the definition here. Let I ⊆ R be an ideal in the ring R, and let S
be an arbitrary subset of R. Then I :R S (or simply I : S) is, by definition,
{r ∈ R : for all s ∈ S, rs ∈ I}, which is easily verified to be an ideal of R. If
J is the ideal of R generated by the set S, it is straightforward to verify that
I : J = I : S. We shall make use of colon ideals later when we study primary
decomposition of ideals.





CHAPTER 6

Tensor products, base change, and coproducts of
algebras

1. Lecture of October 21

1.1. Tensor products of modules. We next want to review the basic facts
about tensor products of modules over a ring R. We shall use tensor products for
several purposes. When S is an R-algebra and M is an R-module, then S ⊗RM is
an S-module, and is finitely generated if M is. This gives us a method of passing
from R-modules to S-modules that is called extension of scalars. When S is a
localization of R, this gives a method of localizing modules as well, although there
are alternative constructions of the localization of a module.

If S and T are both R-modules it turns out that S ⊗R T has the structure
of an R-algebra, and is a coproduct for S and T in the category of R-algebras!
Both extension of scalars and this method of constructing coproducts are of great
importance, both in commutative algebra and in algebraic geometry.

We first recall the notion of a bilinear map. If M , N and W are R-modules,
a bilinear map B : M ×N → W is a function such that for each fixed v ∈ N , the
map Bv : M → W via Bv(u) = B(u, v) is R-linear, and for each fixed u ∈ M ,
the map Bu : N → W via Bu(v) = B(u, v) is R-linear. We can express all this
at once by the requirement that for all u1, u2 ∈ M , for all v1, v2 ∈ N , and for all
r1, r2, s1, s2 ∈ R, we have that

B(r1u1 + r2u2, s1v1 + s2v2) =
r1s1B(u1, v1) + r1s2B(u1, v2) + r2s1B(u2, v1) + r2s2B(u2, v2).

One of the simplest and most important examples of a bilinear map is the map
from R×R→ R that sends (r, r′) to rr′: bilinearity is a consequence of the left and
right distributive laws in R (which, of course, imply each other in a commutative
ring R).

The composition T ◦ B of a bilinear map M × N → W and an R-linear map
T : W → W ′ is easily verified to be a bilinear map M × N → W ′. For fixed
R-modules M,N this enables us to define a covariant functor from R-modules to
sets whose value Bil(M,N ;W ) on the R-module W is the set of bilinear maps from
M × N to W . Given T : W → W ′ the map Bil(M,N ;W ) → Bil(M,N ;W ′) is
induced by composition with T , as just described.

It will turn out that the tensor product M ⊗R N is an R-module that rep-
resents this functor, so that for all W we get a bijection HomR(M ⊗R N, W ) ∼=
Bil(M,N ;W ): these bijections give an isomorphism of functors of W . We have not
yet shown the existence and uniqueness of the tensor product, but we want to state

93
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first the key property that it has in somewhat greater detail. We shall show that
there is an R-module M ⊗RN together with a bilinear map β : M ×N →M ⊗RN
with the following property: for every R-module W and bilinear map B : M×N →
W there is a unique linear map T : M ⊗RN →W such that B = T ◦β. The tensor
product M ⊗R N together with the bilinear map β : M × N → M ⊗R N give a
universal bilinear map from M×N , in the sense that every other bilinear map from
M ×N arises from β uniquely, by composition of a linear map with β.

We shall show next that tensor products exist, and are unique up to isomorphsm
that is also unique if the universal bilinear map β is taken into account.

Let M and N be any two R-modules. To construct β and M ⊗R N , take the
free module F on a basis bm,n indexed by the elements of M × N . Let G be the
submodule of F spanned by the elements of the following forms as u, u′ vary in M ,
v, v′ vary in N , and r varies in R:

(1) bu+u′,v − bu,v − bu′,v
(2) bru,v − rbu,v
(3) bu,v+v′ − bu,v − bu,v′
(4) bu,rv − rbu,v

We define M ⊗R N to be F/G, and the map β by the rule β(u, v) = [bu,v], where
the brackets [ ] indicate images mod G. The four types of elements that we killed
by placing them in G precisely guarantee that β is bilinear.

Proposition 6.1. For any bilinear map B : M × N → W , there is a unique
linear map f : M ⊗R N → W such that B = f ◦ β. If γ : M ×N → T is another

bilinear map with the same universal property, there is are unique isomorphism
φ : M ⊗R N → T such that γ = φ ◦ β (and, of course, β = φ−1 ◦ γ).

Proof. In order that B = f◦β, we must have f([bu,v]) = f
(
β(u, v)

)
= B(u, v),

which shows that f is unique. To show that it exists, define f0 on F by the
rule f0(bu,v) = B(u, v). Then f0 kills G, simply because B is bilinear: this is a
straightforward check. Thus, f0 induces an R-linear map f : F/G → W with the
required properties.

If γ : M × N → T also has this property, then there is a unique linear map
ψ : T →M⊗RN such that β = ψ◦γ and a unique linear map φ : M⊗RN → T such
that γ = φ ◦ β because of the property just proved for M ⊗R N . The composition
ψ◦φ : T → T has the property that its composition with γ is φ◦ψ◦γ = φ◦β = γ, and
the identity map on T has the same property. By the uniqueness property asserted
for T and γ, φ ◦ψ is the identity map on T . By an exactly similar argument, ψ ◦ φ
is the identity map on M ⊗R N . �

The image of (u, v) in M ⊗RN is denoted u⊗v. This symbol has the following
properties:

(1) (u+ u′)⊗ v = u⊗ v + u′ ⊗ v.
(2) u⊗ (v + v′) = u⊗ v + u⊗ v′.
(3) (ru)⊗ v = r(u⊗ v) = u⊗ (rv).

These properties are implied by the bilinearity of the map β.

Since the bu,v span F over R, the elements u⊗v span M⊗RN over R. However,
not every element has this form. It is however true that if two R-linear maps on
M ⊗N to W agree on all elements of the form u⊗ v, then they are equal.
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Proposition 6.2. If {ui : i ∈ I} spans M and {vj : j ∈ J} spans N , then
{ui ⊗ vj : (i, j) ∈ I × J} spans M ⊗N . Hence, if M and N are finitely generated,
so is M ⊗N .

Proof. M ⊗ N is spanned by the elements u ⊗ v and u =
∑h
s=1 rsuis while

v =
∑k
t=1 r

′
tvjt . But then

u⊗ v = (

h∑
s=1

rsuis)⊗ (

k∑
t=1

r′tvjt) =
∑
s,t

(rsr
′
t)(uis ⊗ vjt).

�

Maps from tensor products are almost always constructed by giving a bilinear
map first. The proofs of the following results give examples:

Proposition 6.3. Let M,M ′ and N,N ′ be modules over the ring R.

(a) There is a unique isomorphism M ⊗N ∼= N ⊗M under which u⊗ v is mapped
to v ⊗ u for all u ∈M , v ∈M .

(b) There is an isomorphism M ∼= R ⊗M that maps u to 1⊗ u; its inverse maps
r ⊗m to rm.

(c) If f : M → N and g : M ′ → N ′ are R-linear, there is a unique R-linear map,
f ⊗ g : M ⊗M ′ → N ⊗N ′ such that (f ⊗ g)(u⊗ u′) = f(u)⊗ g(u′).

(d) There is a unique isomorphism (M ⊕M ′) ⊗ N ∼= (M ⊗ N) ⊕ (M ′ ⊗ N) that
sends (u⊕ u′)⊗ v ∼= (u⊗ v)⊕ (u′ ⊗ v). This extends at once, by induction, to
direct sums of finitely many modules, and there is a corresponding fact when
the second module is a direct sum.

(e) If M =
⊕

i∈IMi and N =
⊕

j∈J Nj are arbitrary direct sums, then

M ⊗N =
⊕

(i,j)∈I×J

Mi ⊗Nj .

(f) If F is free over R on the free basis bi, i ∈ I and F ′ is free on the free basis b′j,
j ∈ J , then F ⊗ F ′ is free on the the free basis bi ⊗ b′j, (i, j) ∈ I × J .

Proof. (a) follows from the fact that there is a bilinear map M×N → N⊗M
taking (u, v) to v⊗ u: the check of bilinearity is straightforward. The construction
of the map N ⊗M → M ⊗N is the same. Since the maps interchange u ⊗ v and
v ⊗ u, it is clear that each composition is the relevant identity map, since that is
true on a spanning set.

(b) The check that the specified map M → R ⊗M is linear is easy, and it is
likewise easy to check that there is a bilinear map R ×M → M sending (r,m)
to rm, and hence a linear map R ⊗M → M sending r ⊗ m to rm. One of the
compositions is sending r ⊗m first to rm and then to 1 ⊗ rm = r(1) ⊗m, and so
is the identity. The other check is easier.

(c) A linear map as specified exists because the map M ×N → M ′ ⊗N ′ that
sends (u, v)→ f(u)⊗ g(v) is readily checked to be bilinear.

(d) There is a bilinear map (M ⊕ M ′) × N → (M ⊗ N) ⊕ (M ′ ⊗ N) that
sends (u ⊕ u′, n) to (u ⊗ v) ⊕ (u′ ⊗ v). By (c), the injections ι : M ↪→ M ⊕M ′,
ι′ : M ′ ↪→M⊕M ′ induce maps ι⊗1N : M⊗N → (M⊕M ′)⊗N and ι′⊗1N : M ′ →
(M⊕M ′)⊗N . These together give a map (ι⊗1N )⊕(ι′⊗1N ) : (M⊗N)⊕(M ′⊗N)→
(M ⊕M ′)⊗N . It is completely straightforward to check that the compositions are
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the relevant identity maps, working with elements of the form (u ⊕ u′) ⊗ v in one
case, and with elements of the forms (u⊗ v)⊕ 0 and 0⊕ (u′⊗ v) in the other case.

(e) We first consider the case where there is just one module N on the right.
Consider any finite number of the summands on the left: call them Mi1 , . . . ,Min ,
and let M ′ be the direct sum of all the others. Then by part (d), we have M ⊗N ∼=⊕n

t=1Mt⊗N⊕M ′⊗N . It follows that all of the modules Mi⊗N inject into M⊗N
(as direct summands) and that any one of them is disjoint from a finite sum of the
others. Since the Mi span M , it follows that the Mi ⊗ N have sum M ⊗ N , and
thus we have the required direct sum decomposition of M ⊗N . Obviously, there is
a similar result for direct sum decompositions of N . Thus,

M⊗N ∼= (
⊕

Mi)⊗N ∼=
⊕
i

(Mi⊗N) ∼=
⊕
i

(
Mi⊗(

⊕
j

Nj)
) ∼= ⊕

i

(⊕
j

Mi⊗Nj)
)
,

and the result follows.

(f) F (respectively, G) has the form
⊕

iRbi (respectively,
⊕

j Rb
′
j), where each

Rbi ∼= R (respectively, Rb′j
∼= R), and the result now follows from (e) and (b) in

the special case M ∼= R. �

Given two categories C and D one may define a product carry C × D whose
objects are pairs of objects (X, Y ) where X is an object of C and Y is an object
of D. The morphisms of (X,Y ) to (X ′, Y ′) are pairs of morphisms (f, g) where
f : X → X ′, g : Y → Y ′. Composition is performed coordinate-wise. From part (c)
we deduce that ⊗R is a covariant functor of two variables, i.e., if C is the category
of R-modules, it is a functor C×C → C. One frequently considers this functor when
one of the modules is fixed: thus, there is a functor ⊗R N from R modules to
R-modules that maps M to M ⊗R N : it takes the map f : M → M ′ to the map
f ⊗ 1N , so that u⊗ v maps to f(u)⊗ v.

Proposition 6.4. If 0 → M ′
f−→ M

g−→ M ′′ → 0 is a short exact sequence of
modules, then M ′⊗N →M⊗N →M ′′⊗N → 0 is exact, i.e., g⊗1N is surjective,
and the image of f ⊗ 1N is the kernel of g ⊗ 1N . The latter fact implies, when
M ′ ⊆M and M ′′ = M/M ′, that (M/M ′)⊗N ∼= (M ⊗N)/Im (M ′ ⊗N).

The conclusion remains correct if one only has that M ′
f−→ M

g−→ M ′′ → 0 is
exact.

Proof. Since M ′′⊗N is spanned by elements u′′⊗ v for u′′ ∈M ′′ and v ∈ N ,
to prove that g ⊗ 1N is surjective it suffices to observe that each such element is
the image of u ⊗ v , where u ∈ M is chosen so that g(u) = u′′. We clearly have a
surjection of M ⊗ N/Im (M ′ ⊗ N) onto M ′′ ⊗ N mapping u ⊗ v to g(u) ⊗ v. To
complete the proof, we show that this is an isomorphism by constructing an inverse
map h. There is a bilinear map M ′′ × N → M ⊗ N/Im (M ′ ⊗ N) sends (u′′, v)
to the class of (u, v), where g(u) = u′′. This must be checked to be independent
of the choice of u. But if we choose a different element u1 that maps to u′′,
it differs from u by an element in the image of M ′, from which it follows that
u⊗ v − u1 ⊗ v = (u− u1)⊗ v is in the image of M ′ ⊗N . Once the map is known
to be well-defined, it is straightforward to check that it is bilinear, and it is clear
the the compositions of h and g ⊗ 1N give the appropriate identity map in either
order, since one need only check what happens on the spanning elements such as
[u⊗ v] and g(u)⊗ v, and each maps to the other. �
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The result of the preceding Proposition 6.4 is referred to as the right exactness
of tensor.

Applying ⊗N does not preserve injectivity in general. For example, consider
the injection 2Z ⊆ Z of Z-modules and apply ⊗Z/2Z. We have that 2Z ∼= Z, and
so the first module becomes 2Z⊗ZZ/2Z ∼= Z/2Z but the induced map Z/2Z→ Z/2Z
is 0. It might be better to think of the left hand copy of Z/2Z as 2Z/4Z. Note
that when we look at the element 2 ⊗ [1] in 2Z ⊗ Z/2Z, we may not move the 2
that occurs to the left of the tensor symbol across the tensor symbol, because the
element 1 is “missing” from 2Z.

Similarly, if a is a nonzero element of the domain A, we have aA ⊆ A, but
applying ⊗A/aA gives the zero map from aA/a2A ∼= A/aA to A/aA.

Corollary 6.5. If M ′ ⊆ M and N ′ ⊆ N are submodules of the R-modules
M , N , then (M/M ′)⊗ (N/N ′) ∼= (M ⊗N)/

(
Im (M ⊗N ′) + Im (M ′ ⊗N)

)
.

Proof. By the preceding result, this is (M/M ′)⊗N mod the image of (M/M ′)⊗
N ′, and the former may be identified with (M ⊗ N)/Im (M ′ ⊗ N). The image of
(M/M ′) ⊗ N ′ in this module is the same as the image of M ⊗ N ′, and the result
follows. �

Corollary 6.6. (R/I)⊗M ∼= M/IM while (R/I)⊗ (R/J) ∼= R/(I + J).

Proof. The image of I ⊗M in R⊗M ∼= M under the map that sends r ⊗m
to rM is IM . This proves the first statement. The second statement is immediate
from the preceding Corollary 6.5. �



98 6. TENSOR PRODUCTS, BASE CHANGE, AND COPRODUCTS OF ALGEBRAS

2. Lecture of October 23

Notice that if K is a field, V has finite basis v1, . . . , vm, and and W has finite
basis w1, . . . , wm, then V ⊗K W has finite basis vi ⊗ wj , and so every vector in
V ⊗W can be written uniquely in the form

∑
i,j aij(vi ⊗wj) where 1 ≤ i ≤ m and

1 ≤ j ≤ n. This gives a vector space isomorphism of V ⊗W with m × n matrices
(aij) over K which is not canonical: it depends on the choices of basis for V and
for W . But it is useful. For example, an element of the form v ⊗ w in V ⊗W can
be written as

(

m∑
i=1

bivi)⊗ (

n∑
j=1

cjwj) =
∑
i,j

(bicj)(vi ⊗ wj),

so that the corresponding matrix (bicj) factors as the product of the m× 1 matrix
with entries bi and the 1 × n row matrix (c1 . . . cn). A matrix has such a fac-
torization if and only if it has rank at most one. Thus, an element of V ⊗W is
decomposable as v ⊗ w if and only if the corresponding matrix has rank at most
one. This condition is independent of the choices of basis. Such matrices are rather
special among all m× n matrices (unless m ≤ 1 or n ≤ 1).

If M1, . . . ,Mk, W are R-modules a map M1 × · · · × Mk → W is called k-
multilinear or simply multilinear over R if, for every i, it becomes an R-linear
function of ui when all the other entries u1, . . . , ui−1, ui+1, . . . uk of u1, . . . , uk are
held fixed. An example is the map R×R× · · · ×R→ R that sends (r1, . . . , rk)→
r1r2 · · · rk. As a function of k variables it is a polynomial of degree k, but it is
linear in each variable if all of the others are held fixed. If k = 2, this means that
the map is bilinear. When k = 3 we may use the term trilinear.

We next note that the map τ on M1 ×M2 ×M3 sending (u1, u2, u3) to (u1 ⊗
u2)⊗u3 in (M1⊗M2)⊗M3 is trilinear, and in fact is universal, in the sense that any
trilinear map T : M1×M2×M3 →W factors uniquely as the composition of τ with
a linear map f : (M1⊗M2)⊗M3 →W . Uniqueness is clear, since given T , the value
of f on (u1 ⊗ u2) ⊗ u3 must be T (u1, u2, u3). To show that such a map f exists,
note that for each fixed u3, T defines a bilinear map Bu3

: M1×M2 →W such that
Bu3(u1, u2) = T (u1, u2, u3), and therefore a linear map gu3 : (M1 ×M2) → W .
We can then define a bilinear map B : (M1 ⊗M2) ×M3 → W by the rule by the
rule B(v, u3) = gu3

(v). It is straightforward to check bilinearity, and that the map
f : (M1 ⊗M2)⊗M3 →W induced by B satisfies f

(
(u1 ⊗ u2)⊗ u3

)
= T (u1, u2, u3)

for all ui ∈Mi.

An entirely similar argument shows that we could have used M1 ⊗ (M2 ⊗M3)
instead, i.e., that the mapM1×M2×M3 →M1⊗(M2⊗M3) that sends (u1, u2, u3) to
u1⊗(u2⊗u3) is also a universal trilinear map. This gives a map (M1⊗M2)⊗M3 →
M1 ⊗ (M2 ⊗M3) and also a map in the other direction such that the first takes
every (u1 ⊗ u2)⊗ u3 to u1 ⊗ (u2 ⊗ u3) while the second takes every u1 ⊗ (u2 ⊗ u3)
to (u1⊗u2)⊗u3. These are evidently mutually inverse maps, and the isomorphism
(M1⊗M2)⊗M3

∼= M1⊗ (M2⊗M3) just described is referred to as the associativity
of tensor, although we shall also soon see that there is a stronger version.

It then follows that M1⊗M2⊗· · ·⊗Mk has a meaning independent of how one
inserts parentheses, and that the map µ : M1 × · · · ×Mk → M1 ⊗M2 ⊗ · · · ⊗Mk

that sends (u1, · · · , uk) to u1 ⊗ · · · ⊗ uk is a universal k-multilinear map: every
k-multilinear map from M1 × · · · ×Mk arises from µ by composing it with a linear
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map, and the linear map that can be used is unique. The only step of interest in the
proof is to show that given a k-multilinear map T : M1⊗M2⊗· · ·⊗Mk →W there
is a map f : M1⊗M2⊗· · ·⊗Mk →W such that f(u1⊗· · ·⊗uk) = T (u1, . . . , uk) for
all (u1, . . . , uk) ∈M1×· · ·Mk. One uses induction. Again, for each fixed uk ∈Mk,
T yields a (k − 1)-multilinear map guk

of the first k − 1 variables to W , which in
turn, by the induction hypothesis, induces a map guk

: M1 ⊗ · · ·Mk−1 → W . The
map (M1⊗ · · ·Mk−1)×Mk whose value on (u1⊗ · · ·uk−1, uk) is guk

(u1⊗ · · ·uk−1)
may be easily checked to be bilinear, and this induces the map we want.

We next want to show that if M1 is an S-module and M2 is an R-module, then
M1 ⊗RM2 (where M1 is regarded as an R-module via restriction of scalars) is an
S-module in such a way that for all s ∈ S, u1 ∈ M1 and u2 ∈ M2, s(u1 ⊗ u2) =
(su1)⊗ u2. First note that we have an R-trilinear map S×M1×M2 →M1⊗RM2

that sends (s, u1, u2) to (su1)⊗u2. This yields an R-linear map S⊗R(M1⊗RM2)→
M1⊗RM2 and therefore an R-bilinear map S× (M1⊗RM2)→M1⊗RM2. This is
the map we shall use for multiplication by s: for z ∈ M1 ⊗M2, sz is the image of
(s, z) under this map. This has the stated property that s(u1 ⊗ u2) = (su1) ⊗ u2.
The R-bilinearity also implies most of the conditions that we need for this action
of S to make M1 ⊗R M2 into an S-module. However, we still need to check that
for all u ∈ M1 ⊗R M2 and s, s′ ∈ S, (ss′)u = s(s′u). Since multiplication by
an element of S is R-linear, it suffices to check this for elements u that generate
M1 ⊗R M2 as an R-module, and so we may assume that u = u1 ⊗ u2. But then
(ss′)(u1 ⊗ u2) =

(
(ss′)u1

)
⊗ u2 =

(
s(s′u)1

)
⊗ u2 = s

(
(s′u)1 ⊗ u2

)
= ss′(u1 ⊗ u2),

as required.

Similarly, if M1 is an R-module and M2 is an S-module, we can give an S-
module structure to M1 ⊗RM2 such that s(m1 ⊗m2) = m1 ⊗ (sm2).

A word of caution: if M1 and M2 are both S-modules, then M1⊗RM2 has two
S-module structures, one that comes from M1, and one that comes from M2, and
these are almost always different. The point is that when we tensor over R, scalars
from S cannot be “passed through” the tensor symbol (although scalars from R
can), and so sm1 ⊗m2 and m1 ⊗ sm2 are usually distinct.

Something analogous happens with HomR(M1, M2) when S is an R-algebra. If
M2 is an S-module, then HomR(M1, M2) becomes an S-module if one defines sf by
the rule (sf)(u1) = s

(
f(u1)

)
. Likewise, if M1 is an S-module then HomR(M1, M2)

becomes an S-module if one uses the rule (sf)(u1) = f(su1). However, when M1

and M2 are both S-modules, these two S-module structures are usually different:
we do not have f(su1) = sf(u1) because f is being assumed R-linear but not
necessarily S-linear.

If M,N are S-modules and Q is an R-module then (M ⊗S N) ⊗R Q ∼= M ⊗S
(N ⊗R Q) as S-modules: this is also called associativity of tensor: it strengthens
our previous result, which was the case where S = R. As before, (u ⊗ v) ⊗ w and
u⊗ (v⊗w) correspond under the two isomorphisms. We construct maps as follows.
For each fixed w ∈ Q there is an S-bilinear map Bw : M ×N →M ⊗S (N ⊗RQ) by
the rule Bw(u, v) = u⊗ (v⊗w). This gives an S-linear map gv : M ⊗N →W . We
can then define an R-bilinear map (M⊗SN)×Q→M⊗S (N⊗RQ) that sends (y, v)
to gv(y), and this induces an R-linear map (M⊗SN)⊗RQ→M⊗S (N⊗RQ) that is
easily checked to send (u⊗v)⊗w to u⊗(v⊗w). This map turns out to be S-linear: we
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need only check this on the generators (u⊗v)⊗w, and s
(
(u⊗v)⊗w)

)
= (su⊗v)⊗w

has image (su)⊗ (v ⊗ w) = s
(
u⊗ (v ⊗ w)

)
, as required.

To get a map in the other direction, for each fixed u ∈M define an R-bilinear
map B′u : N×Q→ (M⊗SN)⊗RQ by the rule B′u(v, w) = (u⊗v)⊗w, which yields
an R-linear map g′u : N ⊗R M → (M ⊗S N) ⊗R Q. It is easy to check that this
map is actually S-linear, because (u⊗ sv)⊗w = s

(
u⊗ (v⊗w)

)
. We then define an

S-bilinear map M×(N⊗RQ)→ (M⊗SN)⊗RQ that sends (u, z) to g′u(z). We now
have S-linear maps in both directions that on generators interchange (u ⊗ v) ⊗ w
and u⊗ (v ⊗ w), as required.

By these remarks, if S is an R-algebra we have a covariant right exact functor
from R-modules to S-modules given by S ⊗R . This operation is referred to as
extension of scalars or base change, because the “base ring” R is being replaced by
the base ringS. R-modules get converted to S-modules. This turns out to be an
extraordinarily useful technique. The method of studying real vector spaces and
real matrices by enlarging the field to the complex numbers and taking complex
linear combinations and so forth is actually an example of this method being used
in a tacit way.

Note that since S ⊗RM is an S-module, it is also an R-module by restriction
of scalars. The map M → S ⊗M that takes u to 1 ⊗ u is R-linear. In general, it
need not be injective, however.

Because of the canonical isomorphism S ⊗R R ∼= S as S-modules, and the
fact that tensor product commutes with direct sum, base change converts free R
modules with free basis {bi}i∈I to free S-modules with free basis {1 ⊗ bi}i∈I . If
f : R→ S is the structural homomorphism for S as an R-algebra, the map R→ R
given by multiplication by r ∈ R becomes the map R→ S given by multiplication
by f(r) ∈ S.

To understand what base change does to an arbitrary module it may be helpful
to think in terms of presentations. Given an R-module M one may choose gener-
ators {ui}i∈I where I is a suitable index set (I may be infinite), and then form a
free module R⊕I with free basis {bi}i∈I indexed by I. We then have a surjection
R⊕I � M that sends bi to ui for every i. We may then choose generators for the
kernel M ′ ⊆ R⊕I , and so construct another surjection R⊕J �M ′. This then yields
an exact sequence R⊕J → R⊕I � M → 0, and the map R⊕J → R⊕I determines
M . We may think of the map as given by a matrix indexed by I × J such that
each column has only finitely many nonzero entries. Thus, the columns represent
vectors in R⊕I that span M ′, and we get M by killing the R-span of these columns.
In other words, M is simply the cokernel of the map R⊕J → R⊕I . The sequence
R⊕J → R⊕I �M → 0 is called a presentation of M .

This is all more standard when M is finitely generated and the module M ′ is
also finitely generated. Then I and J are finite sets, and M is said to be finitely
presented. If R is Noetherian, every finitely generated module has a finite presen-
tation: if I is finite, R⊕I is finitely generated, and, hence Noetherian. This implies
that M ′ is finitely generated.

In this case, where I and J are finite, we can think of the presentation sequence
as having the form Rn → Rm � M → 0, where we think of Rm as m × 1 column
vectors. The matrix of the map is then an m × n matrix (rij) over R. M is the
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cokernel of the map, which is the same as the quotient of Rm by the submodule
spanned by the n columns. When we apply S ⊗R , we get an exact sequence
Sn → Sm � S ⊗R M → 0, and so we get a presentation of the module S ⊗R M .
The new matrix

(
f(rij)

)
is obtained by applying f to the entries of the original

matrix. One corollary of this point of view is that if M is finitely generated by, say,
u1, . . . , um, then S ⊗RM is finitely generated by the elements 1⊗ u1, . . . , 1⊗ um.
The same remark applies to arbitrary sets of generators of M .

We can think essentially the same way even when I and J are infinite: we
still have a matrix in the form of an R-valued function on I × J (subject to the
additional condition that for every j ∈ J it is nonzero for only finitely many i ∈ I),
and the new matrix for the map S⊕J → S⊕I in the presentation sequence S⊕J →
S⊕I � S⊗RM → 0 is obtained by applying f to each entry of the original matrix.

We next note that the module S⊗RM has a certain universal mapping property,
and can be thought of as representing a functor:

Theorem 6.7. If S is an R-algebra, M is an R-module, and N is an S-
module, there is a canonical isomorphism θN : HomR(M, N) ∼= HomS(S⊗RM, N).
This isomorphism takes f : M → N to the map S ⊗M → N induced by the R-
bilinear map S ×M → N that sends (s,m) to sf(m) for all s ∈ S and m ∈ M .
The inverse σN of θN is obtained by composing g : S ⊗R M → N with the map
M → S ⊗RM described earlier (which maps m ∈M to 1⊗m). The isomorphisms
θN together give an isomorphism between the covariant functors HomR(M, ) and
HomS(S⊗RM, ) viewed as functors to sets (or as functors to S-modules). Thus,
S ⊗RM represents HomR(M, ) in the category of S-modules.

Proof. There are only a few things to check. One is that the maps θN and
σN are inverses. Given f : M → N , θN (f) maps s⊗ u to sf(u), and so composing
with M → S ⊗M gives a map that takes u to 1 · f(u) = f(u), as required. On
the other hand, given a map g : S ⊗M → N that is S-linear, it suffices to see
that when we apply θN ◦ σN we get a map that agrees with g on elements of the
form s ⊗ g. The effect of applying σN is to give a map M → N that sends u to
g(1⊗u), and then the further effect of applying θN gives a map that sends s⊗u to
sg(1⊗ u) = g(s⊗ u), as required. All other checks needed are at least as easy. �

We shall next use base change to develop a theory of localization of modules,
although it will prove useful to have an alternative characterization of localization
of a module.
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3. Lecture of October 26

We give one construction for localization of R-modules with respect to a mul-
tiplicative system, and then show that it is really an instance of base change.

Suppose that S = W−1R, where W is a multiplicative system in R. Given
an R-module M we can construct an S-module W−1M as follows. Define an
equivalence relation on M ×W via (u,w) ∼ (u′, w′) iff there exists w′′ ∈ W such
that w′′(w′u − wu′) = 0. The equivalence classes form an abelian group with
the addition [(u,w)] + [(u′, w′)] = [(w′u + wu′, ww′)], and an S-module via the
multiplication (r/w)[(u,w′)] = [(ru,ww′)]. These operations are easily checked to
be independent of the choices of equivalence class representatives. The class [(u, w)]
is often denoted u/w. W−1M also remains an R-module, by restriction of scalars.
In fact, r(u/w) = (ru)/w. There is a map M → W−1M that is R-linear, sending
u to [(u, 1)]. The kernel of this map is {u ∈M : for some w ∈W,wu = 0}. This is
easily checked because, by the definition of the equivalence relation, [(u, 1)] ∼ [(0, 1)]
if and only if for some w ∈W , w(1 · u− 1 · 0) = 0, i.e., wu = 0.

This localization operation can also be defined on maps: given an R-linear map
M → N there is a unique S-linear map W−1f : W−1M → W−1N such that the
diagram

W−1M
W−1f−−−−→ W−1Nx x

M
f−−−−→ N

commutes. This map is defined to take [(u,w)] to [f(u)/w], i.e., to take u/w to
f(u)/w. It is easily checked that the equivalence class of the value is independent
of the choice of representative of the equivalence class [(u,w)], and that the map is
S-linear. It is clear that it does make the diagram commute. Uniqueness follows,
because the value of the map on w(u/w) = u/1 must be f(u) for the diagram to
commute, and if we multiply by 1/w we see that the map must take u/w to f(u)/w.

The map M → W−1M induces a unique map S ⊗R M → W−1M such that
(r/w) ⊗ u maps to ru/w for all r ∈ R, w ∈ W , and u ∈ M . This map is clearly
surjective, and is an isomorphism: to give a map in the other direction, simply
send [(u,w)] to (1/w)⊗ u, which is easily checked to be independent of the choice
of representatives and to be a ring homomorphism. All of the elements s ⊗ u for
s = r/w ∈ S can be rewritten as (1/w) ⊗ ru. Therefore to see that the two maps
are mutually inverse it suffices to note that they interchange (1/w) ⊗ u and u/w
for all w ∈W and u ∈M .

The identification reconfirms that localization at W gives a covariant functor
from R-modules to S-modules: we have already described it directly.

A module M over R is called flat if M⊗R is an exact functor, i.e., if whenever
N ⊆ Q are R-modules the map M ⊗ N → M ⊗ Q is injective. Then all exact
sequences are preserved. An R-algebra S is called flat if it is flat as an R-module.
If S is flat over R, base change from R-modules to S-modules is an exact covariant
functor.

Theorem 6.8. If R is a ring and W a multiplicative system, W−1R is R-flat.
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Proof. This comes down to the assertion that if N ⊆ M then the induced
map W−1N →W−1M is injective. But n/w maps to 0 if and only if n/w thought
of in W−1M is 0, and the definition of the equivalence relation tells us that n/w is
0 if and only if w′n = 0 for some w′ ∈ W . But this condition implies that n/w is
already 0 in W−1N . �

It is a straightforward exercise to show that a direct sum of modules is flat if
and only if all the summands are flat. R itself is obviously flat, since R ⊗R is
isomorphic to the identity functor, and it follows that free modules are flat. Thus,
when R is a field, every R-module is flat.

Direct summands of free modules are called projective modules. They need not
be free, but they are flat.

We recall some facts about splitting. Suppose that we have an R-linear surjec-
tion f : M � P with kernel Q. If there is an R-linear map g : P → M such that
f ◦g is the identity map on P , then it is clear that g is injective, with image P ′ ⊆M
that is isomorphic to P . Moreover, M is the internal direct sum of P and Q. Give
u ∈M , p′ = g(f(u)) ∈ P ′, and f(u− p′) = f(u)− (f ◦ g)

(
f(u)

)
= f(u)− f(u) = 0,

so that u − p′ ∈ Q. Thus, M = P ′ + Q. If u ∈ P ′ ∩ Q then f(u) = 0, since
u ∈ Q. But u = g(p) for some p ∈ P , and so 0 = f(u) = (fg)(p) = p, and then
u = g(p) = g(0) = 0. Thus, M = P ′ ⊕R Q internally, and M ∼= P ⊕R Q. With this
in mind, we give some examples of projective modules that are not free.

Examples. An element e of a ring R is called idempotent if e2 = e (equivalently,
e(1−e) = 0. A straightforward induction shows that en = e for every integer n ≥ 1.
If R has a non-trivial idempotent e, then R is the direct sum of eR and (1−e)R as R-
modules. These are projective R-modules that are not free (each is the annihilator
of the other, while a nonzero free module has annihilator (0) ). Here is a much more

intriguing example. Let T = R[X, Y, Z]/(X2 + Y 2 + Z2 − 1) = R[x, y, z]. The
elements of this ring are represented by polynomials and these may be restricted,
as R-valued functions, to the unit 2-sphere centered at the origin in R3, and so give
continuous functions on the 2-sphere S2. Different representatives of the same class
give the same function, since they differ by a multiple of X2 + Y 2 + Z2 − 1, which
vanishes on S2. Consider the T -linear map f : T 3 → T with matrix (x y z). We
have a map g : T → T 3 given by the 3×1 column matrix u with entries x, y, z. The
composition f ◦g is given by the 1×1 matrix whose single entry is x2 +y2 +z2 = 1,
and so f ◦ g is the identity on T . The image of g is the free module Tu with the
generator u. By the discussion just preceding these examples, T 3 = Tu⊕T Q where
Q is the kernel of the map. Thus, Q is a projective module.

If we make a base change by tensoring over T with the fraction field K of T ,
we see that K3 ∼= K ⊕K (K ⊗T Q). It follows that if Q is free over T , it must be
free on two generators. But Q is not ∼= T 2. To see this, suppose Q has a free
basis consisting of column vectors v and w. Then u, v and w give the columns of
a 3 × 3 matrix A. Since u, v, and w span T 3, there cannot be any linear relation
on them, for then they will span K3 over K, and so they are a vector space basis
for K3 over K and have no linear relation even over K. Thus, they give a new free
basis for T 3. It follows that the map given by the matrix A is an automorphism of
T 3, and its inverse will be given by a matrix B such that AB = BA = I, the 3× 3
identity matrix over T . We then have that det(A) det(B) = 1, and so det(A) is a
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unit α of T , and we can multiply the second (or third) column of A by α−1. We
therefore see that u is part of free basis for T 3 if and only if it is the first column of
a 3 × 3 matrix over T with determinant one (we only proved one direction, which
is the direction that we are using, but the other direction is quite straightforward).
However, it is impossible to give such a matrix even if the entries are allowed to be
arbitrary continuous functions on the 2-sphere!

Suppose that the second column of the matrix A is (f, g, h)tr , where we are
using the superscript tr to indicate the transpose of a matrix. We may think of
both the first and second columns as continuous vector-valued functions on S2: the
value of the first column is a unit vector that is the position vector of the point
of S2 that we are considering. At each point (a, b, c) of S2 the vectors which are
the values of the first and second columns are linearly independent, because the
determinant of the matrix A, when evaluated at (a, b, c), is constantly 1. We can
subtract off the component of the second column in the direction of the unit vector
(a, b, c): we obtain a continuous non-vanishing vector-valued function that gives
a non-vanishing vector field of tangent vectors to the 2-sphere, a contradiction.
More explicitly, consider V = (f, g, h)tr − (xf + yg + zh)(x, y, z)tr . This is a
continuous vector-valued function on S2. It does not vanish on S2, because at each
point the values of (f, g, h)tr and (x, y, z)tr are linearly independent. At every
point (a, b, c) ∈ S2, the value of V is orthogonal to the unit vector (a, b, c): the dot
product vanishes. Thus, as already asserted, we have constructed a non-vanishing
vector-valued function whose value at every point of S2 is a tangent vector of S2.
This completes the proof that Q is not free! �

We next note the following exactness properties of Hom:

Proposition 6.9. Let 0 → M ′
α−→ M

β−→ M ′′ be an exact sequence of R-
modules, and let N be any R-module. Then

0→ HomR(N, M ′)→ HomR(N,M)→ HomR(N, M ′′)

is exact, and so Hom(N, ) is a left exact covariant functor from R-modules to R-

modules. What is more, if M ′
α−→M

β−→M ′′ → 0 is an exact sequence of R-modules,

then
0→ HomR(M ′′, N)→ HomR(M, N)→ Hom(M ′, N)

is exact. Thus, HomR( , N) is a contravariant left exact functor from R-modules
to R-modules.

Proof. For the statement in the first paragraph, note that α obviously induces
an injection, and a map from N to M is killed if and only if all its values are, which
means that it is taking values in the image of M ′. For the statement in the second

paragraph, note that the map induced by β is obviously injective: if f(u′′) 6= 0,
there exists u ∈ M such that β(u) = u′′, and then (f ◦ β)(u) 6= 0. A map from M
to N is killed if and only if its restriction to M ′ is the zero map, i.e., if and only if
it induces a map from M ′′ to N , and it will be the image of this map. �

Note that 0→ 2Z ⊆ Z � Z/2Z→ 0 is exact, but that if we apply HomZ(Z/2Z, )
the map HomZ(Z/2Z, Z) = 0 to HomZ(Z/2Z, Z/2Z) ∼= Z/2Z is not onto, while if
we apply HomZ( , Z) the map HomZ(Z, Z)→ HomZ(2Z, Z) is not onto: the map
2Z→ Z that sends 2 7→ 1 does not extend to Z.
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4. Lecture of October 28

It is worth noting that HomR(R, M) ∼= M for all R-modules M : to give an
R-linear map R → M is the same as to specify its value on the generator 1 of R
as an R-module, and so we have a map HomR(R, M) → M sending f 7→ f(1)
and a map M → HomR(R, M) sending u ∈ M to the map whose value on r is ru
for all r ∈ R. These mutually inverse isomorphisms establish an isomorphism of
HomR(R, ) with the identity functor on R-modules. Also note that we have a
similar isomorphism HomR(R/I, M) ∼= AnnMI, the set of all elements of M that
are killed by I. We use a bar to indicate classes mod I. Giving a map from R/I
is the same as specifying its value on 1, but the fact that r(1) = r = 0 for r ∈ I
implies that rf(1) = f(r) = f(0) = 0 implies that only elements of AnnMI are
available as values for f(1).

We note the following alternative characterization of projective modules: an
R-module P is projective if and only if (∗) HomR(P, ) is an exact functor, which
means that for every surjective map M � M ′′, HomR(P, M) → HomR(P, M ′′)
is surjective. If P = R one gets the identity functor, so that R has property (∗),
and a direct sum of modules has property (∗) if and only if they all do, so that
free modules have it and direct summands of free modules also have it. But if P
has property (∗) we can map a free module F onto it, say f : F � P , and then
HomR(P, F ) → HomR(P, P ) is onto, and so there is a map g : P → F whose
composition with surjection f : F � P is the identity on P . This implies that P is
isomorphic with a direct summand of F : F is the internal direct sum of the kernel
Q of f and g(P ), which is isomorphic with P .

We next want to construct coproducts in the category of A-algebras for any
arbitrary commutative ring A: the category of all commutative rings is included,
since this is identical with the category of Z-algebras.

If R and S are A-algebras then there is an A-bilinear map

µ : (R⊗A S)× (R⊗A S)→ R⊗A S

such that
(
r ⊗ s, r′ ⊗ s′) 7→ (rr′) ⊗ (ss′). To give this map is the same as giving

a linear map (R ⊗A S) ⊗A (R ⊗A S) → R ⊗A S. But this in turn is the same as
giving a 4-linear map of A-modules R × S × R × S → R ⊗A S and we can simply
send (r, s, r′, s′) to (rr′)⊗ (ss′). This gives a multiplication on R⊗A S that makes
it into an A-algebra. The distributive law follows from the bilinearity of µ. There
are a number of things to check, for example, that the multiplication one gets is
commutative and associative and that 1⊗ 1 is an identity. It suffices to check this
on the A-generators, e.g., for associativity that(

(r ⊗ s)(r′ ⊗ s′)
)
(r′′ ⊗ s′′) = (r ⊗ s)

(
(r′ ⊗ s′)(r′′ ⊗ s′′)

)
.

This comes down to(
(rr′)r′′

)
⊗
(
(ss′)s′′

)
=
(
r(r′r′′)

)
⊗
(
s(s′s′′)

)
,

which is immediate from the associativity of the respective multiplications in R
and S. The other checks are equally easy. Notice that ι1 : R → R ⊗A S sending
r → r⊗ 1 is an A-algebra homomorphism, and ι2S → R⊗A S sending s to 1⊗ s is
as well.
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Theorem 6.10. R⊗A S together with the maps ι1 : R→ R⊗A S and ι2 : S →
R⊗AS is a coproduct for R and S in the category of A-algebras: for every A-algebra
T there is a bijection HomA-alg(R ⊗A S, T ) ∼= HomA-alg(R, T ) × HomA-alg(S, T )

that sends f to (f ◦ ι1, f ◦ ι2).

Proof. Because R ⊗A S is generated by the images of R and S over A (note
that r ⊗ s = (r ⊗ 1)(1 ⊗ s) ), it is obvious that any A-algebra homomorphism
f : R⊗AS → T is determined by f◦ι1 and f◦ι2. Therefore, the specified map is one-
to-one. To show that it is onto we need to show that given g : R→ T and h : S → T
as A-algebras we can construct an A-algebra homomorphism f : R ⊗A S → T
such that f(r ⊗ 1) = g(r) and f(1 ⊗ s) = h(s) for all r ∈ R and s ∈ S, and
for this it suffices to construct f such that f(r ⊗ s) = f(r)g(s) for all r ∈ R
and s ∈ S. That there is such a map of R ⊗A S → T simply as a map of A-
modules follows from the A-bilinearity of the map R × S → T that sends (r, s)
to g(r)h(s). To check that the induced A-linear map from R ⊗A S → T is a ring
homomorphism, we only need to check that it preserves multiplication. Since the
elements r ⊗ s span over A, by virtue of the distributive law it suffices to check
that f

(
(r ⊗ s)(r′ ⊗ s′)

)
= f(r ⊗ s)g(r′ ⊗ s′). The left side is f

(
(rr′) ⊗ (ss′)

)
=

g(rr′)h(ss′) = g(r)g(r′)h(s)h(s′) =
(
g(r)h(s)

)(
g(r′)h(s′)

)
= f(r ⊗ s)f(r′ ⊗ s′), as

required. �

Consider the coproduct of two polynomial rings R = A[xi : i ∈ I] and B =
A[yj : j ∈ J ] overA, where I and J are (possibly infinite) index sets. The monomials
in the xi are a free basis for R over A, and the monomials in the yj are a free basis
for S over A. Thus, the set of elementsM⊗M′ whereM is a monomial in the xi
and M′ is a monomial in the yj is a free basis for R ⊗A S over A, and monomials
are multiplied by the rule (M1⊗M′1)(M2⊗M′2) = (M1M2⊗M′1M′2). It follows
that the ring R ⊗A S is a polynomial in ring in variables indexed by the disjoint
union of I and J .

This may seem odd at first when the sets of variables overlap or are even equal:
however, because the variables cannot pass through the tensor symbol, in the tensor
product they have become disjoint sets of variables.

Thus, A[x]⊗A A[x] is a polynomial ring in two variables over A: the elements
x ⊗ 1 and 1 ⊗ x have no algebraic relation over A in the tensor product, because
x does not pass through the tensor symbol. This can be a bit confusing. Note,
however, that if we tensor over A[x], we have instead that A[x]⊗A[x] A[x] ∼= A[x].

One can give an alternative description of the coproduct of R and S over
A. Map a polynomial ring A[xσ : σ ∈ Σ] onto R (one can even introduce one
indeterminate for every element of R, and map that indeterminate to the specified
element of R), and call the kernel I. Map a polynomial ring A[yτ : τ ∈ T ] onto S,
and call the kernel J . Assume for simplicity that the indeterminates are all mutually
distinct, and that the union of the two sets of indeterminates is an algebraically
independent set. If we form the polynomial ring in the union of the two sets
of indeterminates, then a coproduct may be constructed as the quotient of the
polynomial ring in all the variables mod the sum of the expansions of I and J .

The map M ⊗RN �M ⊗SN , defined whenever S is an R-algebra and M and
N are S-modules, is not, in general, an isomorphism. One has such a map because
the usual map M × N → M ⊗S N is R-bilinear – this follows from the fact that
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it is S-bilinear. The map is surjective because M ⊗S N is spanned as an abelian
group by the elements m ⊗ n, and these elements are all in the image. From our
construction of tensor products, it is easy to see that the kernel is spanned by all
elements of M ⊗R N of the form sm⊗ n−m⊗ sn. It is easy to check that the set
of elements s ∈ S such that sm ⊗ n = m ⊗ sn in M ⊗R N is a subring of S that
contains the image of R, i.e., it is an R-subalgebra of S. It follows that if one has
a set of algebra generators si for S over R, the kernel of M ⊗ RN � M ⊗S N is
spanned by all elements of the form sim⊗ n−m⊗ sin.

Example. For any choice of the ring A, A[x] ⊗A A[x] � A[x] ⊗A[x] A[x] ∼= A[x]
is a surjection of a polynomial ring in two variables, x ⊗ 1 and 1 ⊗ x, onto the
polynomial ring in one variable.

There are two important cases where the two tensor products are the same: one
is when S = R/I is a homomorphic image of R, and the other is when S = W−1R
is a localization of R. In the first case, the point is that any scalar in R/I is
the image of a scalar in r which can be passed through the tensor symbol: if
r ∈ R maps to r in R/I, we have that ru ⊗ v = ru ⊗ v = u ⊗ rv = u ⊗ rv.
In the case where S = W−1R, the scalars have the form r/w with r ∈ R and
w ∈ W . Because N is an S-module we can write v = w(1/w)v, and in M ⊗R N ,
(r/w)u⊗v = (r/w)u⊗w(1/w)v = w(r/w)u⊗(1/w)v (since we may pass w through
the tensor symbol) = ru⊗ (1/w)v = u⊗ (r/w)v, as required, because we can pass
r through the tensor symbol.

Note that base change from R to R/I sends M to (R/I) ⊗R M ∼= M/IM ,
which is, of course, an (R/I)-module. This is particularly useful when m is a
maximal ideal of R, for then M/mM is a vector space over the field K = R/m.
If M and N are R-modules and m is a maximal ideal of R, we have surjections
f : M � M/mM and N � N/mN , and, hence a surjection f ⊗ g : M ⊗R N �
(M/mM)⊗R (N/mN) ∼= (M/mM)⊗K (N/mN), which is the tensor product of two
vector spaces over a field, and is more readily understood than a tensor product
over a base ring that is not a field: in particular, we can get a K-basis for this
last tensor product by tensoring together pairs from a K-basis for M/mM and a
K-basis for N/mN , and this makes it easy to understand whether an element of
the tensor product either is or is not zero.

In particular, if R = K[x, y] and m = (x, y) thought of as an R-module, it
is clear that no nonzero K-linear combination of x and y is in m2, from which it
follows that the images of x and y are a K-basis for m/m2, which yields information
about when elements of (m/m2)⊗K (m/m2) are zero.

In trying to understand the tensor product of two finitely presented modules
over R, one can use the fact that

M/N ⊗RM ′/N ′ ∼= (M ⊗RM ′)/
(
Im (N ⊗RM ′) + Im (M ⊗R N ′)

)
to give a finite presentation of the tensor product. Suppose that M is free on
a free basis {vi}i, that M ′ is free on a free basis {wj}j , that N is the span of
vectors {yh}h and that N ′ is the span of vectors {zk}k. Then the tensor product
(M/N)⊗R (M ′/N ′) is the quotient of the free R-module with free basis {vi⊗wj}i,j
by the R-span of all the vectors yh ⊗ wj together with all the vectors vi ⊗ zk.
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4.1. Coproducts and epimorphisms. One can generalize certain facts about
the behavior of tensor product for localization and quotients to all epimorphisms
of rings. In fact:

Theorem 6.11. Let h : R → S be a homomorphism of rings and define the
homomorphism µ : S ⊗R S → S be the map induced by the bilinear map S × S →
S that sends (s, s′) 7→ ss′. Then h is an epimorphism if and only if µ is an
isomorphism. Moreover, if h is an epimorphism then for any two S-modules M,N ,
the map M ⊗R N →M ⊗S N is an isomorphism.

Proof. Note that µ is an isomorphism implies that s ⊗ 1 and 1 ⊗ s, both of
which map to s, are equal, and it is easy to check that this condition is sufficient
as well. In general, we have two homomorphisms S → S ⊗R S: ι1 : s 7→ s⊗ 1 and
ι2 : s 7→ 1⊗ s. Thus, µ is an isomorphism if and only if ι1 = ι2.

Now, ι1 ◦ h = ι2 ◦ h so that if h is an epimorphism we must have ι1 = ι2.
On the other if µ is an isomorphism and f, g are homomorphisms S → T such
that f ◦ h = g ◦ h, consider f ⊗ g : S⊗R → T via s ⊗ s′ = f(s)g(s′). Then
f(s) = (f ⊗ g)(s⊗ 1) = (f ⊗ g)(1⊗ s) = g(s) for all s ∈ S, and so f = g.

For the final statement, by the associativity of tensor products,

M⊗RN ∼= (M⊗SS)⊗R(S⊗SN) ∼= M⊗S
(
S⊗R(S⊗SN)

) ∼= M⊗S
(
(S⊗RS)⊗SN

)
.

Since h is an epimorphism, S⊗RS ∼= S, and this becomes M⊗S (S⊗SN) ∼= M⊗SN ,
as required. �

4.2. Flatness and finite intersection. We next want to consider what hap-
pens to intersections of submodules when we tensor with a flat R-module F . Let N1

and N2 be any two R-submodules of M . Then F⊗RN1, F⊗RN2 and F⊗R(N1∩N2)
all inject canonically into F⊗RM . We identify each of these modules with its image
in F ⊗RM . We claim that F ⊗R (N1 ∩N2) = (F ⊗N1) ∩ (F ⊗N2). A priori, we
only have an inclusion. Consider the exact sequence of modules

0→ N1 ∩N2
α−−−−→ N1 ⊕N2

β−−−−→ M

where α(u) = u ⊕ u and β(u1 ⊕ u2) = u1 − u2. It is quite easy to see that this
sequence is exact. The key point here is that when we apply F⊗R , this exactness
is preserved, so that we get an exact sequence:

0→ F ⊗R (N1 ∩N2)
1F⊗α−−−−→ F ⊗R N1 ⊕ F ⊗R N2

1F⊗β−−−−→ F ⊗M
and the map 1F ⊗ β sends v1⊕ v2 to v1− v2. It follows that the kernel of 1F ⊗ β is
the image of (F ⊗N1) ∩ (F ⊗N2) under 1F ⊗ α, but because F is R-flat, we also
that the kernel is the image of F ⊗R (N1 ∩N2) under 1F ⊗ α. �

Of course, this result extends by a straightforward induction to intersections
involving finitely many submodules Ni of M , and it applies to flat base change
when F = S is a flat R-algebra. An important special case is when S = W−1R,
and we see that localization commutes with finite intersection of submodules.



CHAPTER 7

Properties of flatness, uses of localization, the
functor Hom, and projective modules

1. Lecture of October 30

Note that if I ⊆ R and S is an R-flat algebra then I⊗RS injects into R⊗RS ∼= S
with image IS: that means that I ⊗R S may be identified with IS.

Recall that if I and J are ideals of R then I :R J = {r ∈ R : rJ ⊆ I}. If J is
finitely generated, this colon operation commutes with flat base change:

Proposition 7.1. If S is a flat R-algebra, and I, J are ideals of R with J
finitely generated, then (I :R J)S = IS :S JS. In particular, this holds when S is a
localization of R.

Proof. If J = fR is principal, we have an exact sequence

0→ (I :R fR)/I → R/I
f−−−−→ R/I → 0.

When we tensor with S and make obvious identifications, we get an an exact se-
quence

0→
(
(I :R fR)S

)
/IS → S/IS

f−−−−→ S/IS → 0.

But the kernel of multiplication by f on S/IS (this is the same as multiplication
by the image of f in S) is (IS :S fS)/IS, from which we can conclude that IS :S
fS = (I :R fR)S. In the general case, where J = (f1, . . . , fh)R, we use the obvious
fact that I :R J =

⋂
t(I :R ftR), and the fact that flat base change commutes with

finite intersection. But we then have

(I :R J)S = (I :R J)⊗R S = (

h⋂
t=1

I :R ftR)⊗R S =

h⋂
t=1

(
(I :R ftR)S

)
and by the case where J = fR, which we have already done, this becomes

h⋂
t=1

(IS :S ftS) = IS :S JS,

as required. �

Example. This fails even for localization when J is not finitely generated. Let

S = K[y, x1, x2, x3, . . .]

be the polynomial ring in countably many variables over the field K. Let W be the
multiplicative system of all powers of y. Let I be the ideal (xty

t : t = 1, 2, 3, . . .)S,
and let J = (xt : t = 1, 2, 3, . . .). Then before localization at W , I :R J is an ideal
not containing any power of y, since yt fails to multiply xt+1 into I. Thus, with

109
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S = W−1R = Ry, we have that (I :R J)S is a proper ideal. But IS = JS, and so
IS :S JS = S.

There are many simple examples where localization fails to commute with in-
finite intersection, even when the ring is Noetherian. E.g., If R = Z or R = K[x]
where K is a field, and I is generated by a prime element, then the intersection of
the ideals In is (0). But if we localize at a generator of I, then all the ideals In

expand to the unit ideal, and their intersection is the unit ideal.

Theorem 7.2. Let R be a ring, M , M ′ be R-modules, let f : M → M ′ be R-
linear, let u ∈ M , and let N and various Ni be submodules of M . The statements
below hold when the phrase “for all P” is interpreted either to mean “for all prime
ideals P of R” or “for all maximal ideals P of R.”

(a) Let f : M →M ′ be R-linear. Then for all P , the formation of the kernel, cok-
ernel and image of f commute with localization. E.g.,

(
Ker (f)

)
P
∼= Ker (fP ),

where fP : MP →M ′P is the map induced by f .
(b) u/1 ∈MP is nonzero if and only if P ⊇ I = AnnRu. The element u = 0 in M

if and only if u/1 ∈MP is 0 for all P .
(c) M = 0 iff MP = 0 for all P .
(d) f : M → M ′ is injective (respectively, surjective, respectively bijective) if and

only if fP is for all P .
(e) u ∈M is in N if and only if u/1 ∈MP is in NP for all P .
(f) N1 ⊆ N2 (respectively, N1 = N2) if and only if (N1)P ⊆ (N2)P for all P .
(g) 0→M ′ →M →M ′′ → 0 is exact if and only if 0→M ′P →MP →M ′′P → 0 is

exact for all P , and M ′ →M →M ′′ is exact if and only if M ′P →MP →M ′′P
is exact for all P .

Proof. (a) follows from the exactness of localization at P , and is also valid
for localization at an arbitrary multiplicative system and, in fact, for arbitrary flat
base change. To prove (b), note that the surjection R → Ru sending r to ru has

kernel I, so that Ru ∼= R/I. Now (R/I)P 6= 0 iff I is disjoint from the multiplicative
system R − P , which is equivalent to P ⊇ I. The last statement follows because
if u 6= 0 then I is proper and we can choose P maximal containing I. Part (c) is
immediate: if u 6= 0 in M , then Ru ↪→ M , and this is preserved when we localize
at P containing I = AnnRu. (d) follows from parts (a) and (c): f is injective iff

Ker f = 0 iff
(
Ker (f)

)
P

= 0 for all P iff Ker (fP ) = 0 for all P iff fP is injective
for all P . The argument for surjective is the same with the cokernel replacing the
kernel. A map is bijective if and only if it is both injective and surjective.

(e) follows from (b) applied to the class of u in M/N .

For (f), note that N1 ⊆ N2 iff N1/(N1 ∩ N2) = 0. Now use the fact that
localization commutes with intersection coupled with (c). The second part follows
since N1 = N2 iff N1 ⊆ N2 and N2 ⊆ N1 (an alternative is to use the fact that
N1 = N2 iff the module (N1 +N2)/(N1 ∩N2) = 0.

The first statement in part (g) follows from the second (applied repeatedly),
and the second statement follows from the fact that the calculations of image and
kernel commute with localization, which is part (a), together with the fact that
exactness holds iff the image of M ′ → M is equal to the kernel of M → M ′′,
together with part (f). �
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2. Lecture of November 2

Next note that given an R-algebra S there is an S-linear map

θM : S ⊗R HomR(M, N)→ HomS(S ⊗RM, S ⊗R N)

that sends s⊗ f to s(1S ⊗ f): the map is well-defined because (s, f) 7→ s(1S ⊗ f) is
R-bilinear, and S-linear because the image of s′(s⊗f) = (s′s)⊗f is (s′s)(1S⊗f) =
s′
(
s(1S⊗f)

)
. Moreover, given a map g : M →M ′ there is a commutative diagram:

S ⊗R HomR(M, N)
θM−−−−→ HomS(S ⊗RM, S ⊗R N)

1S⊗g∗
x x(1S⊗g)∗

S ⊗R HomR(M ′, N) −−−−→
θ′M

HomS(S ⊗RM ′, S ⊗R N)

so that the θM taken together give a natural transformation of contravariant func-
tors from S ⊗R HomR( , N) to HomS(S ⊗R , S ⊗R N). The commutativity of
the diagram may be checked on elements of the form s ⊗ f , where f : M → M ′.
Applying the map in the leftmost column first and then the map in the top row, we
get first s⊗(f ◦g) and then s(1S⊗(f ◦g)) = s

(
(1S⊗f)◦(1S⊗g)

)
, while going around

the square the other way one first gets s(1S⊗f) and then
(
s(1S⊗f)

)
◦ (1S⊗g) �

Proposition 7.3 (Hom commutes with flat base change). If S is a flat R-
algebra and M , N are R-modules such that M is finitely presented over R, then the
canonical homomorphism

θM : S ⊗R HomR(M,N)→ HomS(S ⊗RM,S ⊗R N)

sending s⊗ f to s(1S ⊗ f) is an isomorphism.

Proof. It is easy to see that θR is an isomorphism and that θM1⊕M2
may be

identified with θM1 ⊕ θM2 , so that θG is an isomorphism whenever G is a finitely
generated free R-module.

Since M is finitely presented, we have an exact sequence H → G � M → 0
where G, H are finitely generated free R-modules. In the diagram below the right
column is obtained by first applying S⊗R (exactness is preserved since ⊗ is right
exact, and then applying HomS( , S⊗RN), so that the right column is exact. The
left column is obtained by first applying HomR( , N), and then S⊗R (exactness
is preserved because of the hypothesis that S is R-flat). The squares commute
because the θM give a natural transformation.

S ⊗R HomR(H,N)
θH−−−−→ HomS(S ⊗R H,S ⊗R N)x x

S ⊗R HomR(G,N)
θG−−−−→ HomS(S ⊗R G,S ⊗R N)x x

S ⊗R HomR(M,N)
θM−−−−→ HomS(S ⊗RM,S ⊗R N)x x

0 −−−−→ 0
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From the fact, established in the first paragraph, that θG and θH are isomor-
phisms and the exactness of the two columns, it follows that θM is an isomorphism
as well (kernels of isomorphic maps are isomorphic). �

Corollary 7.4. If W is a multiplicative system in R and M is finitely pre-
sented, we have that W−1HomR(M,N) ∼= HomW−1R(W−1M,W−1N). �

The result fails when M is not finitely generated, even if it is free. Let M be
the free Z-module on countably many generators bi, and let N = Z. Giving an
element of HomZ(M, Z) is equivalent to specifying its values on the free generators,
i.e., to giving a sequence of integers ni, where ni is the value of the homomorphism
on bi. Let S = Z[1/p]. Any element of S ⊗Z HomZ(M, Z) then corresponds to
a sequence of elements in S such that the denominators are bounded: in this
module, we can clear denominators. However, HomS(S⊗M, S) is larger: elements
correspond to arbitrary sequences in S. In particular, the homomorphism whose
value on bi/1 is 1/pi for all i is not in the image of S ⊗Z HomZ(M, Z). When M
is finitely generated, even cyclic, the result still fails if M is not finitely presented.
Let R, I, and J be as in the example immediately following the Proposition at the
beginning of this lecture, let M = R/J let N = R/I, let W = {yt : t ∈ N} and
S = W−1R = Ry. Then HomR(M, N) ∼= AnnNJ ∼= (I :R J)/I, while, similarly,
HomS(W−1M, W−1N) ∼= (IS :S JS)/IS. Thus, the issue becomes whether S ⊗R(
(I :R J)/I

) ∼= (IS :S JS)/IS, and since the left hand side is (I :R J)S/IS, the
issue is simply whether (I :R J)S = IS :S JS. We have seen in the earlier Example
following the Proposition about expansions of colon ideals to flat algebras that this
is false.

Finally, the result also fails without flatness. For example, let R = Z and
S = Z/pZ for some prime integer p. Then HomZ(Z/pZ, Z) = 0, and so (Z/pZ)⊗Z
HomZ(Z/pZ, Z) = 0, while HomZ/pZ(Z/pZ, Z/pZ) ∼= Z/pZ 6= 0. We next note:

Proposition 7.5. If Q = M/N is finitely presented over R, then the short

exact sequence of R-modules 0 → N → M
f−→ Q → 0 splits (i.e. there exists

g : Q → M such that g ◦ f = 1Q) if and only if 0 → NP → MP → QP → 0 splits
for all prime (respectively, maximal) ideals P in R.

Proof. The sequence splits if and only if HomR(Q, M) → HomR(Q, Q) is
onto. (If M is N ⊕ Q then HomR(V, M) ∼= HomR(V, N) ⊕ HomR(V, Q) for all
R-modules V , which implies the surjectivity. On the other hand if the map is
surjective then 1Q is the image of some g : Q → M , and this means that f ◦ g =
1Q.) It is clear that if the map splits it continues to do so after localization (or
any base change, whether flat or not). If the map does not split, then the map
HomR(Q,M) → HomR(Q,Q) is not onto, and this will be preserved when we
localize at a suitable P . By the theorem, flat base change commutes with Hom in
this case, and so we have that HomRP

(QP , MP ) → HomRP
(QP , QP ) is not onto

as well. �

We next note that if R → S → T are homomorphisms of rings and M is any
R-module, then there is a bijective S-linear map T ⊗S (S ⊗R M) → T ⊗R M :
the left side may be identified with (T ⊗S S) ⊗R M by the second form of the
associativity of tensor, and T ⊗S S ∼= T . These isomorphisms are easily checked
to be isomorphisms of T -modules, and together these isomorphisms give a natural
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transformation, showing that T ⊗S (S ⊗R ) and T ⊗R are isomorphic functors
from R-modules to T -modules. Put more briefly, an iterated base change can be
done instead with a single base change.

Corollary 7.6. If S is flat over R and T is flat over S, then T is flat over
R.

Proof. Given an injection N ↪→M we have an injection S⊗RN ↪→ S⊗RM ,
since S is R-flat, and then an injection T ⊗S (S ⊗RN) ↪→ T ⊗S (S ⊗RM), since T
is S-flat, and this is the same map as T ⊗R N → T ⊗R N . �

We also note:

Proposition 7.7. If F is flat, free or projective over R, then S ⊗RM has the
corresponding property over S.

Proof. We know this for free modules G, and if G = P ⊕Q, then S ⊗R G =
(S⊗R P )⊕ (S⊗RQ). Now suppose that F is R-flat. The fact that S⊗R F is S-flat
is immediate from the fact that tensoring with this module over S is isomorphic as
functor with tensoring with F over R: the identification (S⊗RF )⊗SM ∼= F ⊗RM
follows from the associativity of tensor if we rearrange the terms: M⊗S (S⊗RF ) ∼=
(M ⊗S S)⊗R F = M ⊗R F . �

Lemma 7.8. If A and B are any two R-modules, W is a multiplicative system
in R, and S = W−1R, then W−1(A⊗R B) ∼= W−1A⊗S W−1B in such a way that
(a⊗ b)/1 maps to (a/1)⊗ (b/1).

Proof. We have already seen that if U , V are S-modules, then U ⊗R V ∼=
U ⊗S V , so that S ⊗R S ∼= S ⊗S S ∼= S. Consequently

W−1(A⊗R B) ∼= S ⊗R (A⊗R B) ∼= (S ⊗R S)⊗R (A⊗R B) ∼=
(S ⊗R A)⊗R (S ⊗R B) ∼= W−1A⊗RW−1B ∼= W−1A⊗S W−1B.

�

Proposition 7.9. F is R-flat if and only if FP is RP -flat for all prime (re-
spectively, maximal ideals) P .

Proof. We have already seen “only if.” Now suppose that MP is RP -flat for
all maximal ideals P . Suppose that N ⊆ M but that F ⊗R N → F ⊗R M has
a nonzero kernel V . We can choose P maximal such that VP is not 0. Then
(F ⊗R N)P → (F ⊗R M)P is not injective. By the preceding Lemma, this may
be identified with FP ⊗RP

NP → FP ⊗RP
MP . Since N → M is injective, so is

NP →MP , and this contradicts the flatness of FP over RP . �

We define the support of the module M to be {P ∈ Spec (R) : MP 6= 0}. We
have seen earlier that every nonzero module has nonempty support. If M is finitely
generated, we can say a lot more.

Proposition 7.10. Let M be a finitely generated R-module with annihilator I
in R. Then the support of M is closed, and is equal to V (I).

Proof. Let u1, . . . , uh generate M , and let It be the annihilator of ut. An
element kills M if and only if it kills all the generators of M , and so I =

⋂
t It.

Since M is the sum of the Rut, and each Rut injects into M , we have that MP 6= 0
if and only if some (Rut)P 6= 0, i.e., if and only if P ⊇ It for some t. This shows
that the support of M is

⋃
t V (It) = V (

⋂
t It) = V (I), as required. �
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2.1. Adjointness of tensor and Hom. The following result, while easy and
quite general, is very useful.

Theorem 7.11 (Adjointness of tensor and Hom). Let R → S be a ring ho-
momorphism. Let A, B be S-modules and let C be an R-module. Note that
HomR(B,C) is a S-module via the action of S on B, and a similar remark ap-
plies to HomR(A ⊗S B,C). Moreover, all S-modules are R-modules by restriction
of scalars. Then:

HomR(A⊗S B,C) ∼= HomS(A,HomR(B,C))

as S-modules.

Proof. We define the mutually inverse isomorphisms η, θ that are needed. If
f : A⊗SB → C, let η(f) be the map a 7→ (b 7→ f(a⊗b)). Say g : A→ HomR(B,C).
Let θ(g) be the map induced by (a, b) 7→

(
g(a)

)
(b). Thus, θ(g)(a⊗ b) =

(
g(a)

)
(b).

Then θη applied to f sends a⊗b to
(
η(f)(a)

)
(b) = f(a⊗b), and so θη is the identity.

Finally, ηθ applied to g sends a to (b 7→
(
θ(g)

)
(a ⊗ b)) =

(
b 7→

(
g(a)

)
(b)
)

= g(a),

so that ηθ is the identity, as required. �

Discussion: product decompositions. We want to examine when a ring R has a
decomposition R ∼= S×T as the product of two rings: we call a decomposition trivial
when S or T is 0 and the other factor is isomorphic to R. Note that S×T has two
idempotents, e = (1, 0) and f = 1−e = (0, 1). In general, if e is idempotent we call
1−e its complementary idempotent. Complementary idempotents are characterized
by the equations e+f = 1 and ef = 0. The latter then implies e(1−e) = 0 or e = e2.
In the product situation note that S ∼= S × {0} with the identity corresponding to
e. Also, R/fR ∼= S and the localization Re ∼= S. Spec (S) ≈ V (f) = D(e) and
Spec (T ) ∼= V (e) = D(f). Note also that Spec (R) is the disjoint union of the sets
V (f) and V (e) (no prime contains both, since e+ f = 1, and every prime contains
one of them, since ef = 0). Thus, Spec (R) is the disjoint union of Spec (S) and
Spec (T ), each of which is both closed and open, i.e., clopen, in Spec (R). Thus,
a non-trivial product decomposition of R gives a disconnection of Spec (R), i.e., a
way of writing it as a the disjoint union of two non-empty closed sets (which are
then automatically open as well, since each is the complement of the other).

Conversely, giving complementary idempotents e, f in R gives an essentially
unique product decomposition that gives rise to them as above: each r ∈ R can
be written as r(e + f) = re + rf , so that R = Re + Rf . The sum is direct, for
if re = r′f we may multiply by e to get re = re2 = r′ef = r′(0) = 0, so that
Re ∩ Rf = (0). Then Re is a ring S with identity e, Rf is a ring T with identity
f , and R ∼= S × T : note that (ae+ bf)(a′e+ b′f) = aea′e+ bfb′f , because the two
terms not shown are multiples of ef and so are 0.

Remarkably, giving a disconnection of Spec (R) as the union of disjoint closed
sets X, Y yields unique nontrivial complementary idempotents e, f such that X =
V (f) and Y = V (e). Thus, the issue of whether R is a non-trivial product of two
rings is topological. Let X = V (J) and Y = V (I). Since X ∩ Y = ∅, I + J = R.
Since X ∪ Y = Spec (R), IJ is contained in every prime and so is contained in
the ideal N = Rad (0) of all nilpotent elements. Choose u ∈ J , v ∈ I such that
u+ v = 1. Then uv is nilpotent, so that u, v have images that are complementary
idempotents in Rred. It is shown below that these lift uniquely to idempotent
elements e, f ∈ R such that e− u, f − v ∈ N . Now, since e ∈ J +N , X ′ = V (e) ⊇
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V (J + N) = V (J) = X, and, similarly, Y ′ = V (f) ⊇ Y . Since X ′ ⊇ X and is
disjoint from Y ′ ⊇ Y , X ′ = X. Similarly Y ′ = Y . This completes the proof once
we have shown that idempotents lift uniquely.

To see this, suppose that u + v = 1 and (uv)n = 0. Then (u + v)2n−1 = 1,
and when we expand the left side using the binomial theorem the first n terms
are divisible by un (and all but the first are divisible by v) and the next (last) n
terms are divisible by vn. Call the sum of the first n terms e and the sum of the
last n terms f . Then e + f = 1 and ef is a multiple of unvn, and so 0. Thus,
e(1 − e) = 0 and e is idempotent. But e has the form u2n−1 + unvr, and, mod
nilpotents, u2n−1 ≡ u and unvr ≡ 0, so that e ≡ u. This shows the existence of e
lifting u. Suppose e′ is another idempotent that such that e − e′ 6= 0 is nilpotent.
Then we can localize at a maximal ideal that contains the annihilator of e − e′,
and obtain an example in a quasilocal ring by localizing at m. But in a quasilocal
ring, e(1 − e) = 0 and either e or 1 − e must be a unit (they cannot both be in
the maximal ideal), so that e must be 0 or 1. Since e′ must also be 0 or 1 and e, e′

must be 0 and 1 in some order. But then e− e′ is not nilpotent. �
We note that if (R-mod) (respectively (R-alg)) denotes the category of R-

modules (respectively, R-algebras) and R-linear (respectively, R-algebra) maps,
then

(
(S × T )-mod

)
is equivalent to the product catgeory (S-mod)×(T -mod) (re-

spectively,
(
(S × T )-alg

)
is equivalent to the product category (S-alg)×(T -alg).

3. Lecture of November 4

We continue our discussion of properties that can be checked locally. If R is
reduced, note that W−1R is reduced: if r/w is nilpotent, then rn/wn = 0 for some
n,i., and then rn/1 = 0 so that w′rn = 0 for some w′ ∈ W , which implies that
(w′r)n = 0. Since R is reduced, this yields that w′r = 0, and so r/1 = 0 and
r/w = 0.

Note also that if R is a domain with fraction field F , and W is a multiplicative
system in R − {0}, then W−1R ∼= R[1/w : w ∈ W ] ⊆ F , and so W−1R ⊆ F is a
domain. The following theorem allows us to check certain properties of R locally.

Proposition 7.12. Let R be a ring. The statements below are valid if “for all
P” is interpreted to mean either “for all prime ideals P of R” or “for all maximal
ideals P of R.”

(a) R is reduced iff RP is reduced for all P .
(b) If R is a domain, then R is normal if and only if RP is normal for all P .
(c) If R is Noetherian, or, more generally, if R has only finitely many minimal

primes, then R is a domain if and only if Spec (R) is connected and RP is a
domain for all P .

Proof. (a) We have already seen that if R is reduced then so are all of its
localizations. But if R is not reduced and r 6= 0 is a nilpotent, we can choose P so
that r/1 ∈ RP is not 0, and it will still be nilpotent.

(b) Let D′ indicate the integral closure of the domain D in its fraction field.
Let F be the fraction field of R, which is also the fraction field of W−1R for any
multiplicative system W ⊆ R − {0}. By problems Proposition 3.6, we know that
the integral closure of W−1R in W−1F = F is W−1R′. In particular, it follows
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that for all P , (RP )′ = (R′)P . But R is normal iff R′ = R iff R′/R = 0 (as an
R-module) iff (R′/R)P = 0 for all P , and (R′/R)P ∼= (R′)P /RP = (RP )′/RP , so
that R′ is normal if and only if (RP )′ = RP for all P , i.e., every RP is normal.

(c) It is clear that if R is a domain then every RP is and Spec (R) is connected:
Spec (R) is not connected iff R is a product in a non-trivial way iff R contains an
idempotent e other than 0, 1, and the equation e(1 − e) = 0 in a domain implies
e = 0 or e = 1. Now suppose that Spec (R) is connected and that RP is a domain
for all P . By part (a), R is reduced. Let P1, . . . , Pk be the minimal primes of
R. The union of the closed sets V (Pt) is Spec (R), since every prime contains a
minimal prime, and they are mutually disjoint, for if Q contains both Pi and Pj
(we may assume that Q is maximal, replacing it by a maximal ideal that contains
it if necessary), we have that RQ has at least two minimal primes, corresponding
to Pi and Pj , contradicting the assumption that RQ is a domain. But then these
sets are all open as well as closed, and since Spec (R) is connected it follows that
there is a unique minimal prime P . But in any commutative ring, the intersection
of the minimal primes is the same as the intersection of all primes: it is the ideal
of all nilpotents. Thus, if there is a unique minimal prime, all of its elements are
0, since R is reduced. But this means that (0) is prime, so that R is a domain. �

The statement that (R,m) is quasilocal means that R has unique maximal
ideal m. The statement that (R,m,K) is quasilocal means that R is quasilocal
with maximal ideal m and residue class field K ∼= R/m. If R is Noetherian and
quasilocal one says that R, or (R, m) or (R, m, K) is local instead. Let M be
an R-module. Then M/mM ∼= (R/m) ⊗R M ∼= K ⊗M is a K-vector space. In
a quasilocal ring, if r ∈ m, then 1 − r /∈ m. which implies that 1 − r is a unit:
otherwise it would generate a proper ideal, which then must be contained in the
unique maximal ideal m.

Theorem 7.13 (Nakayama’s lemma). Let M be a finitely generated module
over the quasilocal ring R = (R, m, K). If M = mM , i.e., if K ⊗R M = 0, then
M = 0.

Proof. We use induction on the number of generators n of M . If M = Ru,
then mM = mu, and so if M = mM we must have u = ru for some r ∈ m. Then
(1 − r)u = 0, and since 1 − r is a unit, we have that u = 0. At the inductive step
suppose that M is generated by u1, . . . , un. Let M1 = M/Run, which is generated
by n − 1 elements. We still have that mM1 = M1, and so, by the induction
hypothesis, M1 = 0, which says that M = Run. But we have already done the case
where n = 1. �

Corollary 7.14 (Nakayama’s lemma, second form). If J is contained in every
maximal ideal of R, M is finitely generated, and M = JM , then M = 0.

Proof. It suffices to show that MP = 0 for all maximal P . But M = JM ⇒
MP = JMP ⇒MP = PMP = (PRP )MP , and so MP = 0. �

We leave it to the reader to see that j is in every ideal maximal ideal of R if and
only if 1 − jr is a unit for every element r of R. The intersection of the maximal
ideals of R is called the Jacobson radical of R.
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Corollary 7.15 (Nakayama’s lemma, third form). Let M be a finitely gener-
ated module over a quasilocal ring (R,m,K). Then u1, . . . , un generate M if and
only if their images in the K-vector space M/mM span M/mM over K. Hence,
from any set of generators of M , one may choose a subset that is a minimal set
of generators, and all such minimal sets of generators have the same cardinality,
which is the K-vector space dimension of M/mM . Any set of elements of M
whose images are linearly independent in M/mM can be extended to a minimal set
of generators of M/mM .

Proof. Let N = Ru1 + · · · + Run. Then M = N iff M/N = 0 iff M/N =
m(M/N) iff M = N + mM iff the image of N in M/mN is all of M/mM iff the
images of the ui span M/mM . A set of elements of M is a minimal set of generators
for M iff its image in M/mM is a K-vector space basis. The remaining statements
in the theorem are a consequence of the fact that every set of vectors that spans a
vector space has a subset that is a basis, and every independent set of vectors can
be enlarged to a basis. �

We want to use Nakayama’s lemma to investigate the support of the tensor
product of two finitely generated modules. The following fact comes up frequently
enough that it is worth isolating:

Lemma 7.16. If M , N are arbitrary R-modules and P is a prime of the ring
R, then there is an isomorphism (M ⊗R N)P ∼= MP ⊗RP

NP .

Proof. We use that the tensor product of two modules over a localization of R
is independent of whether it is taken over R or over the localization. In particular,
(RP ⊗R ⊗RP ) ∼= RP ⊗RP

RP ∼= RP . Thus, (M ⊗R N)P = RP ⊗R (M ⊗R N) ∼=
(RP ⊗R RP )⊗R (M ⊗R N) ∼= (RP ⊗M)⊗R (RP ⊗R N) ∼= MP ⊗R NP ∼= MP ⊗RP

NP . �

Proposition 7.17. Over any ring R, if M and N are finitely generated R-
modules, then the support of M ⊗R N is the intersection of the supports of M and
N .

Proof. First suppose that (R,m,K) is quasilocal and that M , N are nonzero.
We claim that M ⊗R N is nonzero: we have surjection M ⊗R N → (M/mM) ⊗R
(N/mN) ∼= (M/mM) ⊗K (N/mN). By Nakayama’s lemma, M/mM and N/mN
are nonzero K-vector spaces, and so their tensor product over K is nonzero.

In the general case, (M ⊗N)P ∼= MP ⊗RP
NP , and so vanishes if and only if

MP = 0 or NP = 0. �

If a module M if finitely presented there is an exact sequence 0→ N → Rn �
M → 0 with N finitely generated. It turns out that if one chooses a different
surjection of Rn

′
to M , the kernel N ′ will also be finitely generated. The idea is

to compare each of two sets of generators with their union, and then to reduce to
the case where one has two sets of generators, one of which is obtained from the
other by enlarging it with a single redundant element. We leave the details as an
informal exercise.

Note that if (R,m,K) is quasilocal, and M has u1, . . . , un as a minimal set of
generators, we may map Rn �M so that (r1, . . . , rn) 7→ r1u1 + · · ·+ rnun. If one
tensors with K, one gets a surjection Kn → M/mM , and since the images of the
ui are vector space basis for M/mM , this surjection is actually an isomorphism.



118 7. FLATNESS, LOCALIZATION, HOM, AND PROJECTIVE MODULES

If f : A→ B and g : C → D are maps of R-modules then there is a diagram:

A⊗R C
1A⊗g−−−−→ A⊗R D

f⊗1C

y yf⊗1D

B ⊗R C −−−−→
1B⊗g

B ⊗R D

Note that (f⊗1D)◦(1A⊗g) = f⊗g = (1B⊗g)◦(f⊗1C), so the diagram commutes.

We are now ready to prove:

Theorem 7.18. Let M be a finitely presented module over a quasilocal ring
(R,m,K). Then the following conditions are equivalent:

(a) M is free.
(b) M is projective.
(c) M is flat.
(d) The map m⊗M →M that sends r ⊗ u to ru is injective.

Proof. We already know that (a) ⇒ (b) ⇒ (c) ⇒ (d): the last implication
comes from applying ⊗RM to the injection 0→ m ⊆ R. We only need to show
that (d) ⇒ (a).

Choose a minimal set of generators u1, . . . , un for M and map Rn onto M such
that (r1, . . . , rn) is sent to r1u1 + · · ·+ rnun. Let N be the kernel of the surjection
Rn � M , so that we have a short exact sequence 0 → N → Rn → M → 0. We
also have a short exact sequence 0 → m → R → K → 0: think of this as written
vertically with m at the top and K at the bottom. Then we may tensor the two
sequences together to get the following array (all tensor products are taken over
R):

0y
m⊗N −−−−→ m⊗Rn −−−−→ m⊗M −−−−→ 0y y yα

0 −−−−→ N −−−−→ Rn −−−−→ M −−−−→ 0y y y
K ⊗N f−−−−→ K ⊗Rn g−−−−→ K ⊗M −−−−→ 0y y y

0 0 0
The rows are obtained by applying m⊗ , R⊗ , and K ⊗ , respectively to the
short exact sequence 0 → N → Rn → M → 0, and the columns are obtained by
applying ⊗ N , ⊗ Rn, and ⊗M , respectively, to the short exact sequence
0→ m→ R→ K → 0. The exactness of the rows and columns shown follows from
the right exactness of tensor, with two exceptions: the injective arrow on the left
in the middle row comes from the fact that R is free, and the injectivity of α is
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the hypothesis in (d). (We also have an injection at the top of the middle column
because Rn is free, but we don’t need this.)

The four squares in the diagram commute: each has the form described in the
remark just preceding the statement of the theorem.

The minimality of the set of generators u1, . . . , un implies that g is an isomor-
phism of Kn with Kn, and the fact that M is finitely presented implies that N is
finitely generated. To complete the proof it suffices to show that K ⊗ N = 0, for
then, by Nakayama’s lemma, we have that N = 0. But if N = 0 then Rn → M is
an isomorphism. To show that K ⊗ N is 0, it suffices to prove that the map f is
injective.

Suppose that u is an element in the kernel of f . Choose v ∈ N that maps to
u. The image of v in Rn (we still call it v) maps to 0 in K ⊗Rn: we can go around
the square on the lower left the other way, and u is killed by f . It follows that v is
the image of an element w in m⊗Rn. Suppose that w maps to x in m⊗M . Then
α(x) = 0, because we can go around the square on the upper right the other way,
and the image of v in M must be 0 because v ∈ N . But α is injective! Therefore,
x = 0, which shows that w is the image of an element y in m⊗N . Since w maps to
v, y maps to v in N (the map N → Rn is injective), and this implies that v maps
to 0 in K ⊗N . But v maps to u, and so u = 0. We are done: we have shown that
f is injective! �

Note that a finitely generated projective R-module P is automatically finitely
presented: let Q be the kernel of a surjection Rn � P . As we have already seen,
this surjection splits, so that P⊕Q ∼= Rn. But then Q ∼= RN/P is finitely generated
as well.

Also note that if P ⊆ Q are primes then RP ∼= (RQ)P e where P e = PRQ, so
that if MQ is RQ-free for all maximal ideals Q then MP is a priori RP -free for all
prime ideals P as well, since freeness is preserved by arbitrary base change.

We next give a global version of what we just proved for the quasilocal case:

Theorem 7.19. Let M be a finitely presented R-module. The following condi-
tions are equivalent:

(a) M is projective.
(b) M is flat.
(c) M is locally free, i.e., for all maximal ideals (respectively, for all prime ideals)

P of R, MP is RP -free.

Proof. We know (a) ⇒ (b). If M is flat over R, MP is flat over RP , and
so MP is free over RP by the preceding result. It remains to show that (c) ⇒
(a). Map a finitely generated free module Rn onto M . We get an exact sequence
0 → N → Rn → M → 0. If we localize at any prime P , MP is free over RP ,
and then the sequence splits. By the Proposition on p. 4 of the Lecture Notes for
October 30, the sequence splits over R, so that M is projective. �





CHAPTER 8

Primary Decomposition

1. Lecture of November 6

We next want to use localization as a tool to study the structure of the ideals
of a Noetherian ring R. We want to show that every ideal is a finite intersection
of rather special ideals called primary ideals. In the integers, primary ideal the
primary ideals are the same as the ideal (0) and the ideals generated by a power
of a prime element, and this is true more generally in any principal ideal domain.
In the general case the situation is much more complicated. Every ideal is a finite
intersection of primary ideals, and if the intersection is irredundant in a sense that
we shall make precise, then it satisfies certain uniqueness statements. However, for
many ideals the so-called primary decomposition is not unique.

This theory was first developed by the chess champion Emmanuel Lasker for
polynomial rings finitely generated over a field, and then for arbitrary Noetherian
rings by Emmy Noether. The irredundant primary decomposition of an ideal is
also called the Noether-Lasker decomposition.

An ideal I in a ring R is called primary if whenever ab ∈ I then either a ∈ I or
b ∈ Rad (I). If ab ∈ Rad (I), then anbn ∈ I, so that either an ∈ I or bn ∈ Rad (I).
But then either a ∈ Rad (I) or b ∈ Rad (I). Thus, if I is primary, Rad (I) is prime,
say P , and one says that I is primary to P .

It is not true that I must be primary simply because its radical is prime. Let
I = (x2, xy) ⊆ R = K[x, y], a polynomial ring in two variables. Then Rad (I) =
xR, which is prime. However, xy ∈ I, while x is not in I and y is not in Rad (I).
On the other hand, by part (a) of the result that follows, it is true that an ideal is
primary if its radical is a maximal ideal. Moreover, a prime ideal P is primary to
itself.

Proposition 8.1. Let R be a ring and I an ideal of R with radical P .

(a) If P is maximal, then I is primary to P .
(b) I is primary if and only if P is prime and I is contracted with respect to R−P .

Thus, the ideals primary to P are in bijective correspondence with the ideals
primary to the maximal ideal PRP of RP .

(c) I is primary to P if and only if P/I is prime and the elements of R − P are
not zerodivisors on R/I, that is, if and only if the nilpotent elements in R/I
form a prime ideal (which will necessarily be the unique minimal prime) and
the elements that are not nilpotent in R/I are not zerodivisors.

(d) If J ⊆ I, then I is primary to P if and only if I/J is primary to P/J in R/J .

Proof. (a) Suppose ab ∈ I and b has no power in I. Then b /∈ Rad I, which
is maximal. It follows that Rad (I) + Rb = R, so that V

(
Rad (I) + Rb

)
= ∅, and

121
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this is the same as V (I + Rb), so that I + Rb = R, say i + rb = 1 with i ∈ I
and r ∈ R. Then a = a(i + rb) = ai + rab ∈ I, as required, since i, ab ∈ I.
(b) We already know that if I is primary then P = Rad (I) is prime, so we may

assume this. The definition of primary ideal then says precisely that if ab ∈ I and
b ∈ R − P , then a ∈ I, which is the definition of being contracted with respect to
R− P . The second statement then follows from the general fact that ideals of RP
are in bijective correspondence with ideals of R contracted with respect to R− P ,
restricted to the case where the radical of the ideal is P . The statement in (c)

is equivalent to the statement in (b), since P/I is prime iff P is prime, and since
the image of b ∈ R − P in R/I is a not a zerodivisor if and only if for all a ∈ R,
ab ∈ I implies a ∈ I. (d) Part (c) characterizes when I is primary in terms of the

quotient ring R/I: the nilpotent elements from a unique minimal prime, and the
elements that are not nilpotent are not zerodivisors. Part (d) follows that once,
since (R/J)/(I/J) ∼= R/I. �

Proposition 8.2. Let R be a ring and P a prime ideal of R.

(a) The intersection of finitely many P -primary ideals is P -primary.
(b) If R→ S is a ring homomorphism, and J is an ideal of S primary to a prime

ideal Q lying over P in R, then the contraction I of J to R is primary to P .

Proof. (a) Suppose that I1 and I2 are primary to P . Since every element of
P has a power in I1 and a power in I2, the higher of these two powers will be in
I1 ∩ I2, and so Rad (I1 ∩ I2) = P . Suppose that ab ∈ I1 ∩ I2 and a /∈ I1 ∩ I2. But
if a /∈ It for t = 1 or t = 2 then b ∈ P = Rad (I1 ∩ I2). The general case follows by
an obvious induction on the number of ideals.

(b) We have an injection of R/I ↪→ S/J , since I is the contraction of J to
R. The elements of P/I map into Q/J , and are nilpotent in S/J . Therefore, they
are nilpotent in R/I. The elements of R/I − P/I map into S/J − Q/J , and are
therefore not zerodivisors in S/J . It follows that they are not zerodivisors in the
subring R/I. The result follows from part (c) of the preceding prop. �

A primary decomposition of an ideal I is a representation of I as a finite inter-
section of of primary ideals. Given such a decomposition, if several of the ideals have
the same radical, we may intersect them, and so give a decomposition that involves
intersecting fewer ideals. If some proper subset of the ideals has the same inter-
section, we may work with that proper subset instead of the original set of ideals.
Therefore, if an ideal has a primary decomposition it has a primary decomposition
satisfying:

(1) The radicals of the mutually distinct ideals occurring are mutually distinct
primes.

(2) No term may be omitted without strictly increasing the intersection.

Such a primary decomposition is called irredundant.

We shall prove that every ideal of a Noetherian ring has an irredundant primary
decomposition, and that it has some uniqueness properties: the number of ideals
occurring in such a decomposition and the set of primes occurring are unique.
Some of the primes occurring are minimal in the set of primes occurring. These
turn out to be the same as the minimal primes of the original ideal. The primary
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ideals corresponding to minimal primes of I occurring in an irredundant primary
decomposition are unique. The other primes that occur are called embedded primes.
Note that if Q is an embedded prime and it contains a minimal prime P , then
V (Q) ⊂ V (P ), which may help to explain the terminology.

Before proving this statement we consider an example in which primary de-
composition is not unique. Let I = (x2, xy)R in R = K[x, y], the polynomial ring
in two variables over a field K. It is easy to check that

(x2, xy)R = xR ∩ (x2, y)R

is an irredundant primary decomposition. Note that xR is prime, and the radical
(x, y)R of (x2, y)R is maximal. Observe also that Rad (I) = xR is the unique
minimal prime of I, and that (x, y)R, which contains xR, is an embedded prime.

For any scalar c ∈ K, the elements x, cx+ y also generate the polynomial ring
R and can be used as “new indeterminates,” while

(x2, xy)R =
(
x2, x(cx+ y)

)
R.

Thus, we also have that

(x2, xy)R = xR ∩ (x2, x+ cy)R

for all c ∈ K. If K = C, say, is uncountable, this gives uncountably many distinct
irredundant primary decompositions of (x2, xy)R. (If we had (x2, x + cy)R =
(x2, x+ c′y)R for c 6= c′, then the difference (x+ cy)− (x+ c′y) = (c− c′)y would
be in both ideals, and so y would be in both ideals, and then x = (x + cy) − cy
would be in both ideals as well, a contradiction.)

We now want to start on proving that primary decompositions exist in a Noe-
therian ring. A proper ideal of a ring R is called irreducible if it is not the intersec-
tion of two (equivalently, finitely many) strictly larger ideals. We shall show that
every proper ideal of a Noetherian ring is the intersection of finitely many irre-
ducible ideals, and then we shall show that every irreducible ideal is primary. This
will give a primary decomposition, which, by the comments made above, implies
the existence of an irredundant primary decomposition.

Proposition 8.3. Every proper ideal of a Noetherian ring is the intersection
of a finite family of irreducible ideals (if the ideal is irreducible, the family has just
one element).

Proof. If this is false, the set of ideals that give counterexamples has a max-
imal element I. If I is irreducible, we are done. Thus, we must have I = J ∩ J ′,
where J and J ′ are strictly larger ideals. It follows that J and J ′ are proper (if
J = R, then J ′ = I and vice versa). By the maximality of I among counterexam-
ples, each of J and J ′ is the intersection of a finite family of irreducible ideals. But
then I is the intersection of the ideals in the union of these two finite families, a
contradiction. �
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2. Lecture of November 9

Note that a linear map from a formal power series ring need not commute with
“infinite” addition, which is a formal operation. For example, Q[[x]] is uncount-
able and has an uncountable basis over Q, while Q[x] is countable. Thus, there
are uncountably many Q-linear maps of Q[[x]]/Q[x] to Q: these can be specified
arbitrarily on the uncountable basis. It follows that there are uncountably many
composite maps Q[[x]] � Q[[x]]/Q[x]→ Q that kill 1 and every power of x. There-
fore, giving the values of a Q-linear map Q[[x]] → Q on the powers of x does not
come anywhere near determining the map.

The next result guarantees the existence of irredundant primary decompositions
for every proper ideal in every Noetherian ring.

Theorem 8.4. Let R be a Noetherian ring and I an irreducible ideal of R.
Then I is primary.

Proof. Let ab ∈ I, and suppose, to the contrary, that a /∈ I and b /∈ Rad (I),
so that bn /∈ I for all n. Then the sequence of ideals I :R bn is obviously non-
decreasing. Since R is Noetherian this sequence stabilizes, and so we may choose
n so that R : bn = R : bN for all N ≥ n. In particular, we may choose n so that
R : bn = R : b2n. Since bn /∈ I, we have that I + Rbn is strictly larger than I, and
since ab ∈ I, we have that abn ∈ I, so that I :R bn, which contains a, is strictly
larger than I. To complete the proof, we shall show that

(I +Rbn) ∩ (I :R b
n) = I,

contradicting the irreducibility of I. Suppose that u = i+rbn is in the intersection,
where i ∈ I and r ∈ R. Then it multiplies bn into I, so that ubn = ibn + rb2n ∈ I,
which implies that rb2n ∈ I and so r ∈ I : b2n = I : bn. But then rbn ∈ I, and so
u = i+ rbn ∈ I, as required. �

Putting this together with the results of the previous lecture, we have:

Theorem 8.5 (existence of irredundant primary decompositions in the Noe-
therian case). Every proper ideal I of an arbitrary Noetherian ring has an irredun-
dant primary decomposition. �

The uniqueness statements that one can make about primary decomposition
are independent of the Noetherian hypotheses. We state the uniqueness result,
although we postpone the proof briefly.

Theorem 8.6 ((uniqueness statements for primary decomposition)). If a proper
ideal I ⊆ R has a primary decomposition, it has an irredundant one, say I =
A1 ∩ · · · ∩ An. In this case the prime ideals Pi = Rad (Ai) are distinct, by the
definition of irredundant, and are uniquely determined. In fact, a prime Q occurs
if and only if it has the form Rad (I :R r) for some r ∈ R. The number of terms n
is therefore uniquely determined as well. The minimal elements among P1, . . . , Pn,
when intersected, give an irredundant primary decomposition of Rad (I), and are
the same as the minimal primes of I. The primary ideal A in the decomposition
corresponding to P , where P is one of the minimal primes among {P1, . . . , Pn}, is
the contraction of IRP to R, and so is uniquely determined as well.

Before proving this, we want to establish:
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Lemma 8.7. Let R be a ring.

(a) If I1, . . . , In are ideals of R, then

Rad (I1 ∩ · · · ∩ In) = Rad (I1) ∩ · · ·Rad (In).

(b) If P1, . . . , Pk are finitely many mutually incomparable prime ideals, then the Pi
are the minimal primes of P1 ∩ · · · ∩ Pk.

(c) If A is primary to P , then Rad (A : r) = R if r ∈ A and Rad (A : r) = P if
r /∈ A. Moreover, if r /∈ P , then A : r = A.

Proof. (a) has been discussed before: the harder part is that if an element
has a power in each of the ideals intersected, the highest power used is in all of
them. For (b) we must show that if a prime Q ⊇ P1 ∩ · · · ∩Pk then it must contain
some Pi. If not choose ri ∈ Pi −Q for every i. Then the product of the ri is in all
the Pi but not in Q, a contradiction.

For part (c), the only statement that is not immediate is that if an element r
is not in A then Rad (A : r) = P . Since A ⊆ A : r, we have that P = Rad (A) ⊆
Rad (A : r). Therefore, it suffices to show that if u ∈ R − P and r /∈ A, then
u /∈ Rad (A : r), i.e., ut /∈ A : r, or rut /∈ A. But since u /∈ P , we have ut /∈
P , and so rut ∈ A implies r ∈ A since A is P -primary, which gives the needed
contradiction. �

Proof. Proof of the uniqueness statements for primary decomposition.Since

I = A1 ∩ · · · ∩ An, from part (a) of the Lemma we have that Rad (I) = P1 ∩ · · · ∩
Pn. Suppose that the Pi have been numbered so that P1, . . . , Pk are the minimal
elements of {P1, . . . , Pn}. Then we also have that Rad (I) = P1 ∩ · · · ∩ Pk, and it
follows from the Lemma that P1, . . . , Pk, which are clearly mutually incomparable,
are the minimal primes of Rad (I) and, hence, of I. Now suppose that P = Pi is one
of these minimal primes, and that we localize at P . Note that for any ideal J ⊆ R,
we have JP ⊆ RP and JP may be identified with JRP . Since I = A1∩· · ·∩An and
localization commutes with finite intersection, we have that IP = (A1)P ∩· · · (An)P .
If j 6= i, then Pj = Rad (Aj) is not contained in P = Pi, and so some element of Pj
is in R−P . This element has a power in Aj . Therefore, (Aj)P = RP . We therefore
get that (Ai)P = IP = IRP . Since Ai is P -primary, if we expand to RP and then
contract, we get Ai. Thus, Ai is the contraction of (Ai)P = IRP to R.

Finally, if r is any element of R, then

Rad (I : r) = Rad
(
(A1 ∩ · · · ∩ An) : r

)
=
⋂
i

Rad (Ai : r) =
⋂

i such that r/∈Ai

Pi

by part (c) of the Lemma, where the intersection over the empty set is defined to
be R. Therefore we get the intersection of a certain subset S of the Pi, which is
the same as the intersection of the primes of S that are minimal elements of S.
This intersection can only be prime if it is equal to one of the Pi. To see that
we actually do get each of the Pi, notice that the intersection of Aj for j 6= i
cannot be contained in Ai, or Ai could be omitted and the intersection would not
be irredundant. Choose r in the intersection of the Aj for j 6= i, but not in Ai. By
the calculation above, for this choice of r we have that Rad (I : r) = Pi. �

In the Noetherian case the primes that occur as radicals for an irredundant
primary decomposition have an alternative characterization. In order to give this
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characterization, we introduce the set of associated primes of a module M . We do
not need finiteness conditions to give the definition.

A prime ideal P of R is called an associated prime of the R-module M if
equivalently:

(1) There is an element u ∈M whose annihilator is P .
(2) There is an injection R/P ↪→M .

These two conditions are equivalent because the submodule of M generated by
u is isomorphic with R/P if and only if the annihilator of u is P . Note that the
element u with prime annihilator can never be 0, since the annihilator of 0 is the
unit ideal.

The set of associated primes of M is denoted Ass (M) and is sometimes called
the assassinator or assassin of M . When M is not Noetherian there may be no
primes in Ass (M).

We shall soon show that in the Noetherian case Ass (M) is finite, and non-empty
if M 6= 0. Moreover, it will turn out that Ass (R/I) is the same as the set of primes
that occurs as radicals of primary ideals in an irredundant primary decomposition
of I. The primes that occur in a primary decomposition are sometimes called
associated primes of I, which is ambiguous because I may also be considered as an
R-module. But there should be no problem if they are referred to as the associated
primes of I as an ideal. Then, in the Noetherian case, the associated primes of I
as an ideal are the same as the associated primes of the module R/I.

The following facts hold quite generally:

Proposition 8.8. Let R be a ring.

(a) If P is prime in R, then Ass (R/P ) = {P}.
(b) If 0→M ′ →M →M ′′ → 0 is exact, then Ass (M) ⊆ Ass (M ′) ∪Ass (M ′′).

Proof. (a) Given any nonzero element of R/P represented by r ∈ R/P , its
annihilator is P , precisely because P is prime: if s /∈ P , rs is not 0 in R/P . For

the second part, we may assume without loss of generality that M ′ ⊆ M and
M ′′ = M/M ′. Suppose that u ∈ M has annihilator P , so that Ru ∼= R/P . If
Ru∩M ′ 6= 0, some nonzero element v of Ru is in M ′, and, as observed in the proof
of part (a), the annihilator of v is P , so that P ∈ Ass (M ′). On the other hand, if
Ru∩M ′ = 0, then Ru ∼= R/P embeds into M/M ′ = M ′′, and so P ∈ Ass (M ′′), as
required. �
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3. Lecture of November 11

Lemma 8.9. Let M be an R-module and let u ∈M − {0}. Suppose that M or
R is Noetherian. Then we may choose r ∈ R such that ru 6= 0 and P = AnnRru is
maximal among ideals that are annihilators of nonzero multiples of u. For such a
choice of r, P is a prime ideal.

Proof. Without loss of generality we may replace M by Ru and then R by
R/AnnRM , so that we may assume that M and R are Noetherian. The set of
ideals {AnnRru : ru 6= 0} is a non-empty family in a Noetherian ring. Therefore,
we may choose an element ru ∈ Ru − {0} whose annihilator P is maximal in this
set. Suppose that ab ∈ P , but a /∈ P . Then aru 6= 0, and is killed by P + Rb, so
that we must have b ∈ P , or else P would not be a maximal annihilator. �

By a finite ascending filtration of an R-module M we mean a sequence

0 = M0 ⊆M1 ⊆ · · · ⊆Mn−1 ⊆Mn = M

of submodules ofM . The filtration is said to have length n. The modulesMi+1/Mi,
0 ≤ i ≤ n− 1 are called the factors of the filtration.

If N is a submodule of M the problem of giving a finite ascending filtration of
M that contains N is equivalent to that of giving such filtrations for N and M/N .
Suppose that we have a filtration

0 = M0 ⊆ · · · ⊆Mk = N

of N . Any filtration of M/N has the form

0 ⊆Mk+1/N ⊆ · · · ⊆Mn/N

where Mn = M , since the submodules of M/N correspond bijectively with the
submodules of M containing N in such a way that Q/N corresponds to its inverse
image Q in M . Note that the 0 occurring initially on the left may be thought of as
N/N . Then

0 ⊆M1 ⊆ · · · ⊆Mk ⊆Mk+1 ⊆ · · · ⊆Mn = M

is the required filtration of M . The factors from this filtration are the union of the
two sets of factors. The length of this filtration of M is the sum of the lengths of
the filtrations of N and M/N .

Proposition 8.10. Let 0 = M0 ⊆ · · · ⊆ Mi ⊆ · · · ⊆ Mn = M be a finite as-

cending filtration of M . Then Ass (M) ⊆
n−1⋃
i=0

Ass (Mi+1/Mi).

Proof. This is obvious if there is only one factor, and we may use induction
on n. Because of the short exact sequence 0 → Mn−1 → M → M/Mn−1 → 0 we
have that

Ass (M) ⊆ Ass (Mn−1) + Ass (M/Mn−1),

and we may apply the induction hypothesis to the filtration

0 ⊆M1 ⊆ · · · ⊆Mn−1

of Mn−1. �
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Theorem 8.11. Every Noetherian module M 6= 0 has a finite ascending fil-
tration in which the factors are prime cyclic modules, R/Pi. Therefore Ass (M)
is finite, and is contained in the set {P1, . . . , Pn} of primes that occur. Thus,
Ass (M) = ∅ if and only if M = 0.

Proof. By Noetherian induction we may assume that the result holds for
every quotient of M by a nonzero submodule. (If M is a counterexample, the
family of submodules N of M such that M/N is counterexample is non-empty,
since it contains 0, and therefore has a maximal element N1. Work with M/N1

instead of M .) If M 6= 0 we can choose u 6= 0 in M and r as in the Lemma so that
P = AnnRru is prime. Then R/P ∼= Ru ⊆M , so that P ∈ Ass (M). Let N = Ru.
By the hypothesis of Noetherian induction, M/N has a filtration of the specified
type, and, hence, so does M . �

A cyclic module with prime annihilator P (which will then be isomorphic with
R/P ) is called a prime cyclic module. A finite ascending filtration in which all the
factors are prime cyclic modules is called a prime cyclic filtration.

Proposition 8.12. Let M be an R-module and W a multiplicative system in
R. If R is Noetherian, then Ass (W−1M) over W−1R is

{PW−1R : P ∈ Ass (M) and P ∩W = ∅}.
More generally, for any R, if P ∈ Ass (M) and P ∩ W = ∅, then PW−1R ∈
Ass (W−1M) over W−1R. If P is finitely generated, then PW−1R ∈ Ass (W−1M)
over W−1R if and only if P ∈ Ass (M) and P ∩W = ∅.

Proof. Since, quite generally, the primes of W−1R have the form PW−1R
for a unique choice of prime P ⊆ R disjoint from W , the results in the last two
sentences imply the result stated for the Noetherian case. If P ∈ Ass (M) we have
an injection R/P ↪→ M , and localizing gives an injection W−1(R/P ) ↪→ W−1M ,
where W−1(R/P ) ∼= W−1R/PW−1R. Since P∩W = ∅, PW−1R is a prime ideal of
W−1R, and we are done. Now suppose that P = (f1, . . . , fs)R is finitely generated

and that PW−1R is an element of Ass (W−1M). We can choose a nonzero element
of W−1M that has PW−1R as annihilator, and after multiplying an element in the
image of W , we may assume this element has the form u/1 for u ∈M . Since each
fiu/1 is 0 in W−1M , for each i we can choose wi ∈ W such that wifiu = 0 in M .
Let w be the product of the wi. Then each of f1, . . . , fn kills wu, and so P kills
wu. We claim that P is AnnRwu which will show that P ∈ Ass (M), as required.
Let w′ ∈ R − P . We need only check that w′wu 6= 0 in R. But this is clear, since
otherwise u/1 would be 0 in W−1M . �

Corollary 8.13. Let M be a finitely generated module over a Noetherian ring,
and suppose that Ass (M) = {P1, . . . , Pn}. Then Rad (AnnRM) =

⋂
i Pi. Thus,

Rad (AnnRM) is the intersection of the minimal elements of Ass (M): these are the
minimal primes of Rad (AnnRM), and also the minimal primes of AnnR(M). Since
the support Supp (M) of M is V

(
AnnR(M)

)
, the minimal primes in P1, . . . , Pn are

also the minimal elements of Supp (M).

Proof. Let u1, . . . , un generate M . Let r ∈ R. We know that ui/1 = 0 in
Mr = W−1M , where W = {1, r, r2, r3, · · · } if and only if some power of r kills ui.
Now Mr = 0 iff each of ui/1 is 0 in Mr iff some power of r kills each of the ui iff
some power of r kills all the ui iff some power of r kills M iff r ∈ Rad (Ann(M)).



3. LECTURE OF NOVEMBER 11 129

But Mr = 0 iff Ass (Mr) = ∅, and Ass (Mr) is the set of minimal primes in Ass (M)
not containing r, so that Mr = 0 iff r is in every prime in Ass (M). �

When the ring R and the module M are Noetherian, the minimal primes of
Ass (M) (equivalently, of AnnR(M)) are called the minimal primes of M .

Note that if J is an ideal of R, then Rad (JW−1R) =
(
Rad (J)

)
W−1R. Clearly,

it suffices to prove ⊆. But if u/w has a power in JW−1R, where u ∈ R and w0 ∈W ,
then u/1 does as well, and so un/1 = j/w1 for some n, j ∈ J and w1 ∈ W . It
follows that for some w2 ∈W , w2(w1u

n−j) = 0, from which we have that wun ∈ J
with w = w1w2, and so (wu)n ∈ J . But then u ∈ W−1Rad (J). We shall use this
fact in analyzing the effect of localization on primary decomposition.

Proposition 8.14. Let I have irredundant primary decomposition

A1 ∩ · · · ∩ An,

and let W be a multiplicative system in R. Let Pi = Rad (Ai). Then the intersection
of those AiW

−1R such that Pi does not meet W is an irredundant primary decom-
position of IW−1R. In particular, if A is primary with radical P , then AW−1R is
the unit ideal if W meets P and is primary to PW−1R otherwise.

Proof. We establish the final statement first. If W meets P , then some el-
ement of W has a power in A, and so AW−1R is the unit ideal. If not, AW−1R
has radical PW−1R, and it suffices to show that if r, s ∈ R, v, w ∈ W , and
(r/v)(s/w) ∈ AW−1R then r/v ∈ AW−1R or s/w ∈ Rad (AW−1R). Since
rs/vw ∈ AW−1R, we find that w′(rs) ∈ A for some w′ ∈ W . Since W ⊆ R − P ,
this implies that rs ∈ A, so r ∈ A or s ∈ Rad (A), from which the desired result
follows.

We recall that we have an identification W−1J ∼= JW−1R for every ideal J of
R and make free use of it. Since localizing commutes with finite intersection, we
have that W−1I =

⋂
iW
−1Ai, and we may omit those terms such that W meets

Pi, since for those, W−1Ai is the unit ideal. This gives a primary decomposition
involving distinct primes. To see that it is irredundant, let Pi be a fixed one of
the primes occurring that is disjoint from W . We know that Pi = Rad (I :R r) for
some element of R. Then W−1Pi = W−1

(
Rad (I :R r)

)
= Rad

(
W−1(I :R r)

)
=

Rad
(
W−1I :W−1R (r/1)

)
, which shows, by our earlier criterion for when a prime

must occur as the radical of some term in a primary decomposition, that all of the
terms are needed. �

The contraction of PnRP to R is a P -primary ideal that contains Pn. It is the
smallest P -primary ideal containing Pn, and is called the n th symbolic power of P ,
and denote P (n). Note that P is the radical of Pn, and so it is the unique minimal
prime of Pn. If Pn has a primary decomposition, the P -primary ideal that is used
must be P (n). We also have the description

P (n) = {r ∈ R : for some w ∈ R− P,wr ∈ Pn}.
In general, P (n) ⊇ Pn, and the containment is often strict, even when the ambient
ring R is a polynomial ring. The behavior of symbolic powers is very subtle, and
has engendered a huge literature.

Example (F. S. Macaulay). Let R = K[x, y, z], the polynomial ring in three vari-
ables over a field, and map R by a K-algebra homomorphism onto K[t3, t4, t5] ⊆
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K[t], where t is another variable, by sending x 7→ t3, y 7→ t4 and z 7→ t5. The kernel
P of this homomorphism is a prime ideal of K[x, y, z]. We leave it to the reader
to show that P = (f, g, h)R where f = xz − y2, g = x3 − yz, and h = x3y − z2:
these elements are the 2× 2 minors of the matrix(

x y z
y z x2

)
which maps to the rank one matrix(

t3 t4 t5

t4 t5 t6

)
(the rank is one because the second row is t times the first row). Of course, it is
clear that f , g, and h are in the kernel: the problem is to show that they generate
the entire kernel. Assuming that we have these generators, it is not difficult to see
that there is an element of P (2) that is not in P 2. We assign degrees to the variables
in a somewhat non-standard way, so that x , y, and z have degrees 3, 4, and 5,
respectively. Then xiyizk has degree 3i + 4j + 5k. The elements f , g and h are
homogeneous with respect to this grading, of degrees 8, 9, and 10 respectively. Now
consider fh− g2. Working mod x, this is (−y2)(−z2)− (−yz)2 = y2z2− (yz)2 = 0.
That is, x divides fh− g2, and we can write fh− g2 = xq. Note that fh− g2 6= 0,
since, for example, g2 has an x6 term while fh does not. Thus, q 6= 0. Now fh−g2

is homogeneous of degree 18, and x is homogeneous of degree 3. It therefore follows
without computation that q is homogeneous of degree 15. Since xq = fh−g2 ∈ P 2,
while x /∈ P , it follows that q ∈ P (2). But q cannot be in P 2: its degree is 15, while
the generators f2, g2, h2, fg, fh, gh of P 2 all have degree 16 or more.
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4. Lecture of November 13

Note that if J ⊆ I ⊆ R then the problem of giving an (irredundant) primary
decomposition for I in R is equivalent to the problem of giving an (irredundant)
primary decomposition for I/J in R/J . In particular, it is the same problem as
giving an (irredundant) primary decomposition of 0 in R/I. The same remark
applies to studying whether I is irreducible in R.

Also note that while every prime in Ass (M) must occur as the annihilator of a
factor in any finite filtration of M with prime cyclic factors, it may be impossible
to give such a filtration of M in which only primes of Ass (M) occur. If M is
torsion-free over a domain R, then the annihilator of any nonzero element is (0)
in R: thus, Ass (M) = {(0)}. Consider any torsion-free module over R that is not
free. A prime cyclic filtration cannot consist only of factors that are ∼= R = R/(0).
(If one has a finite filtration in which all the factors are R, there is a surjection of M
onto the last factor, M � R, which will split, so that M = M0⊕RR, where M0 has
such a filtration with one fewer copy of R. By induction, induction on the number
of factors, M is R-free.) One can start with several such factors, but eventually one
will have a quotient which is a torsion module. For example, let M = (x, y)R in
the polynomial ring K[x, y]. M needs two generators, and after killing any copy of
R = Rf where f is an element of M one has a torsion module and other primes are
needed for the filtration. E.g., if one kills xR, the quotient is ∼= y(R/xR) ∼= R/xR,
and one has a prime cyclic filtration that involves (0) and xR.

If P is any prime occurring in a prime cyclic filtration of M , then R/P is a
homomorphic image of a submodule of M , and therefore if I kills M , then I kills
R/P , so that I ⊆ P . Thus, AnnRM ⊆ P , and this implies that P contains a min-
imal prime of M . Thus, even the “extraneous” primes occurring in a prime cyclic
filtration of M (by which we mean the primes occurring that are not associated
primes of M) must contain a minimal prime of M .

Examples. (1) Let R = K[X1, X2, X3, . . .]/J where J = (Xt+1
t : t ≥ 1). The ideal

m of R generated by the images xt of the Xt is maximal: R/m ∼= K. Since every
xt is nilpotent, this maximal ideal is also the unique minimal prime of R. Thus,
Spec (R) = {m}. We claim that AssR = ∅. Since m is the only prime ideal of R,
this amounts to the assertion that there is no element of R − {0} that is killed by

m. Note that m is spanned over K by the monomials xk11 · · ·xknn , with n varying,
such that for all t, 0 ≤ kt ≤ t. Suppose that f ∈ R − {0}, and that xN does not
occur in f . Then xNf 6= 0, which establishes our claim. The theory that we have
already developed shows that this does not happen if R is Noetherian.

(2) Let R = K[y, x1, x2, x3, . . .] be a polynomial ring in infinitely many vari-
ables. Let P = (xi : i ≥ 1) and let M = R/J , where J = (yixi : i ≥ 1)R. Let W =
{yt : t ∈ N}. Then PW−1R ∈ Ass (W−1M): in fact, W−1M ∼= W−1R/PW−1R.
But no element of R − J is multiplied into J by P , so that P /∈ Ass (M). This is
another sort of behavior that cannot occur in the Noetherian case.

(3) Let R = K[x, y, u, v, z, w]/(xy+uv+zw). It is easy to see that xy+uv+zw
is irreducible, and this ring can be shown to be UFD. Let P = (x, y, u, v, w)R.
This is ideal is prime, with quotient ring K[z], and of course Q = P + zR is a
maximal ideal with quotient ring K. Now, P ⊆ Q and P 2 ⊆ Q2, but P (2) is not
contained in Q(2). Because Q is maximal, Q2 is Q-primary and so Q2 = Q(2). But
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since zw = −xy − uv ∈ P 2 while z /∈ P , we have that w ∈ P (2). In a polynomial
or power series ring over a field or a PID, it is true that if P ⊆ Q are primes
then P (n) ⊆ Q(n) for all n: but this is a difficult theorem due to Nagata and
Zariski independently. Cf. See [13], p. 143, for Nagata’s proof. In the massive
breakthrough paper [7], Hironaka gives Zariski’s proof: see Theorem 1. A more
elementary argument is used to prove this fact in [9]: this paper has a proof for
formal power series rings over a field that uses the Weierstrass preparation theorem.
The case of formal power series over a field implies the case of polynomial rings
over a field. Another subtle result on behavior of symbolic powers in polynomial
and power series rings over fields is that if P has height h, then P (n) ⊆ Pnh for all
n. This was proved over fields of characteristic 0 in [5] and over arbitrary fields in
[10].

Note that if Q1, . . . , Qn are submodules of M , then the kernel of the map

M →M/Q1 ⊕R · · · ⊕RM/Qn

such that

u 7→ (u+Q1)⊕ · · · ⊕ (u+Qn)

is precisely Q1 ∩ · · · ∩Qn, yielding an injection

M/(Q1 ∩ · · · ∩Qn) ↪→M/Q1 ⊕R · · · ⊕RM/Qn.

A finite direct sum of modules W1 ⊕R ⊕R · · · ⊕RWn has a filtration

0 ⊆W1 ⊆W1 ⊕RW2 ⊆W1 ⊕RW2 ⊕RW3 ⊆ · · · ⊆W1 ⊕RW2 ⊕R · · · ⊕RWn

with factors Wi, and so

Ass (W1 ⊕R · · · ⊕RWn) ⊆
⋃
i

Ass (Wi).

Thus, when Q1, . . . , Qn are submodules of M with intersection N , we have that

Ass (M/N) ⊆ Ass
(
⊕i(M/Qi)

)
⊆
⋃
i

Ass (M/Qi).

Theorem 8.15. Let R be a Noetherian ring, M a finitely generated R-module,
and let I ⊆ R be an ideal.

(a) An element r ∈ R is a zerodivisor on M (i.e., ru = 0 for some u ∈ M − {0})
if and only if it belongs to a prime P ∈ Ass (M). In other words, the set of
zerodivisors on M in R is the same as the union of the associated prime ideals
of M .

(b) I is primary if and only if Ass (R/I) contains just one element P , in which
case I is primary to P .

(c) c The associated primes of I as an ideal are the elements of Ass (R/I).

Proof. For part (a), note that if u ∈ P ∈ Ass (M), then P = AnnRu, u 6= 0,
and so ru = 0 with u 6= 0. On the other hand, if ru = 0 with u 6= 0 then u has a
multiple r′u that is not 0 with prime annihilator P . Clearly r ∈ P ∈ Ass (M).

For parts (b) and (c), first observe that if I is primary to P then the zerodivisors
on I are precisely the elements of P/I (which are nilpotent in R/I: by the definition
of primary ideal, the elements of R − P are not zerodivisors on the module R/I).
Thus, Ass (R/I) = P . This proves the “only if” part of (b).
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Now suppose that I = A1 ∩ · · · ∩ An is an irredundant primary decomposition
of I and that Rad (Ai) = Pi. Then the remarks preceding the statement of the
theorem show that Ass (R/I) ⊆

⋃
i Ass (R/Ai) = {P1, . . . , Pn} by the preceding

paragraph. Now fix i and choose r in the intersection of the Aj for j 6= i but not
in Ai, so that Rad (I :R r) = Pi. Let N = (I + rR)/I ∼= r(R/I), where r denotes
the class of r in R/I. Then Ass (N) ⊆ Ass (M). But the annihilator of the cyclic
module N is I :R r, whose radical is Pi. Since Pi is a minimal prime of I :R rR,
Pi ∈ Ass

(
R/(I :R rR)

)
= Ass (N) ⊆ Ass (M). This shows that every associated

prime of I as an ideal is in Ass (R/I).

Finally, if Ass (R/I) = P , then there is only one term in the primary decom-
position of R, and so I is primary with Rad (I) = P , which proves the “if” part of
(b). �

Next, note that if a finitely generated ideal I = (f1, . . . , fh) is contained in the
radical of J , then IN ⊆ J for sufficiently large N . Each ft has a power in J : say
the fatt ∈ J . Take N ≥ a1 + · · · ah−h+ 1. Then IN is generated by the monomials
of degree N in the ft, and, in any such monomial, the exponent on some ft must
be at least at, or else the sum of the exponents is at most (a1−1)+ · · ·+(ah−1) =
a1 + · · ·+ ah − h.

As an application of primary decomposition, we prove the following beautiful
result.

Theorem 8.16. Let (R, m) be a local ring, i.e., a Noetherian ring with a unique
maximal ideal m. Then

⋂
nm

n = (0).

Proof. Let J =
⋂
nm

n. Let mJ = A1 ∩ · · · ∩An be a primary decomposition
for mJ . We shall show that J ⊆ Ai for every I. But this proves that J ⊆ mJ , so
that J = mJ . But then J = (0) by Nakayama’s Lemma.

To prove that J ⊆ Ai we consider two cases. First suppose that Pi = Rad (Ai)
is different from m. Choose x ∈ m − Pi. Then xJ ⊆ mJ ⊆ Ai, but x is not in
Rad (Ai). This implies that J ⊆ Ai. The remaining case is where Ai is primary
to m. But then each generator of m has a power in Ai, and since m is finitely
generated, mN ⊆ Ai for all N � 0. But J ⊆ mN for all N , and so J ⊆ Ai in this
case as well. �

We want to show that
⋂
nm

nM = 0 for any finitely generated R-module M as
well. There are at least three methods of doing this: one is extend the theory of
primary decomposition to modules, and we shall do this in these notes shortly. A
second method involves a result called the Artin-Rees theorem, and we shall also
give that proof eventually.

The third method is to deduce the result for all modules from the ring case
by a trick: Nagata’s idealization trick (or method). The key point is that if R is
any ring and M is any R-module, then R⊕RM becomes a commutative ring with
identity if we define multiplication by the rule

(r ⊕ u)(s⊕ v) = rs⊕ (rv + su).

This ring is an R-algebra. M is an ideal in which the square of every element is
0, and the product of any two elements of M is 0. Killing M gives R back. Every
prime ideal of R ⊕RM has the form P ⊕RM for some prime P of R: the same is
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true for maximal ideals. If R is quasilocal, then R ⊕RM is quasilocal, and if R is
local and M is finitely generated as an R-module then R⊕M is module-finite over
R, hence, Noetherian, and is a local ring.

Theorem 8.17. If (R, m) is local and M is a finitely generated R-module, then⋂
nm

nM = 0.

Proof. Consider the local ring R ⊕R M described just above. Its unique
maximal ideal is m⊕M , and

(m⊕M)n+1 = mn+1 ⊕mnM.

Any element of
⋂
mnM is therefore in every power of the maximal ideal of R⊕RM ,

and is therefore 0. �

Theorem 8.18. Let R be a Noetherian ring, M a finitely generated R-module,
and I an ideal of R. Then u ∈

⋂
n I

nM if and only if there exists an element i ∈ I
such that u = iu.

Proof. The “if” part is trivial, for if u = iu then u = iu = i(iu) = i2u, and
by a straightforward induction, u = inu ∈ InM for all n.

For the other direction, suppose that I + AnnRu is a proper ideal of R, let
m be a maximal ideal of R containing it. Then u/1 is nonzero in Mm, and Im ⊆
M = mRm, the maximal ideal of Rm. But then u ∈ InM for all n implies that
u/1 ∈ MnM for all n, and this is a contradiction. Thus, we can choose i ∈ I and
z ∈ AnnRu such that i+ z = 1. But then iu = iu+ zu = (i+ z)u = 1u = u. �

Notice that this is a global result obtained by reduction to the local case. Our
next main objectives are first, to classify all rings with DCC, and second to make use
of the theory of Noetherian rings and modules that we have developed to analyze
dimension theory in an arbitrary Noetherian ring.

However, before leaving the topic of primary decomposition, we extend the
theory to an arbitrary submodule N of a module M over a Noetherian ring R. We
define Q ⊆M to be primary to a prime ideal P of R if Ass (M/Q) = {P}. We shall
say that M/Q is P -coprimary. A proper submodule Q ⊆ M is called irreducible
in M if it is not the intersection of two (equivalently, finitely many) strictly larger
submodules of M .

Theorem 8.19 (primary decomposition for modules). Let R be Noetherian,
let M be a finitely generated R-module, and let N, Q ⊆ M be finitely generated
R-submodules.

(a) Q is primary if and only if Rad
(
AnnR(M/Q)

)
is a prime ideal P (whose

elements then act nilpotently on M/Q) and the elements of R − P are not
zerodivisors on M/Q.

(b) Every irreducible submodule of Q of M is primary.
(c) Every proper submodule N of M is a finite intersection of of irreducible sub-

modules.
(d) If Q1, . . . , Qn are primary to P , so is their intersection.
(e) Every proper submodule N of M is an irredundant intersection of primary

submodules, where irredundant means that the primes to which they are primary
are mutually distinct, and that no term can be omitted. The set of primes that
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occur are the associated primes of M/N , and so are unique, the minimal primes
among them are the minimal primes of Ann(M/N), and if P is one of these
minimal primes, then the primary submodule to P that occurs is unique, and
is the submodule of all elements of M whose images in MP are in NP .

(f) f If N has irredundant primary decomposition Q1∩· · ·∩Qn where Qi is primary
to Pi, 1 ≤ i ≤ n, and W is a multiplicative system in R, then the W−1R-
module W−1M has an irredundant primary decomposition as the intersection
of the W−1Qi for those i such that Pi does not meet W .

Proof. (a) Ass (M/Q) = {P} implies that Rad (AnnRm) = P , and this in
turn implies that elements of P act nilpotently on M . Since the union of the
associated primes is the set of zerodivisors on M/Q, we also have that an element
of R − P is not a zerodivisor on M/Q. Conversely, if Rad (AnnRM) = P then
P consists of zerodivisors on M , and no prime strictly smaller than P can be in
Ass (M), while no prime strictly larger than P can be in Ass (M), since elements
of R− P are not zerodivisors on M/Q.

For part (b), let Q be irreducible. We replace M by M/Q. We want to show
that Ass (M) contains just one element. Suppose that there are two elements P
and P ′: then R/P and R/P ′ both embed into M , and their images can meet only
in 0, because any nonzero element in either has annihilator P and also annihilator
P ′. Thus, 0 is the intersection of two larger submodules, a contradiction.

By Noetherian induction, if some proper submodule is not the intersection of
a finite family of strictly larger submodules, there is a maximal such submodule.
Then either it is irreducible, or it is the intersection of two larger proper submodules,
each of which is a finite intersection of irreducible submodules. This proves (c).

For part (d), if Q1, . . . , Qn are all primary P then M/(
⋂
iQi) embeds in⊕

iM/Qi and it follows that Ass
(
M/(

⋂
iQi)

)
= {P}, as required.

The existence of an irredundant primary decomposition for a submodule is
now obvious. If N = Q1 ∩ · · · ∩ Qn is an irredundant primary decomposition,
then we have an embedding of M/N into the direct sum of the M/Qi. Therefore,
Ass (M) ⊆ {P1, . . . , Pn}, where Ass (M/Qi) = {Pi}. Now, for fixed i, we know
that the intersection of the Qj for j 6= i is not contained in Qi, or Qi would be
redundant. Pick u ∈ Qj for j 6= i such that u /∈ Qi. Then u /∈ N . Consider
Ru ∈ M/N . We claim that Pi is a minimal prime of this module: in fact the
support of this module is V (Pi). To see this, note that for a prime P , (Ru)P 6= 0
iff u/1 /∈ NP iff u/1 /∈ (Qt)P for some t iff u/1 /∈ (Qi)P (since u was chosen in all
the other Qj). Since M/Qi is primary to Pi, it has support V (Pi), and this shows
P ⊇ Pi. But it is clear that localizing at P ⊇ Pi will not kill u mod Qi, since
elements of R− P ⊆ R− Pi are not zerodivisors on M/Qi. Thus, Pi is the unique
minimal prime of Ru ⊆ M/N . But then Pi ∈ Ass (Ru) ⊆ Ass (M/N), as required.
This completes the proof of part (e), except for the very last statement, which we
shall give in the next paragraph when we prove part (f).

(f) Since localization commutes with finite intersection, we have that W−1N
is the intersection of all the W−1Qi. If W meets Pi, then since Pi = Ass (M/Qi),
we have that Pi = Rad

(
AnnR(M/Qi)

)
, and then some element of W will have

a power that annihilates M/Qi, and if follows that W−1(M/Qi) = 0 for such i,
i.e., that W−1Qi = W−1M . Evidently, these terms may be omitted, and we know
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that W−1N is the intersection of the others, which are primary to various distinct
primes PiW

−1R or W−1R. All of the terms are needed, because we know that
these primes are precisely the ones in Ass (W−1M). This also shows that if Pi
is minimal among the {P1, . . . , Pn}, then NPi

= (Qi)Pi
, and since elements of

R − Pi are not zerodivisors on M/Qi, we find that u ∈ M is in Qi if and only if
u/1 ∈ (Qi)Pi

= NPi
, as required. �

It is worth noting that the problem of giving an (irredundant) primary decom-
position of N ⊆M (and also the issue of whether N is an irreducible submodule of
M) is unaffected by replacing the pair N ⊆ M by the pair N/N0 ⊆ M/N0, where
N0 is a submodule of N . In particular, one may as well study the problem for
0 ⊆M/N .



CHAPTER 9

Artin Rings

1. Lecture of November 16

We need to understand one more case where the ring is not necessarily Noe-
therian, but one knows nonetheless that there is a primary decomposition.

Theorem 9.1. Let R be any ring and I an ideal such that V (I) is a finite
set of ideals, all of which are maximal. Then I has a primary decomposition,
I = A1 ∩ · · · ∩An, which is unique except for the order of the terms. In this case I
is also the product A1 · · ·An, and R/I is isomorphic with the product of the rings
R/Ai.

Proof. It is an equivalent problem to find a primary decomposition for (0)
in the ring R/I. Therefore we may assume that R is a ring such that every prime
ideal is maximal, and such that there are only finitely many maximal ideals, say
m1, . . . ,mn. We seek a primary decomposition for the ideal (0). Let An be the
contraction of the (0) ideal from Rmi

, i.e., the set of elements of R which map to
0 in Rmi : these are the elements that are killed by an element not in mi. Then
Ai is mi-primary, since it is the contraction of an miRmi-primary ideal, the zero
ideal, of Rmi

. Moreover, 0 = A1 ∩ · · · ∩ An, for any element of this intersection
vanishes no matter at which prime ideal of R we localize: the mi constitute all
of the prime ideals of R. This gives a primary decomposition of (0), and since all
of the primes occurring as radicals are maximal, they are all minimal, and so the
primary decomposition is unique.

Since the Ai have radicals that are mutually distinct maximal ideals, they are
pairwise comaximal: if i 6= j, Rad (Ai+Aj) ⊇ Rad (Ai)+Rad (Aj) ⊇ mi+mj = R,
and the remaining statements now follow from the Chinese remainder theorem.

�

A nonzero module over a ring R is called simple if, equivalently,

(1) it has no nonzero proper submodule or
(2) it is isomorphic with R/m for some maximal ideal m.

Note that a module satisfying (1) must be generated by any nonzero element,
and is therefore cyclic and of the form R/I for some proper ideal I. The statement
that there are no proper submodules except (0) is the equivalent to the statement
that every nonzero ideal of R/I is the unit ideal, which forces R/I to be a field.

A module is said to have finite length if it has a filtration in which every factor is
simple. Recall that a refinement of a filtration is chain of submodules that contains
the original chain: what happens is that between pairs of modules Mi ⊆ Mi+1

in the original chain, additional modules M ′i,t may be inserted, so that one has
Mi ⊆ M ′i,1 ⊆ · · · ⊆ M ′i,k ⊆ Mi+1. In any refinement of a filtration with simple

137



138 9. ARTIN RINGS

factors, every factor is 0 or simple. If M has finite length, by the Jordan-Hölder
theorem, any finite filtration can be refined to one in which every factor is simple
or 0. In any two filtrations such that all factors are 0 or simple, the simple factors
are the same in some order, counting multiplicities, because, again by the Jordan-
Hölder theorem, the two filtrations have isomorphic refinements. If M has finite
length the length `(M) is defined to be the number of simple factors in any finite
filtration such that all factors are simple or 0. If 0→M ′ →M →M ′′ → 0 is a short
exact sequence of modules, then M has finite length if and only if both M ′ and M ′′

have finite length, and then `(M) = `(M ′) + `(M ′′). (If M ′ and M/M ′ ∼= M ′′ have
finite filtrations with simple factors, these can be conjoined to give such a filtration
for M , and the lengths add. On the other hand, if M has such a filtration, the
filtration 0 ⊆M ′ ⊆M can be refined to a filtration where all factors are simple or
0, and it follows that both M ′ and M ′′ ∼= M/M ′ have finite length.)

If M has finite length and M1 ⊆ M2 are submodules, then `(M2) = `(M1) +
`(M2/M1), and so M1 and M2 are equal if and only if they have the same length.
Thus, any chain of distinct submodules of M has length at most equal to `(M),
and a finite length module has both ACC and DCC. If M is killed by a maximal
ideal m, then it has finite length if and only if it is a finite-dimensional vector space
over R/m, in which case its length is the same as its dimension over R/m.

For a vector space W over a field K, we note that the conditions of having
ACC, DCC, and finite length are all equivalent: they hold precisely when K has
finite dimension, which we know is equal to its length over K. If W has finite
length, we have already seen that ACC and DCC hold. On the other hand, if W
contains an infinite set of linearly independent vectors v1, v2, v3, . . . then there is
an infinite strictly ascending chain of which the n th term is the span of v1, . . . , vn,
and an infinite strictly descending chain of which the n th term is the span of
vn, vn+1, vn+2, · · · .

Over a principal ideal domain R, the length of R/f , where f 6= 0, is the same
as the number n of irreducible factors in a factorization f = f1 · · · fn of f into
irreducible factors (which are allowed to be repeated). Thus, `(Z/60Z) = 4, since
60 = 2 · 2 · 3 · 5, and `

(
K[x]/(x3 − x)

)
= 3, since x3 − x = (x− 1)x(x+ 1).

Note that C has length 1 as a C-module and length 2 as an R-module.

A module M has finite length iff M is Noetherian and Ass (M) consists entirely
of maximal ideals. This is clear because ifM has a prime cyclic filtration by modules
R/m with m maximal, it is immediate that M is Noetherian and that Ass (M) is
contained in the set of maximal ideals occurring. Conversely, if M is Noetherian
and Ass (M) consists entirely of maximal ideals, then AnnRM is the intersection
of these. Any prime occurring in a finite prime cyclic filtration of M must contain
AnnRM and therefore must be in Ass (M). It follows that a finite prime cyclic
filtration has only factors of the form R/m, where m is maximal.

A local ring (R,m,K) of dimension 0 has finite length as a module over itself:
if m is the maximal ideal, then every element of m is nilpotent. Since m is finitely
generated, some power of m is 0. Say that mn = 0. Then 0 = mn ⊆ mn−1 ⊆
· · · ⊆ m2 ⊆ m ⊆ R is a filtration of R, and each factor has the form mi/mi+1, is
a vector space over R/m, and is finite dimensional, since mi is finitely generated.
The length of R is the same as the sum of these dimensions.
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Theorem 9.2. The following conditions on a ring R are equivalent.

(1) R is Noetherian of Krull dimension 0.
(2) R is a finite product of local rings of Krull dimension 0.
(3) R has finite length as a module over itself.
(4) R has DCC, i.e., R is an Artin ring.

Proof. To see that (1) ⇒ (2), note that when (1) holds, all prime ideals of
R are minimal as well as maximal: thus, R has only finitely many maximal ideals
m1, . . . ,mn, and we may use the preceding theorem to write R as the product of
rings R/Ai where Ai is primary to mi.

That (2) ⇒ (3) is obvious, since we have already seen that a local ring of
dimension 0 has finite length as a module over itself, and (3) ⇒ (4) has already
been noted.

It remains only to prove that (4) ⇒ (1). Since R has DCC, so does every
quotient. Let P be prime in R. If A = R/P is not a field, we may choose a ∈ A
that is not 0 and not a unit. The sequence of ideals anA must stabilize. But then
an ∈ an+1A for some n, say an = an+1b. But since a 6= 0 and A is a domain, we
get 1 = ab, a contradiction. Thus, every prime ideal of A is maximal.

If there were infinitely many maximal ideals m1, m2, m3, . . . the chain

m1 ⊇ m1 ∩m2 ⊇ m1 ∩m2 ∩m3 ⊇ · · ·

would have to stabilize, yielding mn+1 ⊇ m1 ∩ · · · ∩mn for some sufficiently large
n. But then mn+1 ⊇ mi for some i ≤ n, a contradiction.

Therefore R has Krull dimension 0, and has only finitely many maximal ideals.
The preceding theorem on primary decomposition in this situation enables us to
write R as a finite product of quasilocal rings of dimension 0. We have therefore
reduced to studying the case where R is quasilocal, with a unique prime ideal (which
is necessarily its maximal ideal).

Now suppose that (R, m, K) is quasilocal of Krull dimension 0, and has DCC.
Then the sequence of ideals

m ⊇ m2 ⊇ m3 ⊇ · · · ⊇ mn ⊇ · · ·

is eventually stable, and we may assume that n has been chosen such that mn =
mn+1. Each of the vector spaces mi/mi+1 has DCC, and therefore each is finite-
dimensional over K. We want to show that mn = 0. Assume otherwise. Consider
the family of ideals {I ⊆ m : Imn 6= 0}. Then m is in this family. Therefore,
the family has a minimal element J ⊆ m. Clearly, we can choose x ∈ J such
that xmn 6= 0, and so Rx ⊆ J is in the family. Therefore, J = Rx. Now,
xm(mn) = xmn+1 = xmn 6= 0, and so xm ⊆ Rx is also in the family, and we get
that Rx = mx = mRx. By Nakayama’s lemma, Rx = 0, a contradiction. Thus,
mn = 0 for some n, and then R has a finite filtration

0 = mn ⊆ mn−1 ⊆ · · · ⊆ m2 ⊆ m ⊆ R

whose factors are finite-dimensional vector spaces. Thus, R has finite length as a
module over itself and, therefore, R is Noetherian. �
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A word of caution: although a ring with DCC has finite length, a module with
DCC over a Noetherian ring need not have finite length. Let V = ZP , where P
is the prime ideal generated by the prime integer p. Then Q/V has DCC as a
V -module, but not finite length. What happens is that every proper submodule
of Q/V has finite length, but Q/V itself does not. It is also true that if V is any
discrete valuation ring with fraction field F , then F/V has DCC but not finite
length as a V -module.



CHAPTER 10

Krull’s principal ideal theorem and the dimension
theory of Noetherian rings

1. Lecture of November 18

We note one more fact about the behavior of primary ideals.

Proposition 10.1. Let I be primary to P in R. And let S be a polynomial
ring over R (the number of variables may be infinite). Then IS is primary to PS,
which is prime, in S.

Proof. Let x denote all the variables being adjoined. Then PR[x] is the kernel
of the obvious surjection R[x] � (R/P )[x] that replaces every coefficient of a given
polynomial with its image in R/P . Thus, PR[x] is prime, and is certainly the
radical of IR[x]. We replace R by R/I and P by P/I and henceforth assume that
I = (0). Thus, P consists of nilpotents, and elements of R−P are not zerodivisors
in R.

Now suppose that f is a polynomial with a coefficient that is not in P . It
suffices to see that f does not kill any nonzero polynomial in R[x]. Suppose that
fg = 0 where g 6= 0. Consider the subring R0 of R generated over the image of Z in
R by the coefficients of f and g. Let P0 = P ∩R0, which is the same as the (prime)
ideal of all nilpotents in R0. Notice that f, g ∈ R0[x], and that f has a coefficient
not in P0. Elements of R0 − P0 are in R − P and therefore are not zerodivisors
even in R. Of course, we still have that fg = 0. Thus, we may replace R and P by
R0 and P0, and we have reduced to the Noetherian case. We change notation and
write R for R0 and P for P0.

We may also omit adjoining any indeterminates not occurring in f or g, and we
may therefore assume that the number of indeterminates is finite. By induction on
the numberof indeterminates, we may assume that there is only one indeterminate.

Elements of R−P are clearly not zerodivisors in R[x] as well. We may therefore
replace R by RP , and assume that R is local with nilpotent maximal ideal P , f
has a coefficient not in P , hence, a unit, and g ∈ R[x] − {0}. We want to show
that fg = 0 leads to a contradiction. Now, PN = 0 in R for sufficiently large N .
We can replace g by a nonzero multiple all of whose coefficients are killed by P : if
all coefficients of g are killed by P we are done: if not, multiply by some element
of P that does not kill g. This procedure can be repeated at most N times, since
PN = 0. Thus, we may assume without loss of generality that every coefficient of
g is killed by P .

All terms of f whose coefficients are in P kill g. Therefore, if fg = 0 and
we omit all terms from f with coefficients in P , we still have that fg = 0. Thus,
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we may assume that the highest degree term in f has a coefficient that is a unit.
Multiplying this term by the highest degree nonzero term in g produces a nonzero
term in the product that cannot be canceled. �

Our next objective is to study dimension theory in Noetherian rings. There
was initially amazement that the results that follow hold in an arbitrary Noetherian
ring.

Theorem 10.2 (Krull’s principal ideal theorem). Let R be a Noetherian ring,
x ∈ R, and P a minimal prime of xR. Then the height of P ≤ 1.

Before giving the proof, we want to state a consequence that appears much more
general. The following result is also frequently referred to as Krull’s principal ideal
theorem, even though no principal ideals are present. But the heart of the proof is
the case n = 1, which is the principal ideal theorem. This result is sometimes called
Krull’s height theorem. It follows by induction from the principal ideal theorem,
although the induction is not quite straightforward, and the converse also needs a
result on prime avoidance.

Theorem 10.3 (Krull’s principal ideal theorem, strong version, alias Krull’s
height theorem). Let R be a Noetherian ring and P a minimal prime ideal of an
ideal generated by n elements. Then the height of P is at most n. Conversely, if P
has height n then it is a minimal prime of an ideal generated by n elements. That
is, the height of a prime P is the same as the least number of generators of an ideal
I ⊆ P of which P is a minimal prime. In particular, the height of every prime ideal
P is at most the number of generators of P , and is therefore finite. For every local
ring R, the Krull dimension of R is finite.

Proof. What follows is the proof of the first version of the principal ideal
theorem. If we have a counterexample, we still have a counterexample after we
localize at P . Therefore we may assume that (R, P ) is local. Suppose that there
is a chain of length two or more. Then there is a strict chain

P ⊃ Q ⊃ Q0

in R. We may replace R, P, Q, Q0 by R/Q0, P/Q0, Q/Q0, (0). We may therefore
assume that (R, P ) is a local domain, that P is a minimal prime of xR, and that
there is a prime Q with 0 ⊂ Q ⊂ P , where the inclusions are strict. We shall get
a contradiction. Recall that Q(n) = QnRQ ∩ R, the n th symbolic power of Q. It

is Q-primary. Now, the ring R/xR has only one prime ideal, P/xR. Therefore it
is a zero dimensional local ring, and has DCC. In consequence the chain of ideals
Q(n)R/xR is eventually stable. Taking inverse images in R, we find that there
exists N such that

Q(n) + xR = Q(n+1) + xR

for all n ≥ N . For n ≥ N we have Q(n) ⊆ Q(n+1) + xR. Let u ∈ Q(n). Then
u = q + xr where q ∈ Q(n+1), and so xr = u− q ∈ Q(n). But x /∈ Q, since P is the
only minimal prime of xR in R. Since Q(n) is Q-primary, we have that r ∈ Q(n).
This leads to the conclusion that Q(n) ⊆ Q(n+1) + xQ(n), and so

Q(n) = Q(n+1) + xQ(n).

But that means that with M = Q(n)/Q(n+1), we have that M = xM . By
Nakayama’s lemma, M = 0, i.e., Q(n)/Q(n+1) = 0.
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Thus, Q(n) = Q(N) for all n ≥ N . If a ∈ Q − {0}, it follows that aN ∈ QN ⊆
Q(N) and is hence in the intersection of all the Q(n). But then, since Q(n) = QnRQ
for all n, in the local domain RQ, the intersection of the powers of the maximal
ideal QRQ is not 0, a contradiction. �

Before proving the strong version of the principal ideal theorem, we want to
record the following result on prime avoidance. In applications of part (b) of this
result, W is frequently a K-algebra R, while the other subspaces are ideals of R.
This shows that if there is an infinite field in the ring R, the assumptions about
ideals being prime in part (a) are not needed.

Theorem 10.4 (prime avoidance). Let R be a ring. Let V ⊆ W be vector
spaces over an infinite field K.

(a) Let A be an ideal of R (or a subset of R closed under addition and multiplica-
tion). Given finitely many ideals of R all but two of which are prime, if A is
not contained in any of these ideals, then it is not contained in their union.

(b) Given finitely many subspaces of W , if V is not contained in any of these
subspaces, then V is not contained in their union.

(c) (Ed Davis) Let x ∈ R and I, P1, . . . , Pn be ideals of R such that the Pi are
prime. If I + Rx is not contained in any of the Pt, then for some i ∈ I,
i+ x /∈

⋃
t Pt.

Proof. (a) We may assume that no term may be omitted from the union, or
work with a smaller family of ideals. Call the ideals I, J, P1, . . . , Pn with the Pt
prime. Choose elements i ∈ I ∩A, j ∈ J ∩A, and at ∈ Pt ∩A, 1 ≤ t ≤ n, such that
each belongs to only one of the ideals I, J, P1, . . . , Pn, i.e., to the one it is specified
to be in. This must be possible, or not all of the ideals would be needed to cover
A. Let a = (i+ j) + ijb where

b =
∏

t such that i+j /∈Pt

at,

where a product over the empty set is defined to be 1. Then i + j is not in I nor
in J , while ijb is in both, so that a /∈ I and a /∈ J . Now choose t, 1 ≤ t ≤ n. If
i+ j ∈ Pt, the factors of ijb are not in Pt, and so ijb /∈ Pt, and therefore a /∈ Pt. If
i+ j /∈ Pt there is a factor of b in Pt, and so a /∈ Pt again.

(b) If V is not contained in any one of the finitely many vector spaces Vt covering
V , for every t choose a vector vt ∈ V −Vt. Let V0 be the span of the vt. Then V0 is
a finite-dimensional counterexample. We replace V by V0 and Vt by its intersection
with V0. Thus, we need only show that a finite-dimensional vector space Kn is not
a finite union of proper subspaces Vt. (When the field is algebraically closed we
have a contradiction because Kn is irreducible. Essentially the same idea works
over any infinite field.) For each t we can choose a linear form Lt 6= 0 that vanishes
on Vt. The product f = L1 · · · Lt is a nonzero polynomial that vanishes identically
on Kn. This is a contradiction, since K is infinite.

(c) We may assume that no Pt may be omitted from the union. For every
t, choose an element pt in Pt and not in any of the other Pk. Suppose, after
renumbering, that P1, . . . , Pk all contain x while the other Pt do not (the values 0

and n for k are allowed). If I ⊆
⋃k
j=1 Pj then it is easy to see that I+Rx ⊆

⋃k
j=1 Pj ,

and hence in one of the Pj by part (a), a contradiction. Choose i′ ∈ I not in any of
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P1, . . . , Pk. Let q be the product of the pt for t > k (or 1, if k = n). Then x+ i′q
is not in any Pt, and so we may take i = i′q. �
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2. Lecture of November 20

Examples. Let K = Z/2Z and let V = K2. This vector space is the union of the
three subspaces spanned by (1, 0), (0, 1) and (1, 1), respectively. This explains
why we need an infinite field in part (b) of the preceding theorem. Now consider
the K-algebra K⊕K V where the product of any two elements of V is 0. (This ring
is isomorphic with K[x, y]/(x2, xy, y2), where x and y are indeterminates.) Then
the maximal ideal is, likewise, the union of the three ideals spanned by its three
nonzero elements. This shows that we cannot replace “all but two are prime” by
“all but three are prime” in part (a) of the preceding theorem.

Proof. We now give the proof of the strong version of Krull’s principal ideal
theorem. We start by proving by induction on n that the first statement holds. If
n = 0 then P is a minimal prime of (0) and this does mean that P has height 0.
Note that the zero ideal is the ideal generated by the empty set, and so constitutes
a 0 generator ideal. The case where n = 1 has already been proved. Now suppose
that n ≥ 2 and that we know the result for integers < n. Suppose that P is a
minimal prime of (x1, . . . , xn)R, and that we want to show that the height of P is
at most n. Suppose not, and that there is a chain of primes

P = Pn+1 ⊃ · · · ⊃ P0

with strict inclusions. If x1 ∈ P1 then P is evidently also a minimal prime of
P1 + (x2, . . . , xn)R, and this implies that P/P1 is a minimal prime of the ideal
generated by the images of x2, . . . , xn in R/P1. The chain

Pn+1/P1 ⊃ · · · ⊃ P1/P1

then contradicts the induction hypothesis. Therefore, it will suffice to show that
the chain

P = Pn+1 ⊃ · · · ⊃ P1 ⊃ 0

can be modified so that x = x1 is in P1. Suppose that x ∈ Pk but not in Pk−1 for
k ≥ 2. (To get started, note that x ∈ P = Pn+1.) It will suffice to show that there
is a prime strictly between Pk and Pk−2 that contains x, for then we may use this
prime instead of Pk−1, and we have increased the number of primes in the chain
that contain x. Thus, we eventually reach a chain such that x ∈ P1.

To find such a prime, we may work in the local domain

D = RPk
/Pk−2RPk

.

The element x has nonzero image in the maximal ideal of this ring. A minimal
prime P ′ of xR in this ring cannot be PkRPk

, for that ideal has height at least two,
and P ′ has height at most one by the case of the principal ideal theorem already
proved. Of course, P ′ 6= 0 since it contains x 6= 0. The inverse image of P ′ in R
gives the required prime.

Thus, we can modify the chain

P = Pn+1 ⊃ · · · ⊃ P1 ⊃ P0

repeatedly until x1 ∈ P1. This completes the proof that the height of P is at most
n.

We now prove the converse. Suppose that P is a prime ideal of R of height
n. We want to show that we can choose x1, . . . , xn in P such that P is a minimal
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prime of (x1, . . . , xn)R. If n = 0 we take the empty set of xi. The fact that P has
height 0 means precisely that it is a minimal prime of (0). It remains to consider
the case where n > 0. We use induction on n. Let q1, . . . , qk be the minimal primes
of R that are contained in P . Then P cannot be contained in the union of these,
or else it will be contained in one of them, and hence be equal to one of them and
of height 0. Choose x1 ∈ P not in any minimal prime contained in P . Then the
height of P/x1R in R/x1R is at most n − 1: the chains in R descending from P
that had maximum length n must have ended with a minimal prime of R contained
in P , and these are now longer available. By the induction hypothesis, P/x1R
is a minimal prime of an ideal generated by at most n − 1 elements. Consider x1

together with pre-images of these elements chosen in R. Then P is a minimal prime
of the ideal they generate, and so P is a minimal prime of an ideal generated by at
most n elements. The number cannot be smaller than n, or else by the first part,
P could not have height n. �

If (R, m) is a local ring of Krull dimension n, a system of parameters for R is
a sequence of elements x1, . . . , xn ∈ m such that, equivalently:

(1) m is a minimal prime of (x1, . . . , xn)R.
(2) Rad (x1, . . . , xn)R is m.
(3) m has a power in (x1, . . . , xn)R.
(4) (x1, . . . , xn)R is m-primary.

The theorem we have just proved shows that every local ring of Krull dimension n
has a system of parameters. One cannot have fewer than n elements generating an

ideal whose radical is m, for then dim (R) would be < n. We leave it to the reader
to see that x1, . . . , xk ∈ m can be extended to a system of parameters for R if and
only if

dim
(
R/(x1, . . . , xk)R

)
≤ n− k,

in which case
dim

(
R/(x1, . . . , xk)R

)
= n− k.

In particular, x = x1 is part of a system of parameters iff x is not in any minimal
prime P of R such that dim (R/P ) = n. In this situation, elements y1, . . . , yn−k
extend x1, . . . , xk to a system of parameters for R if and only if their images in
R/(x1, . . . , xk)R are a system of parameters for R/(x1, . . . , xk)R.

The following statement is now immediate:

Corollary 10.5. Let (R, m) be local and let x1, . . . , xk be k elements of m.
Then the dimension of R/(x1, . . . , xk)R is at least dim (R)− k.

Proof. Suppose the quotient has dimension h. If y1, . . . , yh ∈ m are such that
their images in R/(x1, . . . , xk)R are a system of parameters in the quotient, then
m is a minimal prime of (x1, . . . , xk, y1, . . . , yh)R, which shows that h+k ≥ n. �

We are now almost ready to address the issue of how dimension behaves for
Noetherian rings when one adjoins either polynomial or formal power series inde-
terminates.

We first note the following fact:

Lemma 10.6. Let x be an indeterminate over R. Then x is in every maximal
ideal of R[[x]].
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Proof. If x is not in the maximal ideal M it has an inverse mod M, so that
we have xf ≡ 1 modM, i.e., 1−xf ∈M. Thus, it will suffice to show that 1−xf
is a unit. The idea of the proof is to show that

u = 1 + xf + x2f2 + x3f3 + · · ·

is an inverse: the infinite sum makes sense because only finitely many terms involve
any given power of x. Note that

u = (1 + xf + · · ·+ xnfn) + xn+1wn

with

wn = fn+1 + xfn+2 + x2fn+3 + · · · ,
which again makes sense since any given power of x occurs in only finitely many
terms. Thus:

u(1− xf)− 1 = (1 + xf + · · ·+ xnfn)(1− xf) + xn+1wn(1− xf)− 1.

The first of the summands on the right is 1− xn+1fn+1, and so this becomes

1− xn+1fn+1 + xn+1wn(1− xf)− 1 = xn+1
(
−fn+1 + wn(1− xf)

)
∈ xn+1R[[x]],

and since the intersection of the ideals xtR[[x]] is clearly 0, we have that u(1 −
xf)− 1 = 0, as required. �

Theorem 10.7. Let R be a Noetherian ring and let x1, . . . , xn be indeter-
minates. Then S = R[x1, . . . , xk] and T = R[[x1, . . . , xk]] both have dimension
dim (R) + k.

Proof. By a straightforward induction we may assume that k = 1. Write
x1 = x. If P is a prime ideal of R then PS and PT are both prime, with quotients
(R/P )[x] and (R/P )[[x]], and PS+xS, PS+xT are prime as well. If P0 ⊂ · · · ⊂ Pn
is a chain of primes in R, then their expansions P e

i together with P e
n + (x) give a

chain of primes of length one greater in S or T . This shows that the dimensions of
S and T are at least dim(R) + 1.

If R has infinite dimension, so do S and T . Therefore let dim (R) = n be finite.
We want to show that S and T have dimension at most n+1. We first consider the
case of S = R[x]. Let Q be a prime ideal of this ring and let P be its contraction to
R. It suffices to show that the height of Q is at most one more than the height of
P . To this end we can replace R by RP and S by RP [x]: QRP [x] will be a prime
ideal of this ring, and the height of Q is the same as the height of its expansion. We
have therefore reduced to the local case. Let x1, . . . , xn be a system of parameters
for R (which is now local). It suffices to show that we can extend it to a system
of parameters for R[x]Q using at most one more element. It therefore suffices to
show that R[x]Q/(x1, . . . , xn) has dimension at most 1. This ring is a localization
of (R/(x1, . . . , xn))[x], and so it suffices to see that this ring has dimension at most
1. To this end, we may kill the ideal of nilpotents, which is the expansion of P ,
producing K[x]. Since this ring has dimension 1, we are done.

In the case of T we first note that, by the Lemma, every maximal ideal of T
contains x. Choose Q maximal in T . Since x ∈ Q, Q corresponds to a maximal
ideal m of R, and has the form me + (x). If m is minimal over (x1, . . . , xn), then
Q is minimal over (x1, . . . , xn, x). This proves that the height of Q ≤ n + 1, as
required. �
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If R is not Noetherian but has finite Krull dimension n, it is true that R[x]
has finite Krull dimension, and it lies between n+ 1 and 2n+ 1. The upper bound
is proved by showing that in a chain of primes in R[x], at most two (necessarily
consecutive) primes lie over the same prime P of R. This result is sharp.



CHAPTER 11

Algebraic sets, products, and the local nature of
elements and regular maps

1. Lecture of November 20

Let K be an algebraically closed field. Given two algebraic sets X = V(I) ∈
Km = AmK , where we use x1, . . . , xm for coordinates, and Y = V(J) ⊆ Kn = AnK ,
where we use y1, . . . , yn for coordinates, the set X × Y ⊆ Km+n = Am+n

K is an
algebraic set defined by the expansions of I and J to K[x1, . . . , xm, y1, . . . , yn] ∼=
K[x1, . . . , xm] ⊗K K[y1, . . . , yn]. It is obvious that a point satisfies both the con-
ditions imposed by the vanishing of I and of J if and only if its first m coordinates
give a point of X and its last n coordinates give a point of Y .

Let S = K[x1, . . . , xm] thought of as K[AmK ] and Y = K[y1, . . . , yn] thought
of as K[AnK ]. Then

K[X × Y ] ∼= (S ⊗K T )/Rad (Ie + Je),

where the superscript e indicates expansion of ideals. Since

(S ⊗K T )/(Ie + Je) ∼= (S ⊗K T )/(I ⊗K T + S ⊗K J) ∼= (S/I)⊗K (T/J),

we have that

K[X × Y ] ∼=
(
(S/I)⊗K (T/J)

)
red
∼= (K[X]⊗K K[Y ])red.

It is not necessary to kill the nilpotents, because of the following fact:

Theorem 11.1. Let R and S be algebras over an algebraically closed field K.

(a) If R and S are domains, then R⊗K S is a domain.
(b) If R and S are reduced, then R⊗K S is reduced.

Proof. For part (a), let F denote the fraction field of R. Since K is a field,
every K-module is free, and, therefore, flat. We have an injection R ↪→ F . Thus,
R ⊗K S ↪→ F ⊗K S. By Problem 3(b) of Problem Set #4 this ring is a domain,
and so its subring R⊗K S is a domain.

For part (b), note that R is a the directed union of its finitely generated K-
subalgebras R0. Thus, R ⊗K S is the directed union of its subalgebras R0 ⊗K S
where R0 ⊆ R is finitely generated. Similarly, this ring is the directed union of its
subalgebras R0 ⊗K S0, where both R0 ⊆ R and S0 ⊆ S are finitely generated. We
can therefore reduce to the case where R and S are finitely generated.
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Let P1, . . . , Pm be the minimal primes of R. Since R is reduced, their intersec-
tion is 0. Therefore, R injects into

∏
i(R/Pi). Thus,

R⊗K S ↪→
(∏
i

(R/Pi)
)
⊗K S ∼=

∏
i

(
(R/Pi)⊗K S

)
(if we think of the products as direct sums, we have an obvious isomorphism of
K-vector spaces: the check that multiplication is preserved is straightforward), and
so it suffices to show that each factor ring of this product is reduced. Thus, we need
only show that if R is a domain and S is reduced, where these are finitely generated
K-algebras, then R⊗K S is reduced. But now we may repeat this argument using
the minimal primes Q1, . . . , Qn of S, and so we need only show that each ring
R ⊗K (S/Qj) is reduced, where now both R and S/Qj are domains. By part (a),
these tensor products are domains. �

One may also show that the tensor product of two reduced rings over an alge-
braically closed field is reduced using an equational argument and Hilbert’s Null-
stellensatz, similar to the argument in the solutions to Problem Set #4.

We return to the study of algebraic sets over an algebraically closed field. We
have now established an isomorphism K[X × Y ] ∼= K[X] ⊗K K[Y ]. Moreover, it
is easy to see that the product projections X × Y → X, X × Y → Y correspond
to the respective injections K[X] → K[X] ⊗K K[Y ] and K[Y ] → K[X] ⊗K K[Y ],
where the first sends f 7→ f ⊗ 1 and the second sends g 7→ 1⊗ g.

From the fact that K[X] ⊗K K[Y ] is a coproduct of K[X] and K[Y ] in the
category of K-algebras, it follows easily that X × Y (with the usual product pro-
jections) is a product of X and Y in the category of algebraic sets. That is, giving
a morphism from Z to X×Y is equivalent to giving a pair of morphisms, one from
Z to X and the other from Z → Y . This is simply because giving a morphism
from Z to X × Y is equivalent to giving a K-homomorphism K[X] ⊗K K[Y ] to
K[Z], which we know is equivalent to giving a K-homomorphism K[X] → K[Z]
and a K-homomorphism K[Y ]→ K[Z]: as already mentioned, K[X]⊗K K[Y ] is a
coproduct for K[X] and K[Y ] in the category of K-algebras. Notice also that since
K[X]⊗K K[Y ] is a domain whenever K[X] and K[Y ] are both domains, we have:

Corollary 11.2. The product of two varieties (i.e., irreducible algebraic sets)
in AnK over an algebraically closed field K is a variety (i.e., irreducible).

We also note:

Proposition 11.3. If X and Y are algebraic sets over the algebraically closed
field K, then

dim (X × Y ) = dim (X) + dim (Y ).

Proof. K[X] is module-finite over a polynomial ring A in d variables where
d = dim (X), say with module generators u1, . . . , us, and K[Y ] is module-finite, say
with module generators v1, . . . , vt, over a polynomial ring B in d′ variables. Hence,
K[X]⊗KK[Y ] is module-finite (with module generators ui⊗vj) over a polynomial
ring in d + d′ variables. Note that A ⊗K B injects into A ⊗K K[Y ] because A is
K-flat, and the latter injects into K[X]⊗K K[Y ] because K[Y ] is K-flat. �

We next prove a result that was promised long ago:
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Theorem 11.4. Let X and Y be irreducible algebraic sets meeting at a point
x ∈ AnK , where K is an algebraic closed field. Then

dim(X ∩ Y ) ≥ dim (X) + dim (Y )− n.
In fact every irreducible component of X∩Y has dimension ≥ dim (X)+dim (Y )−n.

Proof. Let X = V(P ) and Y = V(Q), where P and Q are prime ideals of
K[x1, . . . , xn]. Then X ∩ Y = V(P +Q), although P +Q need not be radical, and

K[X ∩ Y ] =
(
K[x1, . . . , xn]/(P +Q)

)
red.

Now

K[x1, . . . , xn]/(P +Q) ∼=
(
(K[x1, . . . , xn]/P )⊗K (K[y1, . . . , yn]/Q′)

)
/I∆,

where I∆ is the ideal generated by the xi− yi for 1 ≤ i ≤ n, which is the ideal that
defines the diagonal ∆ in AnK ×K AnK . The point is that once we kill the generators
xi−yi of I∆, the ring K[y1, . . . , yn] is identified with K[x1, . . . , xn], and the image
of Q′ is Q. (Geometrically, we are identifying X ∩Y with (X×Y )∩∆ in AnK×AnK ,
via the map z 7→ (z, z).) Let R = (K[x1, . . . , xn]/P )⊗K (K[y1, . . . , yn]/Q′). The
dimension of R = K[X × Y ] is dim (X) + dim (Y ). Since the intersection X ∩ Y
is non-empty, we know that I∆ expands to a proper ideal. The dimension of the
quotient will be the supremum of the heights of the m/I∆ as m runs through
maximal ideals containing I∆, and this will be the supremum of the dimensions
of the local rings dim (Rm/I∆Rm). Each Rm has dimension equal to that of R,
i.e., dim (X) + dim (Y ). But I∆ is generated by n elements, and killing n elements
in the maximal ideal of a local ring drops the dimension of the local ring by at
most n. Thus, every Rm/I∆Rm has dimension at least dim (X) + dim (Y )−n, and
the result follows. To get the final statement, let x be a point of the irreducible
component considered not in any other irreducible component of X ∩ Y , and let m
be the corresponding maximal ideal of R. We have that Rm/I∆Rm has dimension
at least dim (X) + dim (Y )− n as before, but now there is a unique minimal prime
P in this ring, corresponding to the fact that only one irreducible component of
X ∩Y contains x. It follows that this irreducible component has dimension at least
dim (X) + dim (Y )− n. �

Note that the argument in the proof shows that the map X ∩Y → (X×Y )∩∆
that sends z to (z, z) is an isomorphism of algebraic sets.

Recall that dim x(X) is the largest dimension of an irreducible component of
X that contains x. It follows at once that:

Corollary 11.5. Let X and Y be algebraic sets in Kn, where K is an alge-
braically closed field, and suppose x ∈ X ∩ Y . Then

dim x(X ∩ Y ) ≥ dim x(X) + dim x(Y )− n.

Proof. Let X0 be an irreducible component of X containing x of largest di-
mension that contains x and Y0 be such a component of Y with x ∈ Y0. Then
dim x(X) = dim (X0) and dim x(Y ) = dim (Y0). Apply the result for the irreducible
case to X0 and Y0. �

The theorem we have just proved may be thought of as an existence theorem
for solutions of equations: given two sets of equations in n variables over an alge-
braically closed field, if the two sets of equations have a common solution x, and



15211. ALGEBRAIC SETS, PRODUCTS, AND THE LOCAL NATURE OF ELEMENTS AND MAPS

the solutions of the first set have dimension d near x while the solutions of the
second set have dimension d′ near x, then the set of simultaneous solutions of the
two sets has dimension at least d+ d′ − n near x. This is well known for solutions
of linear equations, but surprising for algebraic sets!
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2. Lecture of November 30

A subset of a topological space is called locally closed if it is, equivalently, (1)
the intersection of an open set with a closed set, (2) a closed subset of an open
set, or (3) an open subset of a closed set. Let X ⊆ AnK be a closed algebraic set.
Let f ∈ K[X] = R, and let Xf = {x ∈ X : f(x) 6= 0}. Then Xf corresponds
bijectively to the set of maximal ideals in Rf . Therefore, Xf has the structure
of a closed algebraic set (a priori, it is only a locally closed algebraic set). If we
think of R as K[x1, . . . , xn]/I where I = I(X), we can map K[x1, . . . , xn+1] �
Rf , extending the map K[x1, . . . , xn] � R by mapping xn+1 → 1/f . X now

corresponds bijectively to a closed algebraic set in An+1
K : the bijection sends x to(

x, 1/f(x)
)
. The closed algebraic set in question may be described as {(x, λ) ∈

An+1
K : x ∈ X and λ = 1/f(x)}. The new defining ideal is I + (fxn+1 − 1).

We define a function Xf → K to be regular if it is regular with respect to the
closed algebraic set structure that we have placed on Xf . This raises the following
question: suppose that we have a cover of a closed algebraic set X by open sets Xfi

and a function g : X → K such that the restriction of g to each Xfi is regular in
the sense just specified. Is g regular? We shall show that the answer is “yes,” and
this shows that regularity is a local property with respect to the Zariski topology.
Let gi denote the restriction of g to Xi = Xfi . Note that gi|Xj

= gj |Xi
for all i, j,

since they are both restrictions of g.

The following fact gives a generalization to arbitrary modules over an arbitrary
commutative ring, and underlies the theory of schemes.

Theorem 11.6. Let R be any ring and M any R-module. Let X = Spec (R),
and let fi be a family of elements of R such that the open sets Xi = Xfi = D(fi)
cover X. Suppose that for every i we are given an element ui ∈ Mfi = Mi, and
suppose that (∗) for all choices of i and j, the images of ui and uj in Mfifj agree.
Then there is a unique element u ∈M such that for all i, the image of u in Mfi is
ui.

The result says, informally, that “constructing” an element of a module is a local
problem: one can solve it on an open cover, provided the solutions “fit together”
on overlaps. This turns many problems into local problems: for example, if M is
finitely presented, the problem of constructing a map of modules M → N amounts
to giving an element of the module HomR(M, N). Since localization commutes
with Hom when M is finitely presented, the problem of doing the construction
becomes local.

Note that if we apply this result in the case of the algebraic set X, we find
that there is an element g0 ∈ K[X] whose image in K[Xi] is gi for all i. This
implies that g0 agrees with g on Xi. Since the Xi cover X, g0 = g. Thus, g ∈
K[X]. Consequently, the theorem stated above does show that regularity is a local
property.

Proof. We now prove Theorem 11.6. Uniqueness is obvious: if u and u′ are
two such elements, then they agree after localizing at any fi. When one localizes
at a prime P , since P cannot contain all the fi, u and u′ have the same image in
MP . It follows that u = u′. We focus on the existence of u.
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The statement that the Xi cover is equivalent to the statement that the fi
generate the unit ideal. Then finitely many generate the unit ideal: call these
fi1 , . . . , fin . Suppose that we can construct u ∈ M such that the image of u is
uit ∈Mit , 1 ≤ t ≤ n. We claim that the image u′j of u in Mj is uj for any j. To see
this, it suffices to show that u′j − uj vanishes in (Mj)P for any P ∈ Xj . But Xj is
covered by the sets Xj ∩Xit , 1 ≤ t ≤ n. If P ∈ Xit , it suffices to show that u′j and
uj have the same image in Mfitfj

. The image of u′j is the same as the image of u,
and hence the same as the image of uit , and the result follows from our assumption
(∗).

Therefore, it suffices to work with the cover by the Xfit
, and we simplify

notation: we let the index set be {1, . . . , n} and so the fis are simply f1, . . . , fn,
the cover is X1, . . . , Xn, and Mi = Mfi . We use induction on n. If n = 1, X1 = X
and the result is clear: u = u1.

We next consider the case where n = 2. This is the core of the proof. Let u1 =
v1/f

s
1 and u2 = v2/f

t
2 where v1, v2 ∈M . Since these agree in Mf1f2 there exists an

integer N such fN1 f
N
2 (f t2v1− fs1v2) = 0. Then u1 = fN1 v1/f

N+s
1 , u2 = fN2 v2/f

N+t
2 ,

and

fN+t
2 fN1 v1 − fN+s

1 fN2 v2 = (f1f2)N (f t2v1 − fs1v2) = 0.

Thus, if we replace f1 by fN+s
1 , f2 by fN+t

2 , v1 by fN1 v1 and v2 by fN2 v2, then

u1 = v1/f1, u2 = v2/f2, and f2v1 − f1v2 = 0 (Note that the original fN+s
1 and

fN+t
2 generate the unit ideal, since any maximal ideal containing both would have

to contain both f1 and f2, a contradiction: thus, the new f1 and f2 still generate
the unit ideal).

Choose r1, r2 such that r1f1 + r2f2 = 1. Let u = r1v1 + r2v2. Then

f1u = r1f1v1 + r2(f1v2) = r1f1v1 + r2(f2v1) = (r1f1 + r2f2)v1 = v1,

so that u = v1/f1 in M1, and u = v2/f2 in M2 by symmetry.

We now assume that n > 2 and that the result has been established for integers
< n. Suppose that

r1f1 + · · ·+ rnfn = 1.

Let

g1 = r1f1 + · · ·+ rn−1fn−1

and g2 = fn. Evidently, g1 and g2 generate the unit ideal, since g1 + rng2 = 1.
Consider the images of f1, . . . , fn−1 in Rg1 . Because g1 is invertible, they generate
the unit ideal. We now apply the induction hypothesis to Mg1 , using the images
of the fi for 1 ≤ i ≤ n− 1 to give the open cover of Spec (Rg1). Let u′i denote the
image of ui in Mg1fi , 1 ≤ i ≤ n−1. It is straightforward to verify that condition (∗)
continues to hold here, using cases of the original condition (∗). By the induction
hypothesis, there is an element of Mg1 , call it w1, such that the image of w1 in each
Mg1fi is the same as the image of ui, 1 ≤ i ≤ n − 1. We claim that the images of
w1 and un agree in Mg1fn . It suffices to show that they agree after localizing at
any prime P , and P cannot contain the images of all of f1, . . . , fn−1. If P does
not contain fi, 1 ≤ i ≤ n − 1, the result follows because the images of ui and un
agree in Mfifn . We can now apply the case where n = 2 to construct the required
element of M . �
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Corollary 11.7. Let X and Y be closed algebraic sets over an algebraically
closed field K. Then a function h : X → Y is regular if and only if (#) it is
continuous and for all x ∈ X there is an open neighborhood Yg of y = h(x) and an
open neighborhood Xf ⊆ h−1(y) such that the restriction of h mapping Xf to Yg is
regular.

Proof. Y ⊆ AnK (with coordinates x1, . . . , xn in the latter), and we will reduce
to showing that the composite map X → AnK is regular. Let hi be the composition
of this map with the i th coordinate projection. It suffices to show that every
hi is regular. Let Xf be a neighborhood of x ∈ X such that h maps into an
open neighborhood Yg of h(x). It will correspond to a K-algebra homomorphism
K[Y ]g → K[X]f . Note that g is the restriction of a function g′ on AnK , and (AnK)g′

meets Y in Yg. The inclusion Y ⊆ AnK corresponds to a surjection K[x1, . . . , xn]→
K[Y ]. The map Yg → (AnK)g′ corresponds to the ring map K[x1, . . . , xn]g′ →
K[Y ]g induced by localization at the multiplicative system generated by g′ (recall
that g′ maps to g). Thus, the map Xf → (AnK)g′ is regular, and so is the map
Xf → AnK , which corresponds to the composite ring map

K[x1, . . . , xn]→ K[x1, . . . , xn]g′ → K[Y ]g → K[X]f .

It follows that the composition of the map Xf → AnK with the i th coordinate
projection is regular: this is the restriction of hi to Xf . Since the Xf cover X, it
follows that every hi is regular, and so h is regular. �

We can now define when a function between open subsets of algebraic sets
(i.e., locally closed algebraic sets) is a morphism: simply use the condition (#) in
Corollary 11.7.

A set has the structure of a reduced scheme of finite type over an algebraically
closed field K if it is a topological space X with a finite open cover by sets Xi

together with, for every i, a bijection fi : Xi
∼= Yi where Yi is a closed algebraic set

over K, satisfying the additional condition that if

fij : Xi ∩Xj
∼= fi(Xi ∩Xj) = Yij ⊆ Yi,

then the for all i, j the composite

fji ◦ f−1
ij : Yij → Yji

is an isomorphism of (locally closed) algebraic sets.

Roughly speaking, a reduced scheme of finite type over K is the result of pasting
together finitely many closed algebraic sets along overlaps that are isomorphic in
the category of locally closed algebraic sets. This is analogous to the definitions of
topological, differentiable and analytic manifolds by pasting open subsets having
the same structure as an open set in Rn (or Cn in the case of an analytic manifold).

One can use condition (#) to define when a function between two reduced
schemes of finite type over K is a morphism: thus, we require that f be continuous,
and that for all x ∈ X, if y = f(x), then when we choose an open neighborhood V
of y with the structure of a closed algebraic set, and and an open neighborhood U of
x with the structure of a closed algebraic set such that f(U) ⊆ V , then restriction
of f to a map from U to V is a morphism of algebraic sets. Our results on the local
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character of morphisms show that when X and Y are closed algebraic sets, we have
not enlarged the set of morphisms from X to Y .

A major failing of this theory is that while the category of finitely generated K-
algebras has rings with nilpotents, our reduced schemes never have any. It turns out
that the presence of nilpotents can carry geometric information! Even if one detests
nilpotents and never wants them around, it is very useful on occasion to be able to
say that there really aren’t any because of a suitable theorem (as opposed to saying
that there aren’t any because we were forced by our definitions to kill them all).
For example, one cannot express the fact that the tensor product of two reduced
K-algebras is reduced in the category of reduced schemes. While there is an object
corresponding to the reduced tensor product, there is no object corresponding to
the tensor product. The remedy is the theory of schemes: the category of schemes
contains the opposite of the category of rings as a subcategory, and contains the
category of reduced schemes of finite type over an algebraically closed field as well.

When one does the full theory of schemes, the definition of a reduced scheme
of finite type over an algebraically closed field K is somewhat different, but the
category of reduced schemes of finite type over K introduced here is equivalent to
the category one gets from the more general theory of schemes.



CHAPTER 12

Normal Noetherian domains, Dedekind domains,
and divisor class groups

1. Lecture of December 2

We briefly discuss the notion of the Krull dimension of a Noetherian module
M over a Noetherian ring R. Let I be the annihilator of M in R. Then we define
dim (M) = dim (R/I), which is the same as

sup{dim (R/P ) : P is a minimal prime of I} = sup{dim (R/P ) : P ∈ Ass (M)}.
It follows easily that if

0→M ′ →M →M ′′ → 0

is exact then
dim (M) = sup{dim (M ′), dim (M ′′)}

and, by induction on n that if

0 = M0 ⊆M1 ⊆ · · · ⊆Mn−1 ⊆Mn = M

is a finite filtration of M then

dim (M) = sup{dim (Mi+1/Mi) : 0 ≤ i ≤ n− 1}.

If (R, m) is local with x1, . . . , xn ∈ m and M 6= 0 is finitely generated over R,
then `

(
M/(x1, . . . , xn)M

)
is finite iff

M/(x1, . . . , xn)M =
(
R/(x1, . . . , xn)R

)
⊗RM

is supported precisely at m iff

Supp
(
R/(x1, . . . , xn)R

)
∩ Supp (M) = {m}

iff
V
(
(x1, . . . , xn)R

)
∩ V (I) = {m}

iff (x1, . . . , xn)R + I has radical m iff (x1, . . . , xn)(R/I) is (m/I)-primary. The
least integer n such that M/(x1, . . . , xn)M has finite length for x1, . . . , xn ∈ m is
therefore the same as dim (R/I) = dim (M), and the elements x1, . . . , xn ∈ m are
called a system of parameters for M if n = dim (M) and `

(
M/
(
x1, . . . , xn)M

)
is

finite. Clearly, x1, . . . , xn ∈ R form a system of parameters for M iff their images
in R/I are a system of parameters for R/I.

Our next objective is to give an important characterization of normal Noe-
therian domains, and then apply it to the study of normal Noetherian domains of
Krull dimension one. A normal Noetherian domain of Krull dimension one is called
a Dedekind domain. Every PID that is not a field is a Dedekind domain. The
integral closure of Z in a finite algebraic extension F of Q also turns out to be a

157
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Dedekind domain. F is called an algebraic number field and the integral closure of
Z in F is called the ring of algebraic integers of F . It is module-finite over Z, as
we shall see below.

Before giving our characterization of normal Noetherian domains, we need:

Proposition 12.1. Let R be a Noetherian ring, and suppose that P is an
associated prime of the ideal xR, where x ∈ R is not a zerodivisor. Then P is an
associated prime of y for every nonzerodivisor y ∈ P .

Proof. The issues are unaffected by passing to RP . Therefore we may assume
that (R, P ) is local. Then we may choose a ∈ P − xR such that Pa ⊆ xR.
Then ya = xb for some b ∈ R. Note that b /∈ yR, or else b = yr, and then
ya = xyr ⇒ y(a − xr) = 0 ⇒ a = xr, since y is not a zerodivisor. This is a
contradiction, since a /∈ xR, which completes the proof that b /∈ yR. We claim that
Pb ⊆ yR, for if u ∈ P , we have that ua = xs for some s ∈ R. Since ya = xb, we
find that uxb = uya = yxs and so x(ub − ys) = 0 ⇒ ub = ys, since x is not a
zerodivisor. �

Proposition 12.2. A local domain (R, P ) not a field is a DVR iff P = yR is
principal.

Proof. The condition is clearly necessary. Now suppose that P = yR. Con-
sider any nonzero element r of P . Since it is not in every power of P , there is a
largest integer n ≥ 1 such that r = uyn for u ∈ R. Then y does not divide u, which
shows that u ∈ R − P is a unit. That is, every nonzero non-unit is a unit times
a power of y. It follows at once that any proper nonzero ideal is generated by the
least power of y that it contains. �

Theorem 12.3. Let R be a Noetherian domain. Then R is normal if and only
if (1) every associated prime of any nonzero principal ideal has height one, and (2)
the localization of R at every height one prime is a DVR. In particular, if R is
one-dimensional and local, then R is normal if and only if R is a DVR.

Proof. First suppose that R is normal. Let x be any nonzero element of R
and let P be an associated prime of xR: note that any height one prime will be
a minimal prime (and, hence, an associated prime) of a principal ideal. We may
localize at P . We shall show that RP is a DVR, which evidently implies that the
height of P is one. This establishes both (1) and (2) in the characterization of
normality.

Since P 6= 0, P 6= P 2, by Nakayama’s lemma. Choose y ∈ P − P 2. We shall
prove that yR = P , which shows that P has height one and that R = RP is a
DVR. Note that P is an associated prime of yR, by the first Proposition above.
Thus, we may choose a ∈ R such that a /∈ yR but Pa ⊆ yR. If a is a unit we find
that P ⊆ yR and so P = yR and we are done. Suppose a ∈ P . We shall obtain a
contradiction. We claim that Pa ⊆ yP . For if r ∈ P and ra = yu, if u were a unit
we would have that yu ∈ P 2, and then y ∈ P 2, a contradiction.

Let f1, . . . , fn generate P . Then for every i we have an equation

afi = y
∑
j

rijfj .
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If we make f1, . . . , fn into the entries of a column vector V and let A be the matrix
(rij), this says that AV = (a/y)V . We are working over a domain R, so that we
may think over the fraction field of R. The entries of V generate the nonzero prime
P , and so V 6= 0, and is an eigenvector of A for the eigenvalue a/y. It follows as
usual that det

(
(a/y)I −A

)
= 0 i.e., that a/y satisfies the characteristic polynomial

of the matrix A = (rij), which is a monic polynomial with coefficients in R. Since
a/y ∈ frac (R) and R is normal, this implies that a/y ∈ R, and so a ∈ yR, a
contradiction. This concludes the proof of the necessity of conditions (1) and (2).

Now suppose that associated primes of nonzero principal ideals are height one
and that the localization of R at any height one prime is a DVR. We must show that
R is normal. If not, choose a fraction α that is integral over R. Then M = R[α]/R
is a finitely generated nonzero R-module: choose a prime P ∈ Ass (M). Now
replace R by RP . Our hypotheses are preserved. Moreover, PRP ∈ Ass (MP )
and so MP 6= 0, which means that RP [α] is strictly bigger than RP . We change
notation and assume that (R, P ) is local and that β ∈ R[α] is such that P is the
annihilator of the image of β in R[α]/R, that is, β /∈ R but Pβ ⊆ R. We may write
β = a/x where x ∈ R − {0} and a /∈ xR. Then P (a/x) ⊆ R, which implies that
Pa ⊆ xR. This implies that P is an associated prime of the ideal xR. Therefore,
P has height one. But then R = RP is a DVR, and is normal, since a DVR is a
PID and therefore a UFD. This is a contradiction. �

Primary decomposition of principal ideals in a normal Noetherian domain has
a particularly simple form: there are no embedded primes, and so if 0 6= a ∈ P
the P -primary component is unique, and corresponds to the contraction of an ideal
primary to the maximal ideal in RP , a discrete valuation ring. But the only ideals
primary to PRP in RP are the powers of PRP , and so every P -primary ideal has
the form P (n) for a unique positive integer n. Thus, if a 6= 0 is not a unit, then aR
is uniquely an intersection

P
(k1)
1 ∩ · · · ∩ P (kn)

n .

Form the free abelian group G on generators [P ] corresponding bijectively to the
height one prime ideals P of R. If the ideal aR has the primary decomposition
indicated, the element

∑n
i=1 ki[Pi] is called the divisor of a, and denoted div (a).

By convention, the divisor of a unit of R is 0. The quotient of G by the span of all
the divisors is called the divisor class group of R, and denoted C` (R). It turns out
to vanish if and only if R is a UFD. In fact, [P ] maps to 0 in C` (R) iff P is principal.
One can say something even more general. An ideal I of a Noetherian ring R is said
to have pure height h if all associated primes of I as an ideal have height h. The
unit ideal, which has no associated primes, satisfies this condition by default. If I
is an ideal of a Noetherian normal domain of pure height one, then I has a primary

decomposition P
(k1)
1 ∩ · · · ∩ P (kn)

n , and so there is a divisor div (I) associated with
I, namely

∑n
i=1 ki[Pi]. If I = R is the unit ideal, we define div (I) = 0.

Theorem 12.4. Let R be a Noetherian normal domain. If I has pure height
one, then so is fI for every nonzero element f of R, and div (fI) = div (f)+div (I).
For any two ideals I and J of pure height one, div (I) = div (J) iff I = J , while the
images of div (I) and div (J) in C` (R) are the same iff there are nonzero elements
f, g of R such that fI = gJ . This holds iff I and J are isomorphic as R-modules.
In particular, I is principal if and only if div (I) is 0 in the divisor class group.
Hence, R is a UFD if and only if C` (R) = 0. The elements of C` (R) are in bijective
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correspondence with isomorphism classes of pure height one ideals considered as R-
modules, and the inverse of the element represented by div (I) is given by div (J),
for a pure height one ideal J ∼= HomR(I, R). In fact, if g ∈ I − {0}, we may take
J = gR :R I.

Proof. I = J iff div (I) = div (J) because, for pure height one ideals, the
associated divisor completely determines the primary decomposition of the ideal.
Note that 0 ⊆ fR/fI ⊆ R/fI and that the quotient is ∼= R/fR while fR/fI ∼=
R/I. Since Ass (R/I) contains only height one primes and Ass (R/fR) contains
only height one primes (since R is normal), it follows that Ass (R/aI) contains
only height one primes. The statement that div (fI) = div (f) + div (I) may be
checked locally after localizing at each height one prime ideal Q, and is obvious in
the case of a discrete valuation ring. In particular, div (fg) = div (f)+div (g) when
f, g ∈ R− {0}. It follows easily that

Span {div (f) : f ∈ R− {0}} = {div (g)− div (f) : f, g ∈ R− {0}}.
Thus, if div (I) = div (J) in C` (R), then div (I)− div (J) = div (g)− div (f) and so
div (fI) = div (gJ) and fI = gJ . Then I ∼= fI = gJ ∼= J as modules. Now suppose
θ : I ∼= J as modules (it does not matter whether I, J have pure height one) and
let g ∈ I − {0} have image f in J . For all a ∈ I, gθ(a) = θ(ga) = aθ(g) = af ,
and so θ(a) = (f/g)a, and θ is precisely multiplication by f/g. This yields that
(f/g)I = J and, hence, fI = gJ .

Now fix I 6= (0) and g ∈ I−{0}. Any map I → R is multiplication by a fraction
f/g, where f is the image of g in R: thus, HomR(I, R) ∼= {f ∈ R : (f/g)I ⊆ R},
where the homomorphism corresponding to multiplication by f/g is mapped to f .
But (f/g)I ⊆ R iff fI ⊆ gR, i.e., iff f ∈ gR :R I. Thus, HomR(I, R) ∼= gR :R I =
J . We claim that J has pure height one (even if I does not) and that if I has pure
height one then div (J) + div (I) = div (g), which shows that div (J) = −div (I)
in C` (R). If not, let P be an associated prime of J of height two or more, and
localize at P . Then there is an element u /∈ J , i.e., such that uI * gI, but such
that Pu ⊆ J , i.e. PuI ⊆ gR. Choose r ∈ I such that ur /∈ gR. Then Pur ⊆ gR,
which shows that P is an associated prime of g, a contradiction, since R is normal.
Thus, J has pure height one. Now localize at any height one prime P to check that
div (J) + div (I) = div (g). After localization, if x generates the maximal ideal we
have that I = xmR, g = xm+nR, where m, n ∈ N, and, since localization commutes
with formation of colon ideals, that J = xm+nR : xnR, which is xmR. This is just
what we needed to show that the coefficients of P in div (I) and div (J) sum to the
coefficient of P in div (g).

It remains only to show that every element of C` (R) is represented by div (I)
for some ideal I. But this is clear, since the paragraph above shows that inverses
of elements like [P ] are represented by divisors of ideals. �

A further related result is that a finitely generated torsion-free module M of
torsion-free rank one over a Noetherian normal domain R is isomorphic with a
pure height one ideal if and only if it is a reflexive R-module, i.e, if and only if
the natural map M → M∗∗ is an isomorphism, where ∗ indicates Hom( , R),
and the natural map sends u ∈M to the map M∗ → R whose value on f ∈M∗ is
f(u). In fact, a finitely generated torsion-free module of rank one over a Noetherian
domain is always isomorphic to an ideal I 6= 0 of R, and if R is normal, I∗∗ may
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be identified with the intersection of the primary components of I corresponding
to height one minimal primes of I. (If there are no such minimal primes then I∗∗

may be identified with R.)

Computing the divisor class group is extremely difficult, even for rings of alge-
braic integers in an algebraic number field: such calculations constitute a branch
of mathematics in its own right. The problem is amazingly hard even for quadratic
extensions of Q.

We next want to comment further on the normal Noetherian domains of Krull
dimension one: these are called Dedekind domains.

Theorem 12.5. The following conditions on a domain R of Krull dimension
one are equivalent:

(1) R is normal, i.e., is a Dedekind domain.
(2) For every maximal ideal P in R, RP is a discrete valuation ring.

In a Dedekind domain, every nonzero ideal other than R is uniquely a product of
powers of maximal ideals.

Proof. We know that the property of being normal is local, and a local domain
of Krull dimension one is normal if and only if it is a DVR. The final statement
corresponds to primary decomposition for principal ideals in a normal Noetherian
ring R: symbolic powers of maximal ideals agree with ordinary powers, since the
ordinary powers are primary, and we can replace intersection with product because
the ideals involved are pairwise comaximal. �

We shall come back to the study of Dedekind domains but we first want to
observe some other results about normal rings that need not have Krull dimension
one.
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2. Lecture of December 4

Theorem 12.6. A Noetherian ring is normal if and only if it is the intersection
of discrete valuation rings, and these may be taken to be its localizations at height
one primes.

Proof. A DVR is normal, and hence an intersection of DVRs is normal. Thus,
it suffices to show that a normal Noetherian ring is the intersection of its localiza-
tions at height one primes. Let f = a/x be a fraction supposedly in all these
localizations. Let M = (R+R(a/x)/R), which is a nonzero module. Then a/x has
some nonzero multiple b/x with prime annihilator P mod R. Localize at P , and
change notation, replacing R by RP .

It follows that b/x /∈ R but P (b/x) ⊆ R, which says that b /∈ xR but Pb ⊆ xR.
This implies that P is an associated prime of the ideal xR, and since R is normal we
have that P has height one and R is a DVR. But then b/x ∈ R, a contradiction. �

Theorem 12.7. A polynomial ring (even in infinitely many variables) over a
normal Noetherian ring is normal.

Proof. It is easy to check that a directed union of normal domains is normal.
(An element alpha in the fraction field integral over the union will be in the fraction
field of one of these domains, and likewise will be integral over one of them. But
some domain D in the family will contain both, and since D is normal, α is integral
over D and in the fraction field of D, and so must be in D.) Therefore, it suffices
to consider the case of finitely many variables. By a straightforward induction we
need only consider the case of one variable. Since the ring R is the intersection of
discrete valuation rings V ⊆ F = frac (R), it follows that R[x] is the intersection of
the rings V [x] ⊆ F [x], and every V [x] is a UFD, and, hence, normal. Thus, R[x] is
normal. �

The same proof applies to the power series ring in finitely many variables over
a normal Noetherian ring, although we are missing a step in the proof, since we
do not know that the ring V [[x]] is a UFD, but this is true. This is part of the
theory of regular local rings. For polynomial rings, the Noetherian restriction on R
can be removed. One method of proof is to represent R is an intersection of non-
Noetherian valuation domains: these are domains in which the ideals are totally
ordered. One thus reduces to proving the result for valuation domains. Another
method is to show that a domain finitely generated over Z or over any Z/pZ has
the property that its integral closure is a finite module over it. It then follows
that every normal ring is a directed union of Noetherian normal rings, and one can
reduce to the Noetherian case. A direct argument is also possible.

However it is not true that when R is normal but not Noetherian, that the
formal power series ring R[[x]] must be normal: this is not true even when R is a
valuation domain, although it is erroneously asserted to be true in the first edition of
Nagata’s book Local Rings. See [13]. It is also worth noting that in the Noetherian
case, the formal power series ring in one variable over a UFD need not be a UFD,
by independent examples of D. Buchsbaum and P. Samuel, although the formal
power series ring in any number of variables over a field or a discrete valuation
ring is a UFD.

We next want to prove that certain integral closures are module-finite:



2. LECTURE OF DECEMBER 4 163

Theorem 12.8. Let R be a normal Noetherian domain and let L be a finite
separable algebraic extension of the fraction field K of R (separability is automatic
if K has characteristic 0). Then the integral closure S of R in L is a module-finite
over R, and, hence, a Noetherian normal ring.

When K ⊆ L is a finite algebraic extension of fields, for any λ ∈ L, we define
TrL/K(λ) to be trace of the K-linear map L → L given by λ: it may be computed by
choosing a basis for L over K, finding the matrix of the map given by multiplication
by λ, and summing the entries of the main diagonal of this matrix. It is independent
of the choice of basis. If the characteristic polynomial is xn − cxn−1+ lower degree
terms, where n = [L : K], the trace is c. It is also the sum of the eigenvalues of the
matrix (calculated in a splitting field for f or any larger field, such as an algebraic
closure of K), i.e., the sum of the roots of f (where if a root has multiplicity k, it
is used a summand k times in the sum of the roots). We give a further discussion
of the properties of trace following the proof of the theorem.

A key element of the proof is that a finite algebraic extension L of K is separable
if and only if some element of L has nonzero trace in K. This fact is quite trivial
in characteristic 0, since the trace of the identity element is [L : K] 6= 0. This
implies that the function B : L × L → K that maps (a, b) to the trace of ab is
a non-degenerate symmetric bilinear form: it is non-degenerate because if c has
nonzero trace, given a ∈ L− {0}, B(a, c/a) is the trace of c, and so is not 0. Here,
n = [L : K]. This non-degeneracy tells us that if b1, . . . , bn is any basis for L over
K, then the matrix (TrL/Kbibj) is invertible over K, and we shall assume this in
proving the theorem. After we give the proof we discuss further the facts about
bilinear forms and about trace that we are using, including the characterization of
separability using trace in positive characteristic.

We next prove a preliminary result of great importance in its own right.

Theorem 12.9. Let R be a normal domain with fraction field K, and let L
be a finite algebraic extension of K. Let s ∈ L be integral over R. Multiplication
by s defines a K-linear map of L to itself. The coefficients of the characteristic
polynomial of this K-linear map are in R. In particular, TrL/K(s) ∈ R.

Proof. We first consider the case where L = K[s]. Let f be the minimal
polynomial of s over K, which has degree d. We showed earlier that f has all of its
coefficients in R: this is the first Proposition in the Lecture Notes from Octboer 1.
Suppose that f has degree d. Then [L : K] = d, and the characteristic polynomial
of the matrix of multiplication by s has degree d. Since the matrix satisfies this
polynomial, so does s. It follows that the characteristic polynomial is equal to the
minimal polynomial of s over K.

In the general case, let L0 = K[s] ⊆ L, and let v1, . . . , vd be a basis for L0 over
K, and let w1, . . . , wh be a basis for L/L0. Let A be the matrix of multiplication
by s on L0 with respect to v1, . . . , vd. Then the span of v1wj , . . . , vdwj is L0wj
and is stable under multiplication by s, whose matrix with respect to this basis is
also A. Therefore, the matrix of multiplication by s with respect to the basis

v1w1, v2w1, . . . , vdw1, . . . , v1wh, v2w1, . . . , vdwh

is the direct sum of h copies of A, and its characteristic polynomial is fh, where f
is the characteristic polynomial of A. We already know that f has coefficients in
R. �
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Corollary 12.10. Let R be a normal domain that contains Q, and let S be a
module-finite extension of R. Then R is a direct summand of S as an R-module.
Hence, for every ideal I of R, IS ∩R = I.

Proof. R− {0} is a multiplicative system in S, and so there is a prime ideal
P of S disjoint from R − {0}. Then R embeds in the domain S/P , which is still
module-finite over R. It suffices to show that R ↪→ S/P splits, for if φ : S/P → R
is R-linear and restricts to the identity map on R, then the composition of φ with
S � S/P will be an R-linear map S → R that restricts to the identity on R. Thus,
we have reduced to the case where S is a module-finite extension domain of R. Let
K and L be the fraction fields of R and S, respectively, and let n = [L : K]. Then
(1/n)TrL/K, when restricted to S, takes values in R (by the preceding Theorem),
is R-linear, and is the identity when restricted to R. �

Proof. We now prove Theorem 12.9. Consider K ⊗R S = (R − {0})−1S ⊆
(S − {0})−1S = L. This domain is module-finite over K and so has dimension
0. Therefore, it is a field containing S, and so must be L. It follows that every
element of L can multiplied in S by an element of R − {0}. Choose a basis for L
over K, and multiply each basis element by a nonzero element of R so as to get
a basis for L over K consisting of elements of S. Call this basis b1, . . . , bn, where
n = [L : K]. Because the field extension is separable, the matrix A =

(
TrL/K(bibj)

)
is invertible. By the preceding theorem, each entry of this matrix is in R, and so
the determinant D of this matrix is a nonzero element of R. We shall prove that
DS ⊆ Rb1 + · · · + Rbn = G. Since R is a Noetherian ring, G is a Noetherian
R-module, and this implies that DS is a Noetherian R-module. But S ∼= DS as
R-modules, via s 7→ Ds.

It remains to show that DS ⊆ R. Let s ∈ S. Then s ∈ L and so can be written
uniquely in the form α1b1 + · · · + αnbn. We may multiply by bi ∈ S and take the
trace of both sides:

TrL/K(sbi) =

n∑
j=1

αjTrL/K(bibj),

Let ri = TrL/K(sbi), let W be the column vector whose entries are the ri (which are
in R, by the preceding Theorem), and let V be the column vector whose entries are
the αj . Then W = AV , where A and W have entries in R. Let B be the classical
adjoint of A, i.e., the transpose of the matrix of cofactors. Then B also has entries
in R, and BA = D(I), where I is the size n identity matrix. It follows that BW =
BAV = DV , so that eachDαj is in R. But thenDs = (Dα1)b1+· · ·+(Dαn)bn ∈ G,
as required. �

Corollary 12.11. Let D be any Dedekind domain whose fraction field K has
characteristic 0, such as the integers. Let L be a finite algebraic extension of K.
Then the integral closure of D in L is module-finite over K, and is a Dedekind
domain.

Proof. It is module-finite by the Theorem we just proved, and therefore Noe-
therian. It is normal by construction,’ and one-dimensional because it is an integral
extension of a ring of Krull dimension one. �

We next backtrack and review some facts about bilinear forms. Let K be
a field and V a vector space of finite dimension n over K. A bilinear form is
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simply a bilinear map B : V × V → K, and giving V is the same a giving a
linear map T : V ⊗ V → K. If v1, . . . , vn is a basis for V , then the elements
vi ⊗ vj are a basis for V ⊗K V , and so B is completely determined by the matrix
A = (B(vi, vj) = T (vi ⊗ vj). If the matrix A = (aij). Suppose that we use this
basis to identify V with Kn, with standard basis e1, . . . , en, then B(ei, ej) = aij .
If v and w are the n × 1 column matrices with entries c1, . . . , cn and d1, . . . , dn,
respectively, then

B(v, w) = B(
∑
i

ciei,
∑
j

djej) =
∑
i,j

cidjB(ei, ej) =
∑
i,j

ciaijdj =
∑
i

ci(
∑
j

aijdj)

which is the unique entry of the 1× 1 matrix vtr Aw.

To see the effect of change of basis, let C be an n × n matrix whose columns
w1, . . . , wn are a possibly new basis for V = Kn. Then wtr

i Awj is the i, j entry of
the matrix Ctr AC (which called congruent or cogredient to A). The invertibility
of A is unaffected by the choice of basis. If A is invertible, the bilinear form is

called non-degenerate.

Let B be a bilinear form and fix a basis v1, . . . , vn for V . Let V ∗ be the dual
vector space. Then B gives a linear map L : V → V ∗ by the rule L(v)(w) =
B(v, w). fix a basis v1, . . . , vn for V . There is a dual basis for the dual vector space
V ∗ of V , whose i th element fi is the linear functional whose value on vi is 1 and
whose value on vj is 0 for j 6= i. Since the value of L(vi) on w =

∑
j cjvj is

B(vi,
∑
j

cjvj) =
∑
j

cjB(vi, vj) =
∑
j

B(vi, vj)fj(w),

we have that L(vi) =
∑
j B(vi, vj)fj . Thus, the matrix of B with respect to

c1, . . . , cn is the same as the matrix of L with respect to the two bases v1, . . . , vn
and f1, . . . , fn. Hence, the matrix of B is invertible if and only if L : V → V ∗ is an
isomorphism. This shows that B is non-degenerate if and only if L is one-to-one,
which means that B is non-degenerate if and only if for all v ∈ V −{0} there exists
w ∈ V such that L(v, w) 6= 0.

B is called symmetric if B(v, w) = B(w, v) for all v, w ∈ V , and this holds if
and only if its matrix A is symmetric.

We next give some further discussion of the notion of trace, and prove the trace
characterization of separability discussed earlier.

Let R be any ring and F ∼= Rn a free R-module. Consider any R-linear en-
domorphism T : F → F . We define the trace of T as follows: choose a free basis
for F , let M = (rij) be a matrix for T , and let Tr(T ) be the sum

∑n
i=1 rii of the

entries on the main diagonal of M . This is independent of the choice of free basis
for F : if one has another free basis, the new matrix has the form AMA−1 for some
invertible n× n matrix A over R, and the trace is unaffected.

If S 6= 0 is a free R-algebra that has finite rank as an R-module, so that S ∼= Rn

as an R-module for some positive integer n, then for every element s ∈ S we define
TrS/Rs to be the trace of the R-linear endomorphism of S given by multiplication
by s. Then TrS/R : S → R is an R-linear map. If r ∈ R, TrS/R(r) = nr, since the
matrix of multiplication by r is r times the n × n identity matrix. We are mainly
interested in the case where R and S are both fields. We first note:
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Lemma 12.12. If T is a free S-algebra of finite rank m ≥ 1 and S is free
R-algebra of finite rank n ≥ 1, then TrT/R is the composition TrS/R ◦ TrT/S.

Proof. Let u1, . . . , un be a free basis for S over R, and let v1, . . . , vm be a
free basis for T

S . Let A = (sij) be the m ×m matrix over S for multiplication by
t ∈ T with respect to the free basis v1, . . . , vm over S. Let Bij be the n×n matrix
over R for multiplication by sij acting on S with respect to the basis u1, . . . , un for
S over R. Then

t(uhvk) = uh(tvk) = uh(
∑
j

sjkvk) =
∑
j

(sjkuh)vk

and sjkuh is the dot product of the h column of Bij with the column whose entries
are u1, . . . , un. It follows that a matrix for multiplication by t acting on T over R
with respect to the basis uhvk is obtained, in block form, from (sij) by replacing
the i, j entry by the block Bij . Then TrT/R(t) is the sum of the diagonal entries of
this matrix, which is sum over i of the sums of the diagonals of the matrices Bii.
Now, TrT/S(t) is the sum of the sii, and when we apply TrS/R be get the sum
over i of the elements τi = TrS/R(sii. But τi is the same as the sum of diagonal
elements in Bii, and the result follows. �

Theorem 12.13. Let L be a finite algebraic extension field of K. Then the
extension is separable if and only if there is a (nonzero) element λ ∈ L such that
TrL/K(λ) 6= 0.

Proof. We have already observed that the trace of 1 is n = [L : K] which
will be nonzero if K has characteristic 0, and every finite algebraic extension is
separable in characteristic 0. Now suppose that K (and, hence, L) have positive
prime characteristic p.

If the extension if not separable, let F be the largest separable extension of K
within L. Since we must have an element θ ∈ L such that θp ∈ F but θ /∈ F . Let
G be the field F [θ]. Since

TrL/K = TrF/K ◦ TrG/F ◦ TrL/G

it will suffice to show that TrG/F vanishes identically. We have therefore reduced
to the case where L is purely inseparable over K, generated by a single element θ
such that θp ∈ cK. For an element c ∈ K, TrL/K(c) = pc = 0. For an element
λ ∈ L − K, we have that λp = c ∈ K. Since [L : K] = p is prime, there are
no strictly intermediate fields, and so K[λ] = L, and λ has degree p over K. It
follows that the minimal polynomial of λ over K is xp−c, and that the elements λt,
0 ≤ t ≤ p−1, are a basis for L over K. Multiplication by λ. maps each basis vector
to the next, except for λp−1, which is mapped to c ·1. The matrix for multiplication
by λ therefore has only zero entries on the main diagonal, and so TrL/K(λ) = 0,
as required. (The matrix has a string of entries equal to one just below the main
diagonal, and the element c occurs in the upper right hand corner. All other entries
are 0.)

It remains to show that if L/K is separable, then some element has trace
different from 0. By the theorem on the primitive element, we may assume that
L = K[θ]. (Even without knowing this theorem, we can think of L as obtained
from K by a finite sequence of field extensions, each of which consists of adjoining
just one element, and so reduce to the case where one has a primitive element.)
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Let f be the minimal polynomial of θ: the hypothesis of separability implies that
the roots of f are n distinct elements of the algebraic closure L of L: call them
θ1, . . . , θn. Let A be the matrix for multiplication by θ with respect to some basis
for L over K. Then for every t, At gives a matrix for multiplication by θt. We shall
show that for some i, 0 ≤ i ≤ n− 1, TrcL/K(θi) 6= 0. Assume otherwise.

Since A satisfies its characteristic polynomial, call it g, which is monic of degree
n, θ satisfies g. Thus, f | g. Since f and g are monic of the same degree, g = f .
Thus, the eigenvalues of A are distinct: they are the elements θj . Therefore, A is

similar over (L) to diagonal matrix with the θj on the diagonal, and it follows that,
for every i, Ai is similar to a diagonal matrix with the entries θij on the diagonal.
Therefore,

TrL/K(θi) =

n∑
j=1

θij = 0.

Thus, the sum of the columns of the matrix Θ = (θi−1
j ) is 0, which implies that the

determinant is 0. We conclude the proof by showing that the determinant cannot
be zero. (This is the well-known Van der Monde determinant, and its value can be
shown to be the product of the

(
n
2

)
differences θj − θi for j > i. It will not vanish

because the θj are distinct. But we argue differently, without assuming this.) If

the determinant is 0 there is an L-linear relation on the rows as well: suppose that
γ = (c0 c1 . . . cn) is a vector such that γΘ = 0, giving a relation on the rows.
This simply says that for every j,

n−1∑
i=0

ciθ
i
j = 0.

But if

h(x) = c0 + c1x+ · · ·+ cn−1x
n−1,

this says that all of the θj are roots of h(x), a polynomial of degree at most n− 1.
This is a contradiction unless all of the ci are 0. �

This completes our treatment of separability and trace.
It is a fact that in any Dedekind domain R, fg ∈ (f2, g2)R. This is left as an

exercise. It is also true that in the polynomial ring in n variables over a field K, for
any n+ 1 elements f1, . . . , fn+1, we have that (f1 · · · fn+1)n ∈ (fn+1

1 , . . . , fn+1
n )R.

In particular, in R = C[x, y], for any three elements f, g, h, we have that (fgh)2 ∈
(f3, g3, h3)R. I know of three proofs of this, all involving some difficult ideas. It
would be of great interest to find an elementary proof, even in the case of C[x, y].

Here is another example where indeterminates cannot be canceled: let

R = C[x, y, z]/
(
xy − (1− z2)

)
and let

S = C[x, y, z]/
(
x2y − (1− z2)

)
.

There is no obvious reason why R and S should be isomorphic, and they are not
(although it is not easy to prove this). It may come as a surprise that R[t] ∼= S[t]:
they do become isomorphic when an indeterminate is adjoined. These are called
Danielewski surfaces. Danielewski’s paper [3] is not readily available. See the
exposition [12] and the paper [6]
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A Noetherian ring with only finitely many maximal ideals is called semilocal.
(The term quasisemilocal is used for rings with finitely many maximal ideals if
they need not be Noetherian.) Given finitely many mutually incomparable primes

P1, . . . , Pk of a ring R, if W = R −
⋂k
j=1 Pj , then W is a multiplicative system

in R. The ring W−1R has as its maximal ideals precisely the k ideals PjW
−1R.

Thus, if R is Noetherian, it is semi-local. It is referred to as the localization of R
at the primes P1, . . . , Pk.

Theorem 12.14. Let R be a Dedekind domain. Let M be a finitely generated
R-module.

(a) If M is torsion-free, it is projective. In particular, every ideal of R is projective,
and the product IJ of two ideals is ∼= I⊗J as a module, and so its isomorphism
class as a module depends only on the isomorphism classes of I and J .

(b) R is a UFD if and only if R is a PID.
(c) If R is semi-local, then R is a PID.
(d) Given finitely many maximal ideals P1, . . . , Pk of R and an ideal I 6= 0, I is

isomorphic with an ideal not contained in any of the Pi.
(e) M is a direct sum of a torsion module and a torsion-free module. The torsion

submodule N is unique and may be viewed as a module over the localization of
R at the set of finitely many maximal ideals in its support: the localization is
a PID and the theory of modules over a PID applies. Thus, N is a direct sum
of cyclic modules.

(f) If I and J are nonzero ideals of R, then I ⊕ J ∼= I ∩ J ⊕ (I + J) ∼= IJ ⊕R, and
if I1, . . . , In are nonzero ideals then I1 ⊕ · · · ⊕ In ∼= (I1 · · · In)⊕Rn−1.

(g) If N is the torsion submodule of M , the torsion-free summand of M is isomor-
phic with M/N . Any finitely generated torsion-free R-module M is the direct
sum of a free R-module Rn−1 and an ideal I ⊆ R. The integer n is uniquely
determined, and I is uniquely determined up to module isomorphism.

Proof. (a) Projective is equivalent to locally free. Locally, R is a DVR, and
every finitely generated torsion-free module is free, since a DVR is a PID. When
we apply I ⊗R to the injection J ⊆ R we find that I ⊗R J ↪→ I ⊗R R ∼= I:
the map is injective because I is projective and, therefore, flat. The image of
this map is IJ . (b) To prove “only if,” note that in a UFD, height one primes

are principal. Every maximal ideal of R is therefore principal, and every nonzero
proper ideal is a finite product of powers of maximal ideals and so principal. But
the “if” part is clear, since a PID is a UFD. (c) Let m = m1,m2, . . . , mk be the

maximal ideals: it suffices to show that each is principal. m is not contained in
any of m2,m2, . . . ,mk: choose x ∈ m not in the union of these. Then xR = m,
because that is true if we localize at any mi. If i = 1, this is because x ∈ m−m2,
and so x /∈ m2Rm, since m2Rm ∩ R = m(2) = m2, since m is maximal. For any
other mi, xRmi

= mRmi
: in fact, both are the unit ideal. (d) After localization at

P1, . . . , Pk, IW−1R becomes principal: we can choose b ∈ I that generates. Thus,
there exists w not in any Pk such that wI ⊆ bR ⊆ I, and so J = (w/b)I ⊆ R is
isomorphic with I as an R-module. If J ⊆ Pi, then wI ⊆ bPi. When we localize at
Pi, w becomes invertible, yielding IRPi

⊆ bPiRPi
. Since IRPi

= bRPi
, we have that

bRPi ⊆ bPiRPi , and so RPi ⊆ PiRPi , a contradiction. (e) The torsion submodule

consists of all torsion elements in M and so is obviously unique. M/N is clearly
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torsion-free and so projective. Thus, 0 → N → M → M/N → 0 splits. Choose
finitely many generators for N . Each has a nonzero annihilator, and, hence, so
does N . We may view N as a module over R/A, where A = AnnRN , and this
is a zero-dimensional Noetherian ring. Clearly, it has only finitely many maximal
ideals coming from maximal ideals P1, . . . , Pk of R. Any element not in the union
of the Pj acts invertibly on N , and so N is a module over the localization of R
at P1, . . . , Pk. (f) There is an exact sequence 0 → I ∩ J → I ⊕ J → I + J → 0

where the map I ⊕ J � I + J sends i ⊕ j to i − j, and then map I ∩ J → I ⊕ J
sends u to u⊕u. Since I + J is projective, the sequence is split exact, which shows
that I ⊕ J ∼= (I ∩ J) ⊕ (I + J). By (d), we can choose I ′, an ideal isomorphic
with I as a module, but such that I ′ is not contained in any of the finitely many
minimal primes of J . This means that I ′ and J are comaximal, i.e., I ′ + J = R,
and then I ′ ∩ J = I ′J . Thus, I ⊕ J ∼= I ′ ⊕ J ∼= (I ′ ∩ J) ⊕ (I ′ + J) = I ′J ⊕ R ∼=
(I ′ ⊗R J) ⊕ R ∼= (I ⊗R J) ⊕ R ∼= IJ ⊕ R, as required. The final statement is a
straightforward induction on n, using the result just proved.

(g) Let K = frac (R). Then K ⊗RM ∼= Kn and we can therefore choose a nonzero
map from K ⊗R M onto K. This is an element of HomK(K ⊗R M,K ⊗ R) ∼=
K ⊗R HomR(M,R), and so there must exist a nonzero R-linear map f : M → R.
Call the image I, which is an ideal of R. Then I is projective. The map M � I
therefore splits, and M ∼= M0 ⊕ I. Iterating, we see that M is a direct sum of
ideals, I1 ⊕ · · · ⊕ In. By (f), this direct sum is isomorphic with Rn−1 ⊕ (I1 · · · In).
The integer n is the torsion-free rank of M , i.e., the vector space dimension over K
of K ⊗RM . It remains only to see that the module isomorphism class of the ideal
I is unique, which follows from the Lemma given immediately following. �

Lemma 12.15. Let R be a Noetherian ring and let P , P ′ be finitely generated
modules that are locally free of rank one. Suppose that M = Rn−1⊕P ∼= Rn−1⊕P ′.
Then P ∼= P ′.

This immediately yields the fact needed to complete the proof of part (g) of
the preceding theorem.

Lemma 12.15 is proved by showing that P ∼=
∧n
RM

∼= P ′. Before giving the
details, we review the properties of exterior powers.

A multilinear map of R-modulesMn →W is called alternate or alternating if its
value is 0 whenever two entries of an n-tuple are equal. (This implies that switching
two entries negates the value. Making an even permutation of the entries will not
change the value, while an odd permutation negates the value.) Let

∧n
R(M) =∧n

(M) denote the quotient of M⊗n by the submodule spanned by all n-tuples two

of whose entries are equal. We make the convention that
∧0

M ∼= R, and note that

we may identify M ∼=
∧1

M . Then
∧
M =

⊕
n

∧n
M is an associative N-graded

algebra with R in the center, with
∧n

(V ) as the component in degree n.
∧

(V )
is called the exterior algebra of M over R, and

∧n
(M) is called the n th exterior

power of M over k. The multiplication on
∧

(M) is often denoted ∧. If the elements
ui span M , then the elements ui1 ∧ · · · ∧ uin span

∧n
(V ). If α has degree m and

β has degree n, then α ∧ β = (−1)mnβ ∧ α. Thus, the even degree elements are all
in the center, while any two odd degree elements anti-commute. If u1, . . . , un is a
free basis for M , then the elements ui1 ∧ · · · ∧ uik , 1 ≤ i1 < · · · < ik ≤ n form a

free basis for
∧k

(M), and
∧k

(M) has dimension
(
n
k

)
. In particular,

∧N
(M) = 0 if
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N exceeds the rank of the free module M (more generally,
∧N

M = 0 whenever M
is spanned by fewer than N elements).

If f : M → N is R-linear, there is an induced map
∧n

(f) :
∧n

(M)→
∧n

(N),
and

∧n
(f ′ ◦ f) =

∧n
(f ′) ◦

∧n
(f) when the composition f ′ ◦ f is defined. Together

these maps give a ring homomorphism of
∧

(M) →
∧

(N) that preserves degrees.
Thus,

∧
( ) is a functor from R-modules to skew-commutative associative graded

R-algebras, and every
∧i

( ) is a covariant functor from R-modules to R-modules.

If M is free of rank n with basis v1, . . . , vn and f : M → M has matrix A =
(aij), then

∧n
(f) : M →M sends v1∧· · ·∧vn to det(A)v1∧· · ·∧vn. (We have that∧n

(f)(v1 ∧ · · · ∧ vn) = (a11v1 + · · ·+ a1nvn) ∧ · · · ∧ (an1v1 + · · ·+ annvn). Expanding

by the generalized distributive law yields nn terms each of which has the form
ai1,1 · · · ain,nvi1 ∧ · · · ∧ vin . If two of the it are equal, this term is 0. If they are all
distinct, the vit constitute all the elements v1, . . . , vn in some order: call the corre-
sponding permutation σ. Rearranging the vj gives sgn (σ)ai1,1 · · · ain,nv1 ∧ · · · ∧ vn.
The sum of all of the n! surviving terms is det(A)v1 ∧ · · · ∧ vn, using one of the
standard definitions of det(A) ). The fact that the determinant of a product of two
n × n matrices is the product of the determinants may consequently be deduced
from the fact that

∧n
preserves composition.

We note that if M and N are any two R-modules then there is a canonical iso-

morphism θ :
∧n

(M ⊕N) ∼=
⊕

i+j=n

∧i
M ⊗R

∧j
N = W .

Here, i, j are restricted to be nonnegative integers. This isomorphism is suggested

by the fact that (y1 ⊕ z1) ∧ · · · ∧ (yn ⊕ zn), where the yt are in M and the zt are
in N , expands as the sum of 2n terms of the form u1 ∧ · · · ∧ un, and in one of
these terms, if ut1 , . . . , uti are from M and ut′1 , . . . , ut′j are from N , the term can

be rewritten as sgn (σ)(ut1 ∧ · · ·∧uti)∧ (ut′1 ∧ · · ·∧ut′j ), where σ is the permutation

of {1, . . . , n} whose values on 1, . . . , n are t1, . . . , ti, t
′
1, . . . , t

′
j . Thus, to construct

θ, we give a multilinear map (M ⊕N)n → W as follows. It is equivalent to give a
linear map (M ⊕N)⊗n →W , and (M ⊕N)⊗n is the direct sum of 2n terms of the
form U1⊗· · ·⊗Un where every Ut is either M or N . It suffices to give a multilinear
map on every U1 × · · · × Un to W . Suppose that we have Ut1 = · · · = Uti = M ,
where t1 < · · · < ti, and that we likewise have Ut′1 = · · · = Ut′j = N , where

t′1 < · · · < t′j . Here i + j = N . Let σ be the permutation whose values on
1, . . . , n are t1, . . . , ti, t

′
1, . . . , t

′
j , as above. Then our map will send (u1, . . . , un) to

sgn (σ)(ut1 ∧ · · · ∧ uti) ⊗ (ut′1 ∧ · · · ∧ ut′j ). The direct sum of all these determines

a multilinear map (M ⊕ N)n → W , and it is straightforward to check that it is
alternating, and so induces a map θ :

∧n
(M ⊕N)→W .

Note that there is a multilinear map M i ×N j →
∧n

(M ⊕N) such that

(u1, . . . , ui, v1, . . . , vj) 7→ u1 ∧ · · · ∧ ui ∧ v1 ∧ · · · ∧ vj ,

and so we have a map M⊗i ⊗R N⊗j →
∧n

(M ⊕N) = W . It

is easy to verify that this map factors through
∧i

(M) ⊗R
∧j

(N), and the direct
sum of all these maps gives an inverse φ for θ: that these maps are mutually
inverse is easy to check on suitable generators: these can be taken to be of the
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form mt1 ∧ · · · ∧ mti ⊗ nt′1 ∧ · · · ∧ nt′j for the left hand module and of the form

mt1 ∧ · · · ∧mti ∧ nt′1 ∧ · · · ∧ nt′j for the right hand module.

The following result can now be used to complete the proof of the Lemma 12.15
above.

Proposition 12.16. Let R→ S be a map of rings and let M be an R-module.

(a) For all i,
∧i
S(S⊗RM) ∼= S⊗

∧i
R(M) in such a way that (s1⊗m1)∧· · ·∧(si⊗mi)

corresponds to (s1 · · · si)⊗ (m1∧· · ·∧mi). In particular, we may take S to be a
localization of R, and, in this sense, exterior powers commute with localization.

(b) If for every prime (or maximal) ideal P of R, MP has at most n generators

over RP , then
∧i

(M) = 0 for i > n. In particular, if M is locally free of rank

n, then
∧i

(M) = 0 for i > n.
(c) If R is Noetherian and M is a finitely generated projective module, then every∧i

(M) is a finitely generated projective module. If M is locally free of constant

rank n, then for 0 ≤ i ≤ n,
∧i

(M) is locally free of constant rank
(
n
i

)
.

Proof. (a) There is an R-multilinear map (S ×M)i → S ⊗R
∧i
R(M) that

sends the element
(
(s1,m1), . . . , (si,mi)

)
7→ (s1 · · · si)⊗m1 ∧ · · · ∧mi. This yields

an R-linear map from (S⊗RM)i to S⊗R
∧i

(M) which is easily checked to be both

S-multilinear and alternating, and so we have a map
∧i
S(S⊗RM)→ S⊗R

∧i
R(M).

On the other hand, there is an R-multilinear map S ×M i →
∧i
S(S ⊗R M) that

sends the element (s,m1, . . . ,mi) to s
(
(1 ⊗m1) ∧ · · · (1 ⊗mi)

)
, which induces an

R-bilinear map S ×
∧i
RM →

∧i
S(S ⊗RM) (for each fixed s ∈ S, the map one gets

on M i is alternating), and hence an R-linear map S ⊗R
∧i
RM →

∧i
S(S ⊗R M).

But this map is easily checked to be S-linear. Moreover, this map and the map∧i
S(S ⊗RM) ∼= S ⊗

∧i
R(M) constructed earlier are readily checked to be inverses.

(b) The issue of whether a module is zero can be checked locally, and the hypothesis

implies that all localizations of
∧i

(M) are 0. (c) For finitely generated modules

over a Noetherian ring, projective is equivalent to locally free, and so the statements
reduce to the known case where the module is free. �

Proof. We can now prove Lemma 12.15. It suffices to prove that
∧n

(P ⊕
Rn−1) ∼= P . This is the direct sum of terms

∧i
P ⊗R

∧j
(Rn−1), where i, j ≥ 0 and

i + j = n. The term for i = 0, j = n vanishes because
∧n

(Rn−1) = 0. The terms
for i > 1 vanish because ∧i(P ) = 0, since P is locally free of rank one. The only

summand that might not vanish is therefore
∧1
R(P )⊗R

∧n−1
R (Rn−1) ∼= P⊗RR ∼= P ,

as required. �





CHAPTER 13

Direct and inverse limits, completion, and the
Artin-Rees Theorem

1. Lecture of December 7

Recall that a partially ordered set (Λ, ≤) is called directed if for any two el-
ements directed set λ, µ ∈ Λ, there exists ν ∈ Λ with λ ≤ ν and µ ≤ ν. That
is, any two elements of Λ have a common upper bound. Examples include any
totally ordered set, the finite subsets of a given set under ⊆, the finitely generated
R-submodules of an R-module under ⊆, and the finitely generated R-subalgebras
of an R-algebra under ⊆. Another example is given by the open neighborhoods of
a point x ∈ X, where X is a topological space, under ⊇. The nonnegative integers
N and the positive integers are particularly important examples.

Recall that a partially ordered set (Λ, ≤) becomes a category whose objects
are the elements of Λ, and such that there is a morphism from λ to µ iff λ ≤ µ,
in which case there is a unique morphism from λ to µ. By a direct limit system in
a category C indexed by the partially ordered set Λ, we mean a covariant functor
from Λ to C. Explicitly, this means that for every element λ in Λ we have an object
in C, call it Xλ, and for all pairs λ, µ such that λ ≤ µ a morphism fλ,µ : Xλ → Xµ

satisfying (1) every fλ,λ is the identity on Xλ and (2) whenever λ ≤ µ ≤ ν, we have
that fλ,ν = fµ,ν ◦ fλ,µ.

By a candidate for the direct limit of a direct limit system we mean an object X
together with a family of maps gλ : Xλ → X for all λ ∈ Λ such that whenever λ ≤ µ,
gµ = fλ,µ ◦ gλ. (This can be expressed alternatively as follows. Given any object
X we can construct a direct limit system in which the object assigned to every λ is
X, and all the maps are the identity on X. We refer to this as a one-object system.
A candidate for the direct limit is the same thing as a natural transformation of
functors from the functor defining the system to a functor defining a one-object
system.)

We say that a candidate (Y, hλ : Xλ → Y ) for the direct limit is the direct limit
of the direct limit system if for every candidate X, gλ : Xλ → X there is a unique
morphism k : Y → X such that for all λ ∈ Λ, gλ = k ◦ hλ. We write Y = lim−→λ

Xλ.

The term colimit is frequently used for direct limit.

173
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Direct limits are automatically unique up to unique isomorphism compatible
with their structures as candidates.

We focus on the categories of sets, groups, abelian groups, rings, R-modules,
and R-algebras. In each case, there is an underlying set, and a morphism is a
function possibly satisfying additional conditions. Consider an example where the
objects are subobjects Xλ of a given object Z, and the maps are inclusion maps.
The direct limit is simply the union of the subobjects, and is called a directed union.
Direct limits exist in general in the categories mentioned above. In the category

of sets, one takes a disjoint union of the sets in the indexed family, and then for
every λ < µ one identifies every x ∈ Xλ with its image in Xµ. That is, one takes
the smallest equivalence relation such that for λ < µ, every element x ∈ Xλ is
equivalent to its image in Xµ, and then the direct limit is the set of equivalence
classes. Every element in Xλ maps to its equivalence class. If the sets have an

additional structure such as group, abelian group, ring, R-module, or R-algebra,
the same construction still works. To define the needed operations on the direct
limit set, suppose, for example, that one wants to add or multiply two elements of
the direct limit. They are images of elements from Xλ and Xµ for a certain λ and
µ. These both map to elements in Xν for some ν that is an upper bound for both
λ and µ, and one can add or multiply these element in Xν and then take the image
in the direct limit. In the case of abelian groups or R-modules, one can proceed

alternatively by taking the direct sum over R of all the Xλ, and then killing the
span of all elements of the form fλ,µ(x)− x, where λ ≤ µ and x ∈ Xλ.

If X is a topological space, x ∈ X, Λ is the set of all open neighborhoods of x
ordered by ⊇, and RU denotes the ring of all R-valued continuous functions on U ,
we get a direct limit system if, whenever U ⊇ V , the map RU → RV is given by
f 7→ f |V , the restriction of f : U → R to V . then lim−→U

RU is the ring of germs of

continuous functions at x ∈ X. If X is a C∞ manifold or an analytic space, similar
constructions lead to the rings of germs of C∞ or analytic functions. In all these
cases, the direct limit ring is a quasilocal ring.

We note that tensor product commutes with direct limit. Given a direct limit
system of R-modules Mλ and an R-module N , we claim that there is an isomor-
phism

(lim−→
λ

Mλ)⊗R N ∼= lim−→
λ

(Mλ ⊗R N).

For each fixed v ∈ N we have a map fvλ : Mλ → lim−→λ
(Mλ ⊗R N) sending u to

the image of u ⊗ v. These induce a map fv : lim−→λ
M → lim−→λ

(Mλ ⊗R N), which

gives an R-bilinear map (lim−→λ
Mλ) ×N → lim−→λ

(Mλ ⊗R N) and, hence, we get an

R-linear map (lim−→λ
Mλ) ⊗R N → lim−→λ

(Mλ ⊗R N). On the other hand, for each λ

the map Mλ → lim−→λ
Mλ induces a map Mλ ⊗N → lim−→λ

Mλ ⊗R N , and this gives

the required map

lim−→
λ

(Mλ ⊗R N)→ (lim−→
λ

Mλ)⊗R N.

It is straightforward to check that these are mutually inverse.

Corollary 13.1. A direct limit of flat R-modules is R-flat.
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Proof. Let F = lim−→λ
Fλ where each Fλ is flat, and let N ⊆M be R-modules.

Suppose that u ∈ F⊗RN maps to 0 in F⊗RM . Then u is the image of uλ ∈ Fλ⊗RN
for some λ. The fact that the image of uλ in F ⊗ M ∼= lim−→λ

(Fλ ⊗R M) is 0

implies that it maps to 0 in Fµ ⊗R M for some µ ≥ λ. Since the composite
Fλ ⊗R N → Fµ ⊗R N → Fµ ⊗R M kills uλ, while the right hand map is injective
because Fµ is R-flat, it follows that the image of uλ in Fµ⊗N is 0. But that image
maps to u, and so u is 0. �

Proposition 13.2. Let R be a domain and F a flat R-module. Then F is
torsion-free over R.

Proof. Let x ∈ R be nonzero. Then 0→ R
x−→ R is exact. Apply ⊗M , we

have that 0→M
x−→M is exact, i.e., that x is not a zerodivisor on M . �

More generally, if R is any ring, x ∈ R is not a zerodivisor in R, and M is
R-flat, then x is not a zerodivisor on M . We have the following consequence of the
two preceding results.

Corollary 13.3. A module F over a Dedekind domain R is flat if and only
if it is torsion-free.

Proof. If it is flat, it is torsion-free by the Proposition. Now suppose that it
is torsion-free. It is the directed union of its finitely generated submodules, and so
a direct limit of them. But a finitely generated module over a Dedekind domain is
projective, and therefore flat. �

Let (Λ, ≤) be a directed set. By an inverse limit system in a category C we
mean a direct limit system in Cop. The notions of candidate for aninverse limit
and inverse limit are then immediately given by applying the definitions for direct
limit system to Cop. However, we briefly make all this more explicit. An inverse
limit system consists of objects Xλ indexed by Λ and for all λ ≤ µ a morphism
fλ,µ : Xµ → Xλ. A candidate for the inverse limit consists of an object X together
with maps gλ : X → Xλ such that for all λ ≤ µ, gλ = fλ,µ ◦ gµ. A candidate
Y together with morphisms hλ : Y → Xλ is an inverse limit precisely if for every
candidate (X, gλ) there is a unique morphism k : X → Y such that for all λ,
gλ = hλ ◦ k. The inverse limit is denoted lim←−λXλ and, if it exists, it is unique

up to canonical isomorphism compatible with the morphisms giving X and Y the
structure of candidates.

Many authors use the term limit for what we are calling inverse limit, and, as
already noted, the term colimit for what we are calling direct limit.

We next want to see that inverse limits exist in the categories of sets, abelian
groups, rings, R-modules, and R-algebras. The construction for sets also works in
the other categories mentioned. Let (Λ, ≤) be a directed partially ordered set and
let (Xλ, fλ,µ) be an inverse limit system of sets. Consider the subset X ⊆

∏
λXλ

consisting of all elements x of the product such that for λ ≤ µ, fλ,µ(xµ) = xλ, where
xλ and xµ are the λ and µ coordinates, respectively, of x. It is straightforward to
verify that X is an inverse limit for the system: the maps X → Xλ are obtained
by composing the inclusion of X in the product with the product projections πλ
mapping the product to Xλ.
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If each Xλ is in one of the categories specified above, notice that the Cartesian
product is as well, and the set X is easily verified to be a subobject in the appropri-
ate category. In every instance, it is straightforward to check that X is an inverse
limit.

Suppose, for example, that Xλ is a family of subsets of A ordered by ⊇, and
that the map Xµ → Xλ for Xλ ⊇ Xµ is the inclusion of Xµ ⊆ Xλ. The condition
for the partially ordered set to be directed is that for all λ and µ, there is a set
in the family contained in Xλ ∩ Xµ. The construction for the inverse limit given
above yields all functions on these sets with a constant value in the intersection of
all of them. This set evidently may be identified with

⋂
λXλ.

We are particularly interested in inverse limit systems indexed by N. To give
such a system one needs to give an infinite sequence of objects X0, X1, X2, . . . in
the category and for every i ≥ 0 a map Xi+1 → Xi. The other maps needed can
be obtained from these by composition. In the cases of the categories mentioned
above, to give an element of the inverse limit is the same a giving a sequence of
elements x0, x1, x2, . . . such that for all i, xi ∈ Xi, and xi+1 maps to xi for all
i ≥ 0. One can attempt to construct an element of the inverse limit by choosing an
element x0 ∈ X0, then choosing an element x1 ∈ X1 that maps to x0, etc. If the
maps are all surjective, then given xi ∈ Xi one can always find an element of the
inverse limit that has xi as its i th coordinate: for h < i, use the image of xi in Xh,
while for i+ 1, i+ 2, . . . one can choose values recursively, using the surjectivity of
the maps.

We want to use these ideas to describe the I-adic completion of a ring R, where
R is a ring and I ⊆ R is an ideal. We give two alternative descriptions. Consider

the set of all sequences of elements of R indexed by N under termwise addition
under multiplication: this ring is the same as the product of a family of copies of
R index by N. Let CI(R) denote the subring of Cauchy sequences for the I-adic
topology: by definition these are the sequences such that for all t ∈ N there exists
N ∈ N such that for all i, j ≥ N , ri − rj ∈ It. This is a subring of the ring
of sequences. It is an R-algebra via the map R → CI(R) that sends r ∈ R to
the constant sequence r, r, r, . . .. Let C0

i (R) be the set of Cauchy sequences that
converge to 0: by definition, these are the sequences such that for all t ∈ N there
exists N ∈ N such that for all i ≥ N , ri ∈ It. These sequences are automatically
Cauchy. Then C0

I(R) is an ideal of CI(R). It is easy to verify that every subsequence
of a Cauchy sequence is again Cauchy, and that it differs from the original sequence
by an element of C0

I(R).

Given an element of CI(R), say r0, r1, r2, . . . we may consider the residue mod
It for a given t. These are eventually all the same, by the definition of a Cauchy
sequence. The stable value of these residues is an element of R/It, and we thus
have a map CI(R) � R/It that is easily seen to be a ring homomorphism that kills
C0
I(R). Therefore, for all t we have a surjection CI(R)/C0

I(R) � R/It. These maps
make CI(R)/C0

I(R) a candidate for lim←−t(R/I
t), and so induce a ring homomorphism

CI(R)/C0
i (R)→ lim←−tR/I

t.

This map is an isomorphism. Given a sequence of elements in the rings R/It

that determine an element of the inverse limit, for each residue ρt choose an element
rt of R that represents it. It is straightforward to verify that the rt form a Cauchy
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sequence in R and that it maps to the element of lim←−tR/I
t with which we started.

Consider any other Cauchy sequence with the same image. It is again straightfor-
ward to verify that the difference of the two Cauchy sequences is in C0

i (R). This
proves the isomorphism:

Theorem 13.4. Let R be any ring and I any ideal. Then CI(R)/C0
I(R) →

lim←−t(R/I
t) is an isomorphism, and the kernel of the map from R to either of these

isomorphic R-algebras is ∩tIt. �

These isomorphic rings are denoted R̂I or simply R̂, if I is understood, and
either is referred to as the I-adic completion of R. If I ⊆ R, then R is called

I-adically separated if
⋂
t I
t = (0), and I-adically complete if R → R̂I is an iso-

morphism: this holds iff R is I-adically separated, and every Cauchy sequence is
the sum of a constant sequence r, r, r, . . . and a sequence that converges to 0. The
Cauchy sequence is said to converge to r.

Given a Cauchy sequence in R with respect to I, we may choose a subsequence
such that the residues of all terms from the t th on are constant mod It+1. Call
such a Cauchy sequence standard. Given a standard Cauchy sequence, let s0 = r0

and st+1 = rt+1 − rt ∈ It for t ≥ 0. Then the s0 + · · ·+ st = rt. Thus, the partial
sums of the “formal series” s0 + s1 + s2 + · · · form a Cauchy sequence, and if the
ring is complete it converges. Given any formal series

∑∞
t=0 st such that st ∈ It

for all t, the partial sums form a Cauchy sequence, and every Cauchy sequence is
obtained, up to equivalence (i.e., up to adding a sequence that converges to 0) in
this way.

Proposition 13.5. Let J denote the kernel of the map from R̂I � R/I (J
consists of elements represented by Cauchy sequences all of whose terms are in I).

Then every element of R̂I that is the sum of a unit and an element of J is invertible

in R̂I . Every maximal ideal of R̂I contains J , and so there is a bijection between

the maximal ideals of R̂I and the maximal ideals of R/I. In particular, if R/I is

quasilocal, then R̂I is quasilocal.

Proof. If u is a unit and j ∈ J we may write u = u(1 + u−1j), and so it
suffices to to show that 1 + j is invertible for j ∈ J . Let r0, r1, . . . be a Cauchy
sequence that represents j. Consider the sequence 1 − r0, 1 − r1 + r2

1, . . . 1 − rn +
r2
n − · · ·+ (−1)n−1rn+1

n , · · · : call the n th term of this sequence vn. If rn and rn+1

differ by an element of It, then vn and vn+1 differ by an element of It+In+2. From
this it follows that vn is a Cauchy sequence, and 1 − (1 + rn)vn = rn+2

n converges

to 0. Thus, the sequence vn represents an inverse for 1 + j in R̂I . Suppose that m

is a maximal ideal of R̂I and does not contain j ∈ J . Then j has an inverse v mod
m, so that we have jv = 1+u where u ∈ m, and then −u = 1− jv is not invertible,
a contradiction, since jv ∈ J . �

Suppose that
⋂
t I
t = 0. We define the distance d(r, s) between two elements

r, s ∈ R to be 0 if r = s, and otherwise to be 1/2n (this choice is somewhat
arbitrary), where n is the largest integer such that r − s ∈ In. This is a metric
on R: given three elements r, s, t ∈ R, the triangle inequality is clearly satisfied if
any two of them are equal. If not, let n, p, q be the largest powers of I containing
r− s, s− t, and t− r, respectively. Since t− r = −(s− t)− (r− s), q ≥ min{n, p},
with equality unless n = p. It follows that in every “triangle,” the two largest sides
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(or all three sides) are equal, which implies the triangle inequality. The notion of
Cauchy sequence that we have given is the same as the notion of Cauchy sequence

for this metric. Thus, R̂I is literally the completion of R as a metric space with
respect to this metric.

Given a ring homomorphism R→ R′ mapping I into an ideal I ′ of R′, Cauchy
sequences in R with respect to I map to Cauchy sequences in R′ with respect
to I ′, and Cauchy sequences that converge to 0 map to Cauchy sequences that

converge to 0. Thus, we get an induced ring homomorphism R̂I → R̂′
I′

. This
construction is functorial in the sense that if we have a map to a third ring R′′,
a ring homomorphism R′ → R′′, and an ideal I ′′ of R′′ such that I ′ maps into

I ′′, then the induced map R̂I → R̂′′
I′′

is the composition (R̂′
I′

→ R̂′′
I′′

) ◦ (R̂I →
R̂′
I′

). If R → R′ is surjective and I maps onto I ′, then the map of completions is

surjective: each element of R̂′
I′

can be represented as the partial sums of a series
s0 + s1 + s2 + · · · , where sn ∈ (I ′)n. But In will map onto (I ′)n, and so we can

find rn ∈ In that maps to sn, and then r0 + r1 + r2 · · · represents an element of R̂I

that maps to s0 + s1 + s2 + · · · .
Example. Let S = R[x1, . . . , xn] be the polynomial ring in n variables over R, and
let I = (x1, . . . , xn)S. An element of S/In is represented by a polynomial of degree
≤ n− 1 in the xi. A sequence of such polynomials will represent an element of the
inverse limit if and only if, for every n, then n th term is precisely the sum of the
terms of degree at most n in the n+ 1 st term. It follows that the inverse limit ring

ŜI is R[[x1, . . . , xn]], the formal power series ring. In consequence, we can prove:

Theorem 13.6. If R is a Noetherian ring and I is an ideal of R, then R̂I is
Noetherian.

Proof. Suppose that I = (f1, . . . , fn)R. Map the polynomial ring S =
R[x1, . . . , xn] to R as an R-algebra by letting xj 7→ fj . This is surjective, and

(x1, . . . , xn)S maps onto I. Therefore we get a surjection R[[x1, . . . , xn]] � R̂I .
Since we already know that the formal power series ring is Noetherian, it follows

that R̂I is Noetherian. �

We next want to form the I-adic completion of anR-moduleM . This will be not

only an R-module: it will also be a module over R̂I . Let R be a ring, I ⊆ R an ideal
and M an R-module. Let CI(M) denote the Cauchy sequences in M with respect
to I: the sequence u0, u1, u2, · · · is a Cauchy sequence if for all t ∈ N there exists
N ∈ N such that ui − uj ∈ ItM for all i, j ≥ N . These form a module over CI(R)
under termwise multiplication, and set of Cauchy sequences, C0

I(M), that converge
to 0, where this means that for all t, the terms of the sequence are eventually all
in ItM , is a submodule that contains C0

I(R)CI(M). The quotient CI(M)/C0
I(M) is

consequently a module over R̂I . Moreover, any homomorphism h : M → N induces
a homomorphism from CI(M)→ CI(N) that preserves convergence to 0, and hence

a homomorphism ĥI : M̂ I → N̂ I . This is a covariant functor from R-modules to

R̂I -modules. There is an R-linear map M → M̂ I that sends the element u to the
element represented by the constant Cauchy sequence whose terms are all u. The
kernel of this map is

⋂
t I
tM , and so it is injective if and only if

⋂
t I
tM = 0, in

which case M is called I-adically separated. If M → M̂ I is an isomorphism, M is
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called I-adically complete. The maps M → M̂ I give a natural transformation from
the identity functor on R-modules to the I-adic completion functor. Moreover, by

exactly the same reasoning as in the case where M = R, M̂ I ∼= lim←−tM/ItM .

I-adic completion commutes in an obvious way with finite direct sums and
products (which may be identified in the category of R-modules). The point is
that un ⊕ vn gives a Cauchy sequence (respectively, a sequence converging to 0)
in M ⊕N if and only if un and vn give such sequences in M and N . Moreover if
f1 : M1 → N and f2 : M2 → N , we have that the I-adic completion of the map

f1 ⊕ f2 : M1 ⊕M2 → N is the direct sum of the completions, f̂1 ⊕ f̂2. A similar
remark applies when we have g1 : M → N1 and g2 : M → N2, and we consider the
map (g1, g2) : M → N1 ×N2. The situation is the same for finite direct sums and
finite direct products. Note also that if we consider the map given by multiplication

by r on M , the induced endomorphism of M̂ I is given by multiplication by r (or

by the image of r in R̂I).

If M → Q is surjective, the map M̂ I → Q̂I is surjective: as in the case of rings,

any element z of Q̂I can be represented using the Cauchy sequence of partial sums
of a formal series q0 + q1 + q2 + · · · where qt ∈ ItQ. To see this, take a Cauchy
sequence that represents the element. Pass to a subsequence w0, w1, w2, . . . such
that the residue of wk in M/ItM is the same for all k ≥ t. The element can be
thought of as

w0 + (w1 − w0) + (w2 − w1) + · · · .
Thus, take q0 = w0 and qt = wt − wt−1 for t ≥ 1. For all t, ItM maps onto ItQ.
Therefore we can find ut ∈ ItM such that ut maps to qt, and the partial sums of

u0 + u1 + u2 + · · · represent an element of M̂ I that maps to z.

Note that because M̂ I is an R-module and we have a canonical map M → M̂ I

that is R-linear, the universal property of base change determines a map R̂I⊗RM →
M̂ I . These maps give a natural transformation from the functor R̂I ⊗R to the

I-adic completion functor: these are both functors from R-modules to R̂I -modules.
If M is finitely generated over a Noetherian ring R, this map is an isomorphism: not
only that: restricted to finitely generated modules, I-adic completion is an exact

functor, and R̂I is flat over R.

In order to prove this, we need to prove the famous Artin-Rees Theorem (often
called the Artin-Rees Lemma). Let R be a ring and I an ideal of R. Let t be an
indeterminate, and let It = {it : i ∈ I} ⊆ R[t]. Then R[It] = R+ It+ I2t2 + · · · is
called the Rees ring of I. If I = (f1, . . . , fn) is finitely generated as an ideal, then
R[It] = R[f1t, . . . , fnt] is a finitely generated R-algebra. Therefore, the Rees ring
is Noetherian if R is.

Before proving the Artin-Rees theorem, we note that if M is an R-module and
t and indeterminate, then every element of R[t]⊗M can be written uniquely in the
form

1⊗ u0 + t⊗ u1 + · · ·+ tk ⊗ uk,
where the uj ∈M , for any sufficiently large k: if a larger integer s is used, then one
has mk+1 = · · · = ms = 0. This is a consequence of the fact that R[t] is R-free with
the powers of t as a free basis. Frequently one writes u0 + u1t+ · · ·+ ukt

k instead,
which looks like a polynomial in t with coefficients in M . When this notation
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is used, M [t] is used as a notation for the module. Note that the R[t]-module
structure is suggested by the notation: (rtj)(utk) = (ru)tj+k, and all other more
general instances of multiplication are then determined by the distributive law.

We are now ready to prove the Artin-Rees Theorem, which is due independently
to Emil Artin and David Rees.

Theorem 13.7 (E. Artin, D. Rees). Let N ⊆ M be Noetherian modules over
the Noetherian ring R and let I be an ideal of R. Then there is a constant positive
integer c such that for all n ≥ c, InM ∩N = In−c(IcM ∩N). That is, eventually,
each of the modules Nn+1 = In+1M ∩N is I times its predecessor, Nn = InM ∩N .
In particular, there is a constant c such that InM ∩ N ⊆ In−cN for all n ≥ c.

In consequence, if a sequence of elements in N is an I-adic Cauchy sequence in
M (respectively, converges to 0 in M) then it is an I-adic Cauchy sequence in N
(respectively, converges to 0 in N).

Proof. We consider the module R[t]⊗M , which we think of as M [t]. Within
this module,

M = M + IMt+ I2Mt2 + · · ·+ IkMtk + · · ·
is a finitely generated R[It]-module, generated by generators for M as an R-module:
this is straightforward. Therefore, M is Noetherian over R[It]. But

N = N + (IM ∩N)t+ (I2M ∩N)t2 + · · · ,

which may also be described as N [t] ∩ M, is an R[It] submodule of M, and so
finitely generated over R[It]. Therefore for some c ∈ N we can choose a finite set
of generators whose degrees in t are all at most c. By breaking the generators into
summands homogeneous with respect to t, we see that we may use elements from

N, (IM ∩N)t, (I2M ∩N)t2, . . . , (IcM ∩N)tc

as generators. Now suppose that n ≥ c and that u ∈ InM ∩N . Then utn can be
written as an R[It]-linear combination of of elements from

N, (IM ∩N)t, (I2M ∩N)t2, . . . , (IcM ∩N)tc,

and hence as an sum of terms of the form

iht
hvjt

j = (ihvj)t
h+j

where j ≤ c, ih ∈ Ih, and

vj ∈ IjM ∩N.
Of course, one only needs to use those terms such that h+ j = n. This shows that
(InM) ∩N is the sum of the modules

In−j(IjM ∩N)

for j ≤ c. But

In−j(IjM ∩N) = In−cIc−j(IjM ∩N),

and

Ic−j(IjM ∩N) ⊆ IcM ∩N,
so that we only need the single term In−c(IcM ∩N). �

Theorem 13.8. Let R be a Noetherian ring, I ⊆ R an ideal.



1. LECTURE OF DECEMBER 7 181

(a) If 0 → N → M → Q → 0 is a short exact sequence of finitely generated R-

modules, then the sequence 0→ N̂ I → M̂ I → Q̂I → 0 is exact. That is, I-adic
completion is an exact functor on finitely generated R-modules.

(b) The natural transformation θ from R̂I ⊗R to the I-adic completion functor
is an isomorphism of functors on finitely generated R-modules. That is, for

every finitely generated R-module M , the natural map θM : R̂I ⊗RM → M̂ I is
an isomorphism.

(c) R̂I is a flat R-algebra. If (R, m) is local, R̂ = R̂m is a faithfully flat local
R-algebra.

Proof. (a) We have already seen that the map M̂ I → Q̂I is surjective. Let

y be an element of M̂ I that maps to 0 in Q̂. Choose a Cauchy sequence that
represents z, say u0, u1, u2, . . .. After passing to a subsequence we may assume that
ut − ut+1 ∈ ItM for every t. The images of the ut in Q ∼= M/N converge to 0.
Passing to a further subsequence we may assume that the image of ut ∈ It(M/N)
for all t, so that ut ∈ ItM+N , say ut = vt+wt where vt ∈ ItM and wt ∈ N . Then
wt is a Cauchy sequence in M that represents z: in fact, wt −wt+1 ∈ ItM ∩N for
all t. Each wt ∈ N , and so the elements wt form a Cauchy sequence in N , by the

Artin-Rees Theorem. Thus, every element in Ker (M̂ I → Q̂I) is in the image of

N̂ I .

Finally, suppose that z0, z1, z2, . . . is a Cauchy sequence in N that converges to

0 in M . Then zt already converges to 0 in N , and this shows that N̂ I injects into

M̂ I . This completes the proof of part (a).

(b) Take a presentation of M , say Rn
A−→ Rm →M → 0, where A = (rij) is an

m× n matrix over R. This yields a diagram:

R̂I ⊗R Rn
A−−−−→ R̂I ⊗R Rm −−−−→ R̂I ⊗RM −−−−→ 0

θRn

x θRm

x θM

x
R̂n

I A−−−−→ R̂m
I

−−−−→ M̂ I −−−−→ 0

where the top row is obtained by applying R̂I ⊗ , and is exact by the right
exactness of tensor, the bottom row is obtained by applying the I-adic completion
functor, and is exact by part (a). The vertical arrows are given by the natural
transformation θ, and the squares commute because θ is natural. The map θRh is
an isomorphism for h = m or h = n because both functors commute with direct
sum, and the case where the free module is just R is obvious. But then θM is an
isomorphism, because cokernels of isomorphic maps are isomorphic.

(c) We must show that R̂I ⊗R N → R̂I ⊗R M is injective for every pair of
R-modules N ⊆ M . We know this from parts (a) and (b) when the modules are
finitely generated. The result now follows from the Lemma just below. Faithful
flatness is clear, since the maximal ideal of R clearly expands to a proper ideal in

R̂I . �

Lemma 13.9. Let F be an R-module, and suppose that whenever N ⊆ M are
finitely generated R-modules then F ⊗R N → F ⊗RM is injective. Then F is flat.

Proof. Let N ⊆ M be arbitrary R-modules. Then F ⊗R N is the directed
union of the images of the modules F⊗RN0 as F runs through the finitely generated
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submodules of M . Thus, if z ∈ F ⊗N maps to 0 in F ⊗M , it will be the image of
z′ ∈ N0⊗M−{0}, which implies that z′ ∈ F⊗RN0 maps to 0 in F⊗RM . But since
M is the directed union of its finitely generated modules M0 containing N0, and
since F ⊗RM is the direct limit of these, it follows that for some sufficiently large
but finitely generated M0 ⊇ N0, the image of z′ under the map F ⊗N0 → F ⊗M0

is 0. But then z′ = 0 and so z = 0, as required. �
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√
applied to ideals, 32

abelianization, 16

Abhyankar, 6

Abhyankar-Moh, 6, 7

ACC, ascending chain conditon, 71

adjointness of tensor and Hom, 114

affine algebra over a field, 57

algebra over a commutative ring, 23

algebraic closure, 40

algebraic independence, 58

algebraic integer, 41

algebraic number field, 158

algebraic variety, 80

alternate, 169

alternating, 169

analytic indeterminates, 88

An
K , 80

annihilator, Ann, 73

anti-equivalence, 83

antiequivalence of categories, 20

Artin, 180

Artin, Artinian, 71

Artin-Rees Theorem, 173, 180

Artin-Rees theorem, 133

Artin-Rees Theorem or Lemma, 179

Ass ( ) for a module, 126

assassin, 126

assassinator, 126

associativity of tensor, 99

base, 13

base change, 100

base for the closed sets, 13

base ring, 100

basis for the closed sets, 13

basis for the open sets, 13

bilinear map, 93

Buchsbaum, 162

C, 5
c for contraction, 18

candidate for the direct limit, 173

category, 11

Cauchy sequence, 176
Cauchy sequence in a metric space, 14

Cayley-Hamilton theorem, 39

chain of primes in a ring, 37
characteristic polynomial, 40

Chinese remainder theorem, 48, 137

classical adjoint, 39
closed algebraic set, 9

closed set, 12

closure, 13
codomain, 12

cofactor, 39

cogredience of matrices, 165
colimit, 173, 175

colon ideal, 91

colons and flat base change, 109
comaximal, 48

commutator, 16
commutator subgroup, 16

compact, 13

complementary idempotent, 114
complete metric space, 14

completion, 176

completion of a module, 178
congruence of matrices, 165

congruence of metric spaces, 14

connected, 13
connected component, 13

continuous, 13

contraction of an ideal, 18
contravariant functor, 15

convergence, 177
convergence of sequences in a metric space,

14

convergent power series rings, 74
cooordinate ring, 82

coprimary module to a prime, 134

coproduct, 108
coproduct of algebras, 93

coproducts and epimorphisms, 108

coproducts in a category, 22
coproducts in the category of algebras over

a ring, 105

covariant functor, 15
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D( ) notation for certain open sets, 34
Davis, Ed, 143

DCC, descending chain condition, 71
Dedekind domain, 157, 161

dense, 13

Deskins, 33, 87
determinant, 39

dimension of an algebraic set, 85

direct limit, 173
direct summad, 77

directed, 173

directed poset, 43
directed set, 173

directed union, 43

discrete rank r valuation ring, 66
distance, 14

divisible group, 28

division algorithm for monic polynomials,
51

divisor, 159
divisor class group, 159

domain, 17

DVR, 168
DVR, discrete valuation ring, 65, 66

e for expansion or extension, 29
elementary symmetric functions, 76

epimorphism, 108

epimorphism in a category, 27
equivalence of categories, 20

essentially monic, 58

exact functor, 30
exact sequence of modules, 30

excellence of a Noetherian ring, 65

expansion by minors, 39
expansion of an ideal, 29

extension of an ideal, 29

extension of scalars, 100
exterior algebra, 169

factors of a filtration, 127
fiber in the category of commutative rings,

47

fiber in the category of sets, 47
filter, 11

filtration, 127

filtration length, 127
finite intersection property, 13
finite length, 137

finitely presented, 100, 107, 117
flat algebra, 102

flat module, 102
forgetful functor, 16

formal indeterminates, 88
formal power series, 66, 77, 88
frac , 37
fraction field, 27

fraction field of a domain, 37
free basis, 23

free module, 23

full subcategory, 16

functor, 15

functor of two variables, 96

generic point, 34, 35

germs of functions, 28

Going down theorem, 51, 53

Going up theorem, 46

Grothendieck, 65, 86

Hausdorff, 13

height of a prime ideal, 50

Hilbert basis theorem, 76

Hilbert basis thereom, 74

Hilbert’s Nullstellensatz, 11, 38, 57, 59, 78

Hilbert’s Nullstellensatz, strong form, 60

Hironaka, 132

Hom commutes with flat base change, 111

homeomorphism, 14

I-adic completion of a ring, 176

I-adic separation, 177

ideal, 5

idealization trick, 133

idempotent, 103, 114

identity functor, 15

infinite product of rings, 37

inherited topology, 12

integral closure, 50

integral closure of a ring R in an R-algebra,

50

integral domain, 17

integral element of an algebra, 38

integral extension of rings, 39

integral ring extension, 38

integrally closed, 50

interior, 13

inverse limit, 175

inverse limit system, 175

inverse of an isomorphism in a category, 12

invertible element, 5

irreducible components, 80

irreducible element in a ring, 62

irreducible ideal, 123

irreducible submodule, 134

irreducible topological space, 34

irredundant, 80, 121, 122

irredundant primary decomposition, 124

isometric isomorphism, 14

isometry, 14

isomomorphism in a category, 12

isomorphic in a category, 12

Jacobian conjecture, 8

Jacobian determinant , 8

Krull, 142

Krull dimension, 8, 37
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Krull dimension of a module, 157

Krull’s height theorem, 142

Krull’s principal ideal theorem, 142

Lasker, Emmanuel, 121

left exactness of Hom, 104

length of a chain of primes, 37

length of a filtration, 127

limit, 175

limit point in a metric space, 14

local ring, 28, 38

localization at a prime, 28

localization of a commutative ring at a
multiplicative system, 26

localization of modules, 102

locally closed, 153

lying over a prime, 43

Lying over theorem, 44

Macaulay, 129

maximal ideal, 17

MaxSpec, 68

metric, 14

metric space, 14

minimal prime, 78

minimal prime of an ideal, 32

minimal primes of a module, 129

minor, 10, 39

module-finite extension of rings, 39

Moh, 6

monomorphism in a category, 28

morphism in a category, 11

multilnear, 98

multiplicative system in a ring, 26

N, 5

Nagata, 65, 132, 162

Nagata’s idealization trick, 133

Nakayama’s lemma, 116, 117, 142

natural transformation, 19

nilpotent, 16

Noether normalization theorem, 57–59, 67,
68

Noether, Emmy, 71, 76, 121

Noether-Lasker decomposition, 121

Noetherian, 71

Noetherian induction, 78

Noetherian module, 71

Noetherian ring, 6

Noetherian topological space, 81

non-degenerate bilinear form, 165

nonzerodivisor, 26

normal, 50

normalization, 50

object of a category, 11

open ball of radius r centered at x ∈ X, 14

open cover, 13

open set, 12

opposite category, 15

ord, order of an element of a discrete

valuation rng, 65

p-adic integers, 91

pairwise comaximal, 48

partially ordered set, 15

permutation, 39

PID, principal ideal domain, 38, 50, 65, 76,
91, 121, 132, 138, 157, 159, 168

poset, 15

primary decomposition, 121, 122, 137

primary decomposition for modules, 134

primary decomposition in normal
Noetherian domains, 159

primary ideal, 121

prime avoidance, 143

prime cyclic filtration, 128

prime cyclic module, 128

prime element in a ring, 62

prime ideal, 17

prime spectrum, 17

principal ideal domain, 38

product category, 96

product decompositions, 114

product ideal, 48

products in an arbitrary category, 21

projective, 103

projective module, 105

projective space over a field, 80

projective variety, 80

pseudometric, 14

pseudometric space, 14

pure transcendental extension, 63

Q, 5

quasi-affine variety, 80

quasi-projective variety, 80

quasicompact, 13

quasilocal, 116

quasilocal ring, 28

quasisemilocal, 168

R, 5

Rad ( ) applied to ideals, 32

radical of an ideal, 31

range, 12

red, 32

reduced ring, 32

reduced scheme of finite type, 155

Rees, 180

Rees ring, 179

regular function, 153

regular function or morphism on algebraic

sets, 81, 82

representable functor, 21

restriction of scalars, 30

Reynolds operator, 78

RG for rings of invariants, 76
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right exactness of tensor, 97

ring of algebraic integers, 158

rings of invariants, 76

rings that are direct summands, 77

(R,m), 116

(R,m,K), 116

RP , 28

R[[S]], 88

Spec , 17

Samuel, 162

saturated chain, 62, 65, 67, 86

scheme, 86, 153, 156

scheme-theoretic fiber, 48

semigroup, 15, 24

semigroup ring, 25

semilocal, 168

simple module, 137

Stone-Čech compactification, 11

structural homomorphsm of an algebra, 23

subbase for the closed sets, 13

subbase for the open sets, 13

subbasis for the closed sets, 13

subbasis for the open sets, 13

subcover of a cover, 13

subdeterminants, 10

submodule, 5

subspace, 12

support of a module, 113

S-valued points, 86

symbolic power, 129, 132, 142

symmetric bilinear form, 165

system of parameters, 146

T0, 13

T1, 13

T2, 13

target, 12

tensor product, 30

tensor product of modules, 93

Tietze extension theorem, 82

topological space, 12

topological spaces with basepoint, 20

topology, 12

trace of a linear map, 163

trace of an endomorhism of a free module,

165

transcendence basis, 63, 64

transcendence degree, 63, 64

triangle inequality, 14

UFD, unique factorization domain, 32, 50,
62, 67, 77, 131, 159, 162, 168

ultrafilter, 11

unit, 5

unit ideal, 5

unital module, 5

V ( ) applied to a subset of a ring, 17

V( ) applied to a set of polynomials, 9
valuation, 65

Veronese subring, 77∧
, ∧, 169

Weierstrass preparation theorem, 74, 132

Z, 5
Zariski, 132

Zariski topology, 17
zerodivisor, 26, 54, 76

Zorn’s lemma, 11, 17, 31, 32
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