Math 614, Fall 2020 Problem Set #1: Solutions

1.(a) h? = 219 + 220 + 22 = f29 — 2f? = 2%, and so 22 € K[f,g,h]. Then z = h — 2?g €
K[f,g,h], so K[f,g,h| = K|z]. There are many other ways to obtain . O

(b) Let u := 22! 4+ 2, so that S = Afu]. Since u? = z4h*2 4+ 222"+2 4 22 € A all
even powers of v are in A and all odd powers are in Au. Hence, every polynomial in
F € Alu] is in Au + A, and has the form au + b with a,b € A. if au+ b = a’u + b, then
(a —a)u = b — b, which is impossible unless one (and hence, both) sides are 0: if they
are nonzero, the lefthand side has odd degree and the right hand side has even degree.
We cannot write x = au + b with a,b € A, since u has too large a degree unless it is 0,
and z ¢ K[z%]. We give a vector basis for K|[z] over S. Since all even powers of x are
in S, the quotient is spanned by the odd powers of z. We show that the h images of the
odd powers {x%'71 : 1 <t < h} are a basis for K[z]/S. First note that these elements
are linearly independent over K: if a nonzero K-linear it combination of them were in .S,
we could write it as au + b with a,b € A. The top degree term in au is of odd degree
and at least 2h + 1: it cannot be canceled by an element of A, which forces a = 0, while
b has even degree. Note that z2"*! =2 —z mod S. Since 2% (z?"*! + 2 € S, we have
2 )+ = _ 32741 for § > 0, and it follows by induction on j that z2hT27+1 o 44261 for
1 <t < h: each higher odd power is congruent, up to sign, to a lower odd power until the
exponent drops to 2h — 1 or a smaller number. Thus, dim (K[z]/S) = h.

(Since [K(z) : K(2?)] = 2, there is no field strictly between, and so K (22)[u] = K(x).)

2. (a) If there are two initial objects there is a unique morphism between them in each
direction. The compositions must be the respective identity morphisms: since there is only
one morphism from an initial object to itself, it is the identity.

(b) Z is an initial object, and 0 is a terminal object.

(c) The empty set () is an initial object, while any set with one element is a terminal object.

3. If h vanisheson Y, let q¢(x) = h(z)/f(x) forx ¢ Y and h(z) =0if x € Y. Then h = ¢f,
while it is clear that every multiple of f vanishes on Y. This proves (a).

Clearly, any function of the form pf 4+ gg vanishes on Y N Z. If h vanishes on Y N Z,
choose p(z) to be h(x)/f(z) and g(x) to be 0 on X — Y, choose p(x) to be 0 and ¢(z) to
be h(x)/g(x) on Y — (Y N Z), and choose the value 0 for both p(z) and ¢(x) on Y N Z.
Then h = pf + qg everywhere. [

4. If a minimal prime P does not contain the image of x;, it must contain all of the
images of the x for s # ¢, since xsx; = 0 € P. But the ideal P; generated by the images
of all the z, for s # t is prime, with quotient B/P; = Klx;], a polynomial ring. Hence,
P, is a minimal prime. Every minimal prime must fail to contain the image of some x,
for the ideal generated by the images of all the x; is prime, but not minimal, since any
of the P, is strictly smaller. Any prime that is not minimal must contain one of the P;,
and so corresponds to a nonzero prime of K[x¢]. The only primes in K[x;| are (0) are the
maximal ideals, each of which is generated by a (unique) monic irreducible polynomial in
x; of positive degree. Thus, every non-minimal prime is maximal, and is generated by all

the variables but one, say x;, and a monic irreducible polynomial of degree > 0 in z;. [

5. Let W ={wy - -wy, : w; € Wi, 1 < i <n}. W is the smallest multiplicative system
that contains all the W; (it does contain them all, since each W} for j # 1 contains 1). If



P is a prime disjoint from all the W;, the R — P is a multiplicative system that contains
all the W;. Hence, we cannot have 0 € W. But if 0 ¢ W, a class theorem asserts the
existence of prime P containing 0 and disjoint for W, and this P will be disjoint from
UL, w;Ccw. O

6. Let Wy = {a$ : s € N} be the multiplicative system generated by ax. The hypothesis
that each Uy, N---NU,, is nonempty is equivalent to the assertion that W, --- W, does
not contain 0. Let W be the union of these: it is a directed union of multiplicative systems,
which implies that it is a multiplicative system. It does not contain 0. Hence, there is a
prime ideal disjoint from the union of these multiplicative systems, and this prime is in
the intersection of all the U,. [

EC1. To check that R injects into S, it suffices to show that x 4+ yz,y + xz, and z
are algebraically independent, or that K(x + yz,y + zz,z) C K(x,y,2) is an algebraic
extension. Throughout the rest of the discussion, we identify w with z. Since z + zy = u
and zz +y =0, (1 —2%)2r =u—2v, and ¢ = (u — 2v)/(1 — 2?) € K(u,v,2). Similarly,
y = (v—2zu)/(1 —u?) € K(u,v, z), so the fraction fields are actually the same. In fact,
this shows that Ku,v,z|;_,2 = K|[z,y, z];_.2, which implies that every prime that does
not contain 1 — 22 in R is in the image of f*. This shows that the image of f* contains
a dense open subset of Spec (R), namely Dg(1 — 22) (this is non-empty and open, and it
must be dense since R is a domain and Spec (R) is therefore irreducible).

If a prime P of R contains 1 — 22, it contains 1 — z or 1 + z. Thus, a prime @ that lies
over P must contain 1 — z or 1 4+ z in S. We first analyze the image of the primes in S
containing 1 — 2: it is the image of V(1 — 2) ~ Spec (S/(1 — 2)S) = Spec (K[z,y]) in
Vr(1 — 2) ~ Spec (R/(1 — z)R ~ Spec(K[u,v])) under the map g* = Spec(g), where
g : Klu,v] - KJz,y] K-algebras such that v — x +y and v — x + y. g factors
Klu,v] —*— K[z +y] ——— K]Jxz,y], where ¢ is the inclusion map. Here, the map
of spectra ¢* : Spec K|x,y| — Spec (K[z + y|) is surjective because, for example, ¢ has a
left inverse n over K such that n:z — x +y and n : y — 0 (there are many choices 7).
Since n¢ is the identity, t*n* is the identity and ¢* is surjective. The map « has kernel
(u —v)K[u,v| and is surjective, so that K[z + y] = Klu,v|/(u — v)K[u,v], and the image
a* is V(u —v) in K[u,v], and so this is the image of g* as well. Since Spec (K|[u,v]) is
identified with Vr(z — 1), it follows that the image of Vs(z — 1) is Vr(z — 1,u — v). In an
entirely similar way, if we form the quotients by (1+ z)R and (1 + z)S, we get a composite
map Klu,v] - K[z,y] C Klz,y] such that u — z —y and v — —(x — y). The kernel
is (u + v)K|[u,v], and an entirely similar analysis shows that the image of Vg(1 + 2) is
VrR(1 + z,u +v). Hence, W = D(1 — 22) UV (1 — z,u — v) UV (1 + z,u + v), all taken in
R. W is not all of Spec (R): for example the prime (1 — z,u,v — 1) is not in W. W is
not closed (its closure is all of Spec (R), since D(1 — 22) is dense) and W is not open: if it
were open, its intersection with V(1 — z) would be open in V(1 — z), and that intersection
is V(1 — z,u — v) (this requires a little bit of extra thought in characteristic 2, where
V(1 —z,u—v) =V +z,u+wv)). In summary, f* is not surjective, its image is neither
open nor closed, but it does contain a dense open subset of Spec (R).

EC2. It is clear that S, C S, strictly, since if b/a is a rational number with " <
a/b < r then 2%’ € S,» — S,. Fix r and suppose that there were a finite set of pairs
(a1,b1), - (an,by) such that the elements %y’ generate m,.. All of the b;/a; are > r.
Choose b/a strictly between min{b;/a; : 1 <i <n} and r.



Now suppose that m,. is finitely generated over K. It follows that it is generated by finitely
many elements p; = x%yb where b; /a; > r. It follows by induction on the degree that the
w; generate S, over K. (A monomial p of S, of least (necessarily positive) degree not in
K|u1, ..., s can be written in as a linear combination of the y;, and by equating terms
of the same degree as u on both sides, one gets such a representation y = Z?:l fim; where
the f; have lower degree than p or are zero. But then, the f; are in K[uq, ..., u,].) Choose
a rational number b/a > r but strictly smaller than all the b;/a; for 1 <i < n. When we
multiply two (or finitely many) monomials zy? with d/c > b/a, we get a monomial with
the same property. Hence, %" is not in the ring K[u1, ..., in], a contradiction. [



