Problem Set #1: Solutions

1.(a) $h^2 = x^{10} + 2x^6 + x^2 = f^2g - 2f^2 = x^2$, and so $x^2 \in K[f, g, h]$. Then $x = h - x^2g \in K[f, g, h]$, so K[f, g, h] = K[x]. There are many other ways to obtain x. \Box

(b) Let $u := x^{2h+1} + x$, so that S = A[u]. Since $u^2 = x^{4h+2} + 2x^{2h+2} + x^2 \in A$, all even powers of u are in A and all odd powers are in Au. Hence, every polynomial in $F \in A[u]$ is in Au + A, and has the form au + b with $a, b \in A$. if au + b = a'u + b', then (a - a')u = b - b', which is impossible unless one (and hence, both) sides are 0: if they are nonzero, the lefthand side has odd degree and the right hand side has even degree. We cannot write x = au + b with $a, b \in A$, since u has too large a degree unless it is 0, and $x \notin K[x^2]$. We give a vector basis for K[x] over S. Since all even powers of x are in S, the quotient is spanned by the odd powers of x. We show that the h images of the odd powers $\{x^{2t-1}: 1 \leq t \leq h\}$ are a basis for K[x]/S. First note that these elements are linearly independent over K: if a nonzero K-linear it combination of them were in S, we could write it as au + b with $a, b \in A$. The top degree term in au is of odd degree and at least 2h + 1: it cannot be canceled by an element of A, which forces a = 0, while b has even degree. Note that $x^{2h+1} \cong -x \mod S$. Since $x^{2j}(x^{2h+1} + x \in S)$, we have $x^{2(h+j)+1} \cong -x^{2j+1}$ for i > 0, and it follows by induction on j that $x^{2h+2j+1} \cong \pm x^{2t-1}$ for $1 \le t \le h$: each higher odd power is congruent, up to sign, to a lower odd power until the exponent drops to 2h - 1 or a smaller number. Thus, dim (K[x]/S) = h.

(Since $[K(x) : K(x^2)] = 2$, there is no field strictly between, and so $K(x^2)[u] = K(x)$.)

2. (a) If there are two initial objects there is a unique morphism between them in each direction. The compositions must be the respective identity morphisms: since there is only one morphism from an initial object to itself, it is the identity.

(b) \mathbb{Z} is an initial object, and 0 is a terminal object.

(c) The empty set \emptyset is an initial object, while any set with one element is a terminal object.

3. If h vanishes on Y, let q(x) = h(x)/f(x) for $x \notin Y$ and h(x) = 0 if $x \in Y$. Then h = qf, while it is clear that every multiple of f vanishes on Y. This proves (a).

Clearly, any function of the form pf + qg vanishes on $Y \cap Z$. If h vanishes on $Y \cap Z$, choose p(x) to be h(x)/f(x) and q(x) to be 0 on X - Y, choose p(x) to be 0 and q(x) to be h(x)/g(x) on $Y - (Y \cap Z)$, and choose the value 0 for both p(x) and q(x) on $Y \cap Z$. Then h = pf + qg everywhere. \Box

4. If a minimal prime P does not contain the image of x_t , it must contain all of the images of the x_s for $s \neq t$, since $x_s x_t = 0 \in P$. But the ideal P_t generated by the images of all the x_s for $s \neq t$ is prime, with quotient $B/P_t \cong K[x_t]$, a polynomial ring. Hence, P_t is a minimal prime. Every minimal prime must fail to contain the image of some x_t , for the ideal generated by the images of all the x_t is prime, but not minimal, since any of the P_t is strictly smaller. Any prime that is not minimal must contain one of the P_t , and so corresponds to a nonzero prime of $K[x_t]$. The only primes in $K[x_t]$ are (0) are the maximal ideals, each of which is generated by a (unique) monic irreducible polynomial in x_t of positive degree. Thus, every non-minimal prime is maximal, and is generated by all the variables but one, say x_t , and a monic irreducible polynomial of degree > 0 in x_t . \Box

5. Let $W = \{w_1 \cdots w_n : w_i \in W_i, 1 \le i \le n\}$. W is the smallest multiplicative system that contains all the W_i (it does contain them all, since each W_j for $j \ne 1$ contains 1). If

P is a prime disjoint from all the W_i , the *R* − *P* is a multiplicative system that contains all the W_i . Hence, we cannot have $0 \in W$. But if $0 \notin W$, a class theorem asserts the existence of prime *P* containing 0 and disjoint for *W*, and this *P* will be disjoint from $\bigcup_{i=1}^{n} W_i \subseteq W$. \Box

6. Let $W_{\lambda} = \{a_{\lambda}^s : s \in \mathbb{N}\}$ be the multiplicative system generated by a_{λ} . The hypothesis that each $U_{\lambda_1} \cap \cdots \cap U_{\lambda_n}$ is nonempty is equivalent to the assertion that $W_{\lambda_1} \cdots W_{\lambda_n}$ does not contain 0. Let W be the union of these: it is a directed union of multiplicative systems, which implies that it is a multiplicative system. It does not contain 0. Hence, there is a prime ideal disjoint from the union of these multiplicative systems, and this prime is in the intersection of all the U_{λ} . \Box

EC1. To check that R injects into S, it suffices to show that x + yz, y + xz, and z are algebraically independent, or that $K(x + yz, y + xz, z) \subseteq K(x, y, z)$ is an algebraic extension. Throughout the rest of the discussion, we identify w with z. Since x + zy = u and zx + y = v, $(1 - z^2)x = u - zv$, and $x = (u - zv)/(1 - z^2) \in K(u, v, z)$. Similarly, $y = (v - zu)/(1 - u^2) \in K(u, v, z)$, so the fraction fields are actually the same. In fact, this shows that $K[u, v, z]_{1-z^2} = K[x, y, z]_{1-z^2}$, which implies that every prime that does not contain $1 - z^2$ in R is in the image of f^* . This shows that the image of f^* contains a dense open subset of Spec (R), namely $D_R(1 - z^2)$ (this is non-empty and open, and it must be dense since R is a domain and Spec (R) is therefore irreducible).

If a prime P of R contains $1-z^2$, it contains 1-z or 1+z. Thus, a prime Q that lies over P must contain 1 - z or 1 + z in S. We first analyze the image of the primes in S containing 1-z: it is the image of $V_S(1-z) \approx \operatorname{Spec}\left(S/(1-z)S\right) \cong \operatorname{Spec}\left(K[x,y]\right)$ in $V_R(1-z) \approx \operatorname{Spec}\left(R/(1-z)R \approx \operatorname{Spec}\left(K[u,v]\right)\right)$ under the map $g^* = \operatorname{Spec}\left(g\right)$, where $g: K[u,v] \rightarrow K[x,y]$ K-algebras such that $u \mapsto x+y$ and $v \mapsto x+y$. g factors $K[u,v] \xrightarrow{\alpha} K[x+y] \xrightarrow{\iota} K[x,y]$, where ι is the inclusion map. Here, the map of spectra ι^* : Spec $K[x, y] \to$ Spec (K[x + y]) is surjective because, for example, ι has a left inverse η over K such that $\eta: x \mapsto x + y$ and $\eta: y \mapsto 0$ (there are many choices η). Since $\eta \iota$ is the identity, $\iota^* \eta^*$ is the identity and ι^* is surjective. The map α has kernel (u-v)K[u,v] and is surjective, so that $K[x+y] \cong K[u,v]/(u-v)K[u,v]$, and the image α^* is V(u-v) in K[u,v], and so this is the image of g^* as well. Since Spec (K[u,v]) is identified with $V_R(z-1)$, it follows that the image of $V_S(z-1)$ is $V_R(z-1, u-v)$. In an entirely similar way, if we form the quotients by (1+z)R and (1+z)S, we get a composite map $K[u,v] \to K[x,y] \subseteq K[x,y]$ such that $u \mapsto x-y$ and $v \mapsto -(x-y)$. The kernel is (u+v)K[u,v], and an entirely similar analysis shows that the image of $V_S(1+z)$ is $V_R(1+z, u+v)$. Hence, $W = D(1-z^2) \cup V(1-z, u-v) \cup V(1+z, u+v)$, all taken in R. W is not all of Spec (R): for example the prime (1 - z, u, v - 1) is not in W. W is not closed (its closure is all of Spec (R), since $D(1-z^2)$ is dense) and W is not open: if it were open, its intersection with V(1-z) would be open in V(1-z), and that intersection is V(1-z, u-v) (this requires a little bit of extra thought in characteristic 2, where V(1-z, u-v) = V(1+z, u+v). In summary, f^* is not surjective, its image is neither open nor closed, but it does contain a dense open subset of Spec(R).

EC2. It is clear that $S_r \,\subset\, S_{r'}$ strictly, since if b/a is a rational number with r' < a/b < r then $x^a y^b \in S_{r'} - S_r$. Fix r and suppose that there were a finite set of pairs $(a_1, b_1), \cdots, (a_n, b_n)$ such that the elements $x^{a_n} y^{b_n}$ generate \mathfrak{m}_r . All of the b_i/a_i are > r. Choose b/a strictly between $\min\{b_i/a_i : 1 \le i \le n\}$ and r.

Now suppose that \mathfrak{m}_r is finitely generated over K. It follows that it is generated by finitely many elements $\mu_i = x^{a_i} y^{b_i}$ where $b_i/a_i > r$. It follows by induction on the degree that the μ_i generate S_r over K. (A monomial μ of S_r of least (necessarily positive) degree not in $K[\mu_1, \ldots, \mu_n]$ can be written in as a linear combination of the μ_i , and by equating terms of the same degree as μ on both sides, one gets such a representation $\mu = \sum_{j=1}^n f_j \mu_j$ where the f_j have lower degree than μ or are zero. But then, the f_j are in $K[\mu_1, \ldots, \mu_n]$.) Choose a rational number b/a > r but strictly smaller than all the b_i/a_i for $1 \le i \le n$. When we multiply two (or finitely many) monomials $x^c y^d$ with d/c > b/a, we get a monomial with the same property. Hence, $x^a y^b$ is not in the ring $K[\mu_1, \ldots, \mu_n]$, a contradiction. \Box