
Math 614, Fall 2020 Problem Set #2: Solutions

1. (a) They are all integral: it suffices to show that x, y, z are, since K is contained in
the subring and the integral elements form a ring. This follows because x, y, z satisfy the
respective monic polynomials U13 + U5 − (x13 + x5) = 0, V 17 + V 7 − (y17 + y7) = 0, and
W 23 +W 11 − (z23 + z11) = 0 with coefficients in K[x13 + x5, y17 + y7, z23 + z11]. (There
is no need to use a different letter for the variable in each of the three equations, but I
thought it might keep things clearer.)

(b) We show s =
1 +
√
−19

2
has the required property. s satisfies the monic equation

(∗) s2− s+ 5 = 0, and so is integral over Z. Moreover, Z[s] = Z+Zs (when we multiply
two elements, we can use the equation (∗) to get rid of the s2 term). Suppose t = a+b

√
−19

is integral over Z, where a, b ∈ Q. Since Z is normal, this implies that if b = 0, then a ∈ Z,
and that if b 6= 0 then the minimal monic polynomial f of t has coefficients in Z, and this is
the quadratic polynomial whose other root is a−b

√
−19. Then f(x) is x2−2ax+a2+19b2,

and 2a ∈ Z. The we can subtract sn, where n ∈ Z, from t to get a new choice of t for
which a = 0. Hence, we may assume that t = b

√
−19. It will then suffice to show that

b ∈ Q is an integer. Write b = m/n in lowest terms. Then (b
√
−19)2 = m2(−19)/n2 is

integral over Z, and since it ∈ Q it must in Z. If there is an prime that divides n, it does
not occur in m2, and it will occur to an even power in n2 and cannot be cancelled by 19.
It follows that n = ±1, and b = m/n = ±m is an integer.

2. Following the suggestion, the roots of h = fg, the product, all satisfy the monic
polynomial h(x) = 0. All the coefficients of h are in R. Hence, all roots of h are integral
over R. These include all of the roots of f and of g, which are therefore integral over R.
The coefficients of f are, up to sign, the elementary symmetric functions of the roots of f ,
and so they are integral over R. The same holds for the coefficients of g.

3. We want to choose the matrix so that xdn occurs with nonzero coefficient in Fd. This
is equivalent to getting a nonzero result when one substitutes 0 for all the xi such that
1 ≤ i ≤ n − 1. After applying the matrix, we substitute ai1x1 + · · · + ainxn for xi, and
after substituting zeros for the xi other than xn, we get ainxn. Therefore, we simply need
that Fd(a1nxn, a2nxn, . . . , annxn) 6= 0, and since Fd is homogeneous of degree d, this is
Fd(a1n, a2n, . . . , ann)xdn. Since a polynomial with a nonzero coefficient does not vanish
identically over an infinite field,1 we can choose v = (a1n, a2n, . . . , ann) so that Fd does
not vanish as this point, and the ain cannot all be 0. This gives the n th row of the required
matrix. We can extend v 6= 0 to a basis for Kn, and use the rest of the basis vectors for
the other rows of the matrix to obtain the required invertible matrix.

4. (a) By Hilbert’s Nullstellensatz, if there were no solution over K, the polynomials would
generate the unit ideal in K[x1, . . . , xn]. But then this would remain true over the larger
field L, which shows that they have no solution in L, a contradiction. �

(b) Suppose f = gh over S, where f has degree d, g has degree a, h has degree b, with
a, b < d (one will have a+b = d). Introduce one variable yµ for every monomial µ of degree

1This follows by induction on the number n of variables. If n = 1, the number of roots is bounded by the

degree. At the inductive step, think in D[xn], where D = K[x1, . . . , xn−1]. Some coefficient in D is not
0. By the induction hypothesis, we may substitute elements of K for x1, . . . , xn−1 to get a polynomial in

K[xn] with a nonzero coefficient, and we have reduced to the case n = 1.



a in x1, . . . , xn, and one variable zν for every monomial ν of degree b in x1, . . . , xn. From
the equation f = (

∑
µ yµµ)(

∑
ν zνν), one obtains a system of equations by equating each

coefficient of a monomial in x1, . . . , xn on the left (these are the coefficients of f) to the
corresponding coefficient (a polynomial over the image of Z in the yµ and zν) occurring
on the right. The problem of factoring f into the product of a polynomial in of degree a
times a polynomial of degree b in R (respectively, in S) is equivalent to finding a solution
of these equations such that the values of yµ, zν are in K (respectively, in L). Since there
is a solution in L, part (a) of this problem tells us that there is a solution in K. �

5. The Krull dimension is the transcendence degree over K, and it will suffice to show
that monomials of the form xb = xb11 · · ·xbnn are algebraically independent over K iff
their exponent vectors b are linearly independent over Q. Suppose one has a relation
q1b1 + · · · + qkbk = 0 with the qi ∈ Q − {0}. Clear denominators to get a relation where
the qi ∈ Z. But then (xb1)q1 · · · (xbk)qk = 1 gives a corresponding algebraic relation on
the corresponding monomials xbi (Some qi may be < 0). Hence, it suffices to show that
if b1, . . . , bk are linearly independent over Q, then the monomials xbi are algebraically
independent over K. If not there is an algebraic relation on them: they will satisfy a
polynomial

∑
j cjZ

j = 0, where Z denotes variables Z1, . . . , Zk, j runs through a family

of distinct elements of Nk, and the cj ∈ K − {0}. The terms cannot cancel unless for

distinct values of the κ-tuple j, two of the terms Zj become equal when we substitute

the values xbi for the Zi: otherwise, all the terms are nonzero scalar multiples of distinct
monomials in the variables x, and there can be no cancellation. If this happens for j and j′

we have (xb1)j1 · · · (xbk)jk = (xb1)j
′
1 · · · (xbk)j

′
k , and this implies

∑k
t=1(jt − j′t)bt = 0, while

not all the jt − j′t vanish, a contradiction. �

6. Every element of V − {0} has the form atn, where a is a unit of V and n ∈ N, and
so every element of L − {0} has the form atn, where a is a unit of V and n ∈ Z. Thus
elements of E − {0} have the form aun, where a is a unit of V and n ≥ 1. Clearly, every
submodule M 6= 0 of E is determined by which of the un it contains, and these form an
initial segment or all of the positive integers: if un ∈ E, so is uh for 1 ≤ h ≤ n, since
uh = tn−hun. Hence, M ⊆ E is 0, or contains finitely many ui, in which case it is V un
for the largest n such that un ∈ M or else M = E. Any strictly descending chain, after
the first term, which might be E, has second term of the form 0 or V un. The first case is
clear. If the second term is V un, the longest strictly descending chain from that point is
V un ⊃ V un−1 ⊃ · · · ⊃ V u1 ⊃ 0. Hence, E has DCC. However 0 ⊂ V u1 ⊂ · · · ⊂ V un ⊂ · · ·
is an infinite strictly ascending chain, so E does not have ACC.

EC3 Let f be in the fraction field of R, which is the same as the fraction field of Ra and
of Rb, and integral over R. Then f ∈ Ra and f ∈ Rb, since those rings are normal, and
it suffices to show that Ra ∩ Rb = R. Suppose that r/am = s/bn, where r, s ∈ R. Then
sam = rbn. If we knew that (∗) amR ∩ bnR = ambnR, we could then conclude that
sam = rbn = tambn with t ∈ R. It follows that s = tbn,and so s/bn = t ∈ R, as required.
It remains to prove (∗). We use induction on m to show that amR ∩ bR = ambR. It then
follows by essentially the same induction (with am in the role of b and b in the role of a)
that amR ∩ bnR = ambnR.

The case m = 1 for (∗) is given. Assume the result when m > 1 is replaced by m−1. Then
if u = amr ∈ amR ∩ bR ⊆ abR we know that u = abv with v ∈ R, and so u = amr = abv.



Then u′ = am−1r = bv, where u = au′. By the induction hypothesis, u′ can be written
am−1bw. But then r = bw, and u = au′ = a(am−1bw) = ambw, as required. �
[Alternate: check that the statement aR ∩ bR = abR is equivalent to the statement that
the image of a is not a zerodivisor in R/bR. This implies that the image of am is not a
zerodivisor in R/bR, and, working backward from this, that am ∩ bR = ambR. �]

EC4. By the Noether normalization theorem, R is module-finite over A = K[x], the
polynomial ring in one variable: suppose that R has n generators as an A-module. We
show that every ideal I in R needs at most n generators as an A-module, and, hence, as
an R-module. We can map A⊕n onto R and consider the inverse M image of the ideal I in
A⊕n. It suffices to show that M ⊆ A⊕n needs at most n generators over A. By the theory
of modules over a PID, M is A-free of rank at most n, and so needs at most n generators
as an A-module. �


