Math 614, Fall 2020 Due: Monday, November 2

Problem Set #3

1. (a) Let M be a module that is not Noetherian. Show that among the submodules of M that are not finitely generated, there is a maximal one.

(b) Let R be a ring that is not Noetherian, and let I be maximal among ideals that are not finitely generated. Show that I is prime. (If $ab \in I$, $a \notin I$, $b \notin I$, one may consider I + aR and $J = \{r \in R : ra \in I\}$.)

2. Let *R* be any commutative ring, and let $S = R[x_1, \ldots, x_n]$ be the polynomial ring in *n* variables over *R*. Let $Q_0 \subset Q_1 \subset \cdots \subset Q_k$ be a strictly ascending chain of prime ideals of *S* all of which lie over the same prime *P* in *R*. Show that $k \leq n$.

3. Let $R = R_0 \oplus R_1 \oplus \cdots \oplus R_n \oplus \cdots$ be an N-graded algebra over a Noetherian ring R_0 . Let I be the ideal $\bigoplus_{n=1}^{\infty} R_n$. Prove that R is Noetherian iff the ideal I is generated by finitely many homogeneous elements F_1, \ldots, F_m , in which case $R = R_0[F_1, \ldots, F_m]$.

4. Let K be a field and x_1, \ldots, x_r and y_1, \ldots, y_s indeterminates over K. Show that $K[x_iy_j: 1 \le i \le r, 1 \le j \le s] \subseteq K[x_1, \ldots, x_r, y_1, \ldots, y_s]$ is normal.

5. Let K be an algebraically closed field.

(a) Consider $C = \mathcal{V}(x_1^2 - x_2^3)$ in \mathbb{A}^2_K . Consider the map $\alpha : \mathbb{A}^1_K \to C$ such that $\alpha(a) = (a^3, a^2)$ for all $a \in K$. Is this map a bijection of closed algebraic sets? What is the corresponding map of coordinate rings? Is α an isomorphism of closed algebraic sets?

(b) Assume that K has positive prime characteristic p and consider the map $F : \mathbb{A}^1_K \to \mathbb{A}^1_K$ such that $F(a) = a^p$ for all $a \in K$. Is this map a bijection? What is the corresponding map of coordinate rings? Is F an isomorphism of closed algebraic sets?

6. Let S be any K-subalgebra of the polynomial ring K[x] in one variable over a ring K. Prove that if K is a field, then S is finitely generated over K and, hence, Noetherian. Is this true when $K = \mathbb{Z}$? Prove your answer.

Extra Credit 5. Let $R \subseteq S$ and suppose that $u \in S$ is such that its image in S/\mathfrak{p} is integral over $R/(\mathfrak{p} \cap R)$ for all minimal primes \mathfrak{p} in S. Must u be integral over R?

Extra Credit 6. Let $R = K[x_1, \ldots, x_n]$ be the polynomial ring in n variables over a field K. Let k be an integer with $0 \le k < n$ and let I_k be the ideal generated by all of the products $x_i x_{i+1} \cdots x_{i+k}$, where the subscripts are read modulo n. (E.g, if n = 3, $I_0 = (x_1, x_2, x_3)R$, while $I_1 = (x_1 x_2, x_2 x_3, x_3 x_1)R$.) What are the minimal primes of R/I_k ? What is the Krull dimension of this ring?