
Math 614, Fall 2020 Problem Set #3: Solutions

1. (a) The union of a chain of non-finitely generated submodules is a submodule: any two
elements belong to one of the modules in the chain, and, hence the union has the closure
properties needed to be a submodule. If the union Q is finitely generated, each of the
generators mk is in one of the modules Nk in the chain. Then all of them would belong
to the largest submodule N among the Nk, and they would generate Q. It follows that
N = Q, is finitely generated, a contradiction. Hence, Zorn’s lemma applies. �

(b) If I were not prime and a, b as specified, then I + aR and I :R a ⊇ I + bR strictly
contain I, and have finite sets of generators , say i1 + r1a1, . . . , rh + rkah and g1, . . . , gk.
Then i1, . . . , ih, g1a, . . . , gka ∈ I. We claim they generate I. For if i ∈ I, then i ∈ I +Ra
and so we may write i = u1(ii + ar1) · · · + uh(ih + arh) = (u1r1 + · · · + uhrh) + au, and
where u = u1r1 + · · · + uhrh. But then ua ∈ I, and so u ∈ I :R a and can be writtten as
r′1g1 + · · ·+ r′kgk, and it follows that i ∈ (i1, . . . , ih, g1a, . . . , gka)R. �

2. Primes of S lying over P are those that contain PS and are disjoint from R−P . These
correspond bijectively via contraction (which is order-preserving) to the primes of the fiber
(R−P )−1R[x]/PR[x1, . . . , xn] ∼= (R−P )−1(R/P )[x1, . . . , xn] ∼= κ[x], where κ is the field
(R − P )−1(R/P ). But κ[x1, . . . , xn] has Krull dimension n by a class theorem. Hence a
chain of primes lying over P corresponds to a chain of primes
in κ[x1, . . . , xn], and so has length at most n. �

3. If R is Noetherian, I is evidently finitely generated. Each generator is a finite sum
of homogeneous components, and these are homogeneous generators. Conversely, let
F1, . . . , Fm be homogeneous generators of I with respective positive degrees d1, . . . , dm.
If G ∈ R, let [G]k denote the homogeneous component of G in degree k. Since every
element of R is a sum of homogeneous components, it will suffice to prove by induction
on the degree of a homogeneous element r ∈ R that r ∈ R0[F1, . . . , Fm]. If the degree
h of r is 0, then r ∈ R0 and this is clear. If h > 0 then h ∈ I and we may write
r =

∑m
j=0 FjGj with Gj ∈ R. Comparing the elements of degree h on both sides, we have

that r =
∑m

j=0 Fj [Gj ]h−dj
. Since every dj ≥ 1, the degree of every [Gj ]h−dj

< h. By the

induction hypothesis, every [Gj ]h−dj
∈ R0[F1, . . . , Fm], and so the same is true for r.

4. By Prooposition 5.11(e) of the lecture notes, it suffices to show that R = K[xiyj : 1 ≤
i ≤ r, 1 ≤ j ≤ s] is direct summand of S = K[x1, . . . , xr, y1, . . . , ys] as an R-module, since
the polynomial ring S is a UFD and therefore normal. It is easy to see that R is spanned
over K by all monomials µν where mu is a monomial in x1, . . . , xr, ν is a monomial in
y1, . . . , ys, and deg(µ) = deg ν. Let W be the span of all monomials µν where mu is a
monomial in x1, . . . , xr, ν is a monomial in y1, . . . , ys, and deg(µ) 6= deg ν. As a K-vector
space, S = R ⊕W . To compete the proof, it will suffice to show that W is an R-module.
But this follows from the distributive law and the fact that if µν ∈ R and µ′ν′ ∈W , then
their product (µµ′)(νν′) ∈W .

5. Since (a3)2 = (a2)3 the map is well-defined. Given b, c ∈ K such that b2 = c3, note that
b = 0 iff c = 0 and (0, 0) is the image of 0. If b, c 6= 0, then (b/c)2 = b2/c2 = c3/c2 = c and
(b/c)3 = b3/c3 = b3/b2 = b. This shows the map is surjective. Final if (a21, a

3
1) = (a22, a

3
2)

then a1 = 0 iff a2 = 0 while if both are nonzero then a1 = a31/a
2
1 = a32/a

2
2 = a2. Thus,

the map is injectve as well, and is bijective. The corresponding map of coordinate rings is



K[x1, x2]/(x21−x32) (the polynomial in the denominator is irreducible and therefore prime)
→ K[x] such that x1 7→ x3 and x2 7→ x2. The image is K[x2, x3] ⊆ K[x], a proper
subring, and so, by the category anti-equivalence, the map is not an isomorphism: its
inverse is not regular over K. Note that the surjection K[x1, x2]/(x21 − x32) � K[x2, x3] is
an isomorphism: both are domains of dimension 1, and so there cannot be a kernel. �

(b) The map is a bijection, since every element of K has a unique p th root. Note that
ap = bp implies that (a− b)p = 0 and so a = b. The corresponding map of coordinate rings
is K[x] → K[x] such that x 7→ xp. Since K[xp] is a proper subring of K[x], the map of
coordinate rings is not an isomorphism, and by the category anti-equivalence, the map of
algebraic sets is not an isomorphism. �

6. If the subring is simply K the result is obvious. If not, it contains a nonzero monic
polynomial f , and lies between A = K[f ] and K[x]. Since x satisfies the monic polynomial
f(X)− f = 0 over K[f ], K[x] is module-finite over the Noetherian ring K[f ], and so is a
Noetherian module over K[f ]. The K-algebra S is a submodule of K[x] over K[f ], and
so module-finite over K[f ]. Hence, it is finitely generated as an algebra over K[f ] as well,
and this implies it is a finitely generated K-algebra. �

The corresponding result is false over Z. In the subring S = Z[2x, 2x2, 2x3, · · · , 2xn, · · · ∈
Z[x] the ideals In = (2x, 2x2, · · · , 2xn)S form a strictly increasing chain. (The image T of
this ring under the composite map S ⊆ Z[x] → (Z/4Z)[x] is (Z/4)[u1, . . . , un, . . . ] where
un is the image of 2xn, n ≥ 1. In T , every un is killed by 2, and uiuj = 0 for all i, j, so T ,
as an abelian group, is the direct sum of Z/4Z and the vector space V over Z2 spanned by
the ui, which form a basis for V . The expansions of the ideals to T also give an infinite
strictly ascending chain.) �

EC5. The element u must be integral over R. The values of the monic polynomials in u
with coefficients in R form a multiplicative system W . If u is not integral over R, then
0 /∈ W . Then there is a prime of S that does not meet W , and, hence, a minimal prime
Q of S that does not meet W . The image of u mod Q is not integral over R/(Q ∩ R), a
contradiction. �

EC6. Any prime will have to contain at least one variable from each monomial in Ik.
The minimal primes are therefore generated by subsets of the variables minimal with
respect to the property that they contain at least one variable from each consecutive string
of k + 1 variables mod n. These correspond to minimal ascending sequences of indices
1 ≤ i1 < i2 < · · · < ih ≤ n (the subscripts on the variables occurring in the minimal
prime) such that it+1− it ≤ k for 1 ≤ t ≤ h, where ih+1 = i1 +n: these differences give the
lengths of the intervals of consecutive variables not used in the minimal prime. “Minimal”
means that the condition fails if any it is omitted. The Krull dimension of the quotient
is therefore n − h where h is the smallest cardinality of a minimal ascending sequence of
indices with the required property: this is the largest dimension one gets when one kills a
minimal prime. We show that h = d n

k+1e. Since each variable occurs in k + 1 strings of

consecutive variables and there are n such strings, we must use at least n/(k+ 1) variables
to meet all the strings, and, hence, at least h = dn/(k + 1)e. But this value of h works:
use the xt(k+1)+1, 0 ≤ t ≤ h− 1. �


