
Math 614, Fall 2020 Problem Set #4: Solutions

1. Let θ : F ⊕G� A by θ(f ⊕ g) = α(f) + β(g). Call the kernel Q. We may restrict the
projection map F ⊕ G � F that maps f ⊕ g to f to Q. The map π : Q → F obtained
is onto, because given f ∈ F there exists g ∈ G such that β(g) = −α(f), because β
is surjective. The kernel of π consists of elements 0 ⊕ g such that β(g) = 0, i.e., it is
0 ⊕ N ∼= N . Thus, we have an exact sequence 0 → N → Q → F → 0, and since F is
projective this sequence splits. Thus, Q ∼= N ⊕ F . Similarly, Q ∼= M ⊕G. �

2. (a) The given bilinear map corresponds to a K-linear map U ⊗K V →W , which yields
an L-linear map θ : L ⊗K (U ⊗K V ) → L ⊗K W = WL. This map sends c ⊗ (u ⊗ v) to
c⊗B(u, v). By class results, UL⊗LVL ∼= (U⊗KL)⊗L (L⊗K V ) ∼= U⊗K

(
L⊗L (L⊗K V

) ∼=
U ⊗K

(
(L⊗L L)⊗K V

) ∼= U ⊗K (L⊗K V ) ∼= L⊗K (U ⊗K V ). With this identification, θ
yields an L-linear map UL ⊗L VL → WL. Moreover, (c⊗ u)(d⊗ v) 7→ (cd)⊗ (u⊗ v), and
it follows that the corresponding bilinear map BL sends (c⊗ u, d⊗ d) 7→ cd⊗B(u, v). �

(b) Choose bases U , V, W for U , V , W , respectively over K. These may be infinite. Then
the {1 ⊗ u : u ∈ U} give a basis for UL over L, and similarly for VL and WL. Suppose
that BL(u′, v′) = 0 for nonzero u′ ∈ UL, v′ ∈ VL. Write u′ as an L-linear combination of
the specified basis elements, and similarly for v′. Suppose that u′ =

∑r
i=1 ci ⊗ ui, where

u1, . . . , ur are distinct elements of U and v′ =
∑s

j=1 dj ⊗ vj , where v1, . . . , vs are distinct
elements of V. We may assume that all the ci and dj are nonzero. Choose sufficiently
many elements w1, . . . , wt of W that the values of all the B(ui, vj) are in the K-span of
w1, . . . , wt. We may replace u′ by (1/c1)u′ and v′ by (1/d1)v′ and so assume that c1 = 1

and d1 = 1. Then we have B(ui, vj) =
∑t

k=1 aijkwk for 1 ≤ i ≤ r, 1 ≤ j ≤ s, where the

aijk are in K. Then BL(u′, v′) = 0 means that (
∑t

k=1

∑
1≤i≤r,1≤j≤s aijkcidj)⊗wk = 0, and

so we have a system of equations x1 − 1 = 0, y1 − 1 = 0 and
∑

1≤i≤r,1≤j≤s aijkxiyj = 0,
1 ≤ k ≤ t, that has the solution xi = ci, 1 ≤ i ≤ r, yj = dj , 1 ≤ j ≤ s, over L.
We claim that these equations, which have coefficients in K, must have a solution in K.
Otherwise, by Hilbert’s Nullstellensatz, the polynomials on the left hand sides generate
the unit ideal in K[x1, . . . , xr, y1, . . . , ys]. But then they also generate the unit ideal in
L[x1, . . . , xr, y1, . . . , ys], and that would preclude a solution in L. Choose a solution in K,
say xi = γi, 1 ≤ i ≤ r with γ1 = 1, and yj = δj , 1 ≤ j ≤ s with δ1 = 1. Let u =

∑r
i=1 γiui

and v =
∑

j=1 δjvj . Then u 6= 0, v 6= 0, but the coefficient of every wk in B(u, v) is∑
1≤i≤r,1≤j≤s aijkγiδj , which is 0 for every k. Hence, B(u, v) = 0, a contradiction. �

3. (a) This follows by letting U = V = W = D in 2., part (b) and B(u, v) = uv.

(b) Let L be the fraction field of C. Since K is a field, D is K-free, and so K-flat. Hence,
C ⊗K D injects into L⊗K D, which is a domain by part (a).

4. (a) If m = 0, R/m ∼= R and the result is obvious. If f 6= 0 is a nonzero element of m,
and R/m is flat, then α : (R/m)⊗R fR→ R/m⊗RR ∼= R/m is injective. By Nakayama’s
lemma, R/m ⊗ fR 6= 0 (or else fR = 0), and is generated by 1 ⊗ f . But 1 ⊗ f maps to
the image of f in R/m, which is 0, and so the injective map α is 0, a contradiction. Thus,
we must have m = 0. �



(b) If R is zero-dimensional and reduced, to prove that M is flat it suffices to prove that
MP is flat over RP for all primes P . But every RP is a zero-dimensional reduced quasilocal
ring, i.e., a field, and over a field every module is free and, hence, flat. Conversely if every
R-module is flat then for every prime P , R/P is flat, and so RP /PRP is RP -flat. By part
(a), every RP must be a field. This implies that every prime ideal is minimal, and so R is
zero-dimensional, and since every RP is reduced, R is reduced. �

5. The compositions will give surjections M →M and N → N . Thus, it suffices to prove
that a surjection from a finitely generated module M to itself is injective: it follows that
each of the surjections is injective, and, hence, an isomorphism. We give two proofs: the
second does not need that R be Noetherian (the result is true without this hypothesis).

First proof. Let f : M → M be surjective, and let Nk denote the kernel of fk (k-fold
iterated composition). Then N1 = f−1(0) and fk+1 = f−1(Nk). If N1 6= 0, then N2 is
strictly larger than N1 (since the map is surjective, the image of N2 is N1, while the image
of N1 is 0). By a straightforward induction, Nk+1 is strictly larger than Nk for all k: it
must map onto Nk, while Nk maps onto Nk−1. This contradicts ACC for M . �

Second proof. Let R[x] be the polynomial ring in one variable over R. We can extend
the R-module structure to on M to R[x] by letting xm = f(m) for all m ∈M . Therefore,
there is no loss of generality if we assume the surjection arises from multiplication by an
element f of the ring (replace R by R[x] while keeping M the same). Let N be the kernel of
multiplication by f . If it is nonzero, we can choose a prime P of R such that NP 6= 0. Then
multiplication by f is surjection of MP → MP but is not injective. If f is a unit of RP ,
multiplication by f is injective. Therefore f must be in PRP . But then the surjectivity
means that fMP = MP , and so (PRP )MP = MP . Since M is finitely generated, so is
MP , and this contradicts Nakayama’s lemma. �

6. (a) K ↪→ L ↪→ R and we may assume without loss of generality that K ⊆ L ⊆ R.
Similarly, we may assume that K ⊆ L ⊆ S. Let u ∈ L−K. Then 1, u extends to a basis
for R over K and likewise 1, u extends to a basis for S over K. Hence, the elements u⊗ 1
and 1⊗ u are distinct elements in a basis for R⊗K S. But then u⊗ 1− 1⊗ u is a nonzero
element in the kernel R⊗K S � R⊗L S. �

(b) Since L is infinitely generated over K = K0, we may choose an infinite sequence of
elements a1, . . . , an, . . . such that for all n ≥ 1, an+1 /∈ Kn = K(a1, . . . , an). That is,
K ⊂ K1 ⊂ · · · ⊂ Kn ⊂ · · · is an infinite strictly ascending tower of subfields of L. Let Jn
denote the ideal that is the kernel of surjection L⊗K L → L⊗Kn

L. Then Jn+1/Jn may
be identified with the kernel of the surjection L⊗Kn L→ L⊗Kn+1 L, which, by part (a),
is nonzero. Hence, the Jn form a strictly ascending chain of ideals of L⊗K L, and so this
ring is not Noetherian. �

EC7. N has a K-basis consisting of those monomials such that the exponent on y is
strictly smaller than the smallest j such that xj occurs with a positive exponent in the
monomial. The annihilator of xj is spanned by all such monomials such that yj or a
higher power of y occurs. It follows that no element of N is killed by all of the xj . This
implies that HomR(M,N) = 0, and therefore so is W−1HomR(M,N). After localization
at W , both M , and N become isomorphic to R[1/y]/IR[1/y] ∼= K[y, 1/y], and there are
nontrivial maps, such as the isomorphism. Therefore, the two are different. �



EC8. (a) R has K-basis 1, x, x2, . . . , xn−1, while HomR(K) has K-basis δ0, δ1, . . . , δn−1,
where δi is the linear functional whose value on xi is 1 and which is 0 on other the other
xj , 0 ≤ j ≤ n− 1. The R-module structure on the linear functionals is such that the value
of sF on r is F (sr). It follows that δi = xn−1−iδn−1, so that δn−1 generates HomK(R,K),
which is therefore a cyclic module, and so has the form R/I. Since dimK (R/I) = n, the
same as dimK R, we must have I = 0. Thus, HomR(R,K) ∼= R. �

(b) By (a), HomR(M,R) ∼= Hom(M,HomK(R,K)),∼= HomR(M⊗RR, K) (by the stronger
form of the adjointness of ⊗ and Hom discussed in class), which is ∼= HomR(M, K). �

(c) Since R→M is injectve, HomK(M, K)→ HomK(M, K) is surjective (every injection
splits in the category of K-vector spaces), which implies that HomR(M, R)→ HomR(R,R)
is surjective, using part (b). The map M → R that restricts to idR is a splitting. �

(d) Suppose that R→ S is an epimorphism. Let R′ be the image of R in S. Then R′ also
has the form K[x]/(xh), h ≤ n, and R′ ↪→ S is an epimorphism. Therefore, it suffices to
show that an injective epimorphism from a ring of the form K[x]/(xn) is an isomorphism.
Note that by part (c), we have a splitting S = R ⊕M as R-modules. By the criterion
discussed in class, R → S is an epimorphism iff S ⊗R S → S is an isomorphism. But
(R⊕M)⊗R (R⊕M) ∼= R⊕ (R⊗RM)⊕ (M ⊗R R)⊕ (M ⊗RM), and, if M 6= 0, the map
to S = R ⊕M identifies both of the distinct nonzero summands R ⊗R M and M ⊗R R
with M , and so is not injective, a contradiction. �


