
Math 615: Lecture of January 5, 2007

This course will deal with several topics in the theory of commutative Noetherian rings,
including the following:

(1) The theory of Gröbner bases and applications: a lot more about this momentarily.

(2) The structure theory of complete local rings. One strategy in studying problems over
Noetherian rings is to reduce first to the local case, and then to the complete local
case. The structure theory of complete local rings can then be applied. There are
even deep theorems that permit one to pass from the case of a complete local ring
to a finitely generated algebra over a field or complete discrete valuation ring. Other
techniques can be used to pass from a problem in such an algebra over a field of
characteristic 0 to a corresponding problem over a field, even a finite field, of positive
prime characteristic p.

(3) What can one do when a ring is not Cohen-Macaulay?

In particular, we will discuss the theory of Cohen-Macaulay rings, but will focus on
techniques that show that all local rings are, in some sense, close to being Cohen-Macaulay.

Although we shall discuss the subject in much greater detail later, we give a brief
discussion of Cohen-Macaulay rings here so that we can explain the sort of theorem we
want to prove.

Recall the a ring R is quasilocal if it has a unique maximal ideal m: in this case we
usually denote the residue class field R/m by K, and refer to the quasilocal ring (R, m, K).
We reserve the term local ring for a Noetherian quasilocal ring.

Let (R, m, K) be a local ring of Krull dimension d. This implies that there exist d
elements x1, . . . , xd ∈ m such that if I = (x1, . . . , xd)R, then Rad (I) = m. (One cannot
use fewer than d elements, by the Krull height theorem.) Such a sequence of elements
x1, . . . , xd is called a system of parameters. A d-tuple (r1, . . . , rd) is called a relation on
x1, . . . , xd if

d∑
j=1

rjxj = 0.

The relations are easily seen to be an R-submodule of the free R-module Rd. There are
some obvious relations: the element

(0, . . . , 0, xj , 0, . . . , −xi, 0, . . . , 0)

where xj occurs in the i th spot and −xi occurs in the j th spot, is a relation. The elements
in the R-span of these

(
d
2

)
relations are referred to as trivial relations.

A local ring is called Cohen-Macaulay if there is a system of parameters such that every
relation on the parameters is trivial. It then follows by a theorem that this is true for
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every system of parameters. By a theorem, this property passes to localizations. One
then defines an arbitrary Noetherian ring to be Cohen-Macaulay if all of its localizations
at maximal ideals (equivalently, at prime ideals) are Cohen-Macaulay.

In certain graded cases one can give an alternative characterization as follows. Let K be
a field and R an N-graded algebra (i.e., R has a direct sum decomposition R =

⊕∞
n=0 Rn

with 1 ∈ R0 satisfying RmRn ⊆ Rm+n for all m,n ∈ N) such that R is finitely generated
over R0 = K. In this case, it turns out that one can always choose forms F1, . . . , Fd of
positive degree in R (by raising the Fj to various powers one can even arrange that they
all have the same degree) such that F1, . . . , Fd are algebraically independent over K and
R is module-finite over A = K[F1, . . . , Fd]. Of course, A is isomorphic with a polynomial
ring in d variables over K. In this situation, R is Cohen-Macaulay if and only if R is free
as an A-module.

In higher dimension, it is rare for modules over polynomial rings to be free. In fact,
relatively few rings are Cohen-Macaulay. In equal characteristic 0, one can start taking
module-finite extensions of a polynomial ring: if the dimension is 3 or higher, all sufficiently
large such extensions fail to be Cohen-Macaulay.

Examples. Let S = K[x, y] be the polynomial ring in two variables over the field K. Let
R = K[x2, xy, y2] ⊆ S. One may take A = K[x2, y2] ⊆ R. Then R is free over A on the
basis 1, xy, and so is Cohen-Macaulay.

On the other hand, let R1 = K[x2, x3, xy, y] ⊆ S and let A1 = K[x2, y] ⊆ R1. Then R1

is module-finite over A1 with minimal generators 1, x3, xy, but is not free over A1. One
has that y(x3) − x2(xy) = 0. This relation on minimal generators shows that R1 is not
A1-free and therefore not Cohen-Macaulay. Alternatively, in the local ring of R1 at its
homogeneous maximal ideal, x2, y is a system of parameters and (xy,−x3) is a non-trivial
relation on x2, y.

However, many of the rings that arise in natural geometric situations, such as complete
intersections and rings defined by the vanishing of minors of a matrix of indeterminates
are Cohen-Macaulay.

Many problems become easier in Cohen-Macaulay rings. One of the results we are
aiming to prove, stated in a very special case, helps to remedy the situation when the ring
is not Cohen-Macaulay:

Theorem. Let R be a complete local domain of prime characteristic p > 0. Let x1, . . . , xd

be a system of parameters for R, and let (r1, . . . , rd) be a relation on x1, . . . , xd. Then
there is a complete local module-finite extension domain S of R such that the relation
(r1, . . . , rd) becomes trivial over S.

This result has been known for well over a decade: cf. [M. Hochster and C. Huneke,
Infinite integral extensions and big Cohen-Macaulay algebras, Annals of Math. 135 (1992),
53–89]. Recently there have been improvements: one can make all relations on all systems
of parameters become trivial after just one module-finite extension (but new relations may
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be introduced). Beyond that, very recently, global versions of this theorem have been
proved. We shall discuss the situation in detail later in the course.

The Theorem above turns out to be false when R contains a field of characteristic 0.
Nonetheless, one can use the characteristic p results to prove important theorems in equal
characteristic 0.

We next want to begin our systematic treatment of the theory of Gröbner bases. Before
doing so we shall review some facts about closed algebraic sets in Kn over an algebraically
closed field K.

Review of the behavior of closed algebraic sets
over an algebraically closed field

This section is meant as an overview of some basic results on closed algebraic sets over
an algebraically closed field. We give definitions and statements of some theorems, but
most proofs are omitted. For a detailed treatment of this material, the reader may consult
[R. Hartshorne, Algebraic Geometry, Springer-Verlag Graduate Texts in Mathematics 52,
New York • Berlin • Heidelberg, 1977], Chapter I. There is also a complete discussion in
the Lecture Notes from Math 614, Fall 2003: see particularly the Lectures of October 3,
15, 17, and 20.

Let K be an algebraically closed field, and let R = K[x1, . . . , xn] be a polynomial ring.
If W ⊆ R is any set,

V(W ) = {v ∈ Kn : f(v) = 0 for all f ∈ W}.

It is easy to see that if I is the ideal generated by W , V(I) = V(W ). Moreover, if
f ∈ Rad (I), i.e., fk ∈ I for some integer k ≥ 1, then f also must vanish on V(I), and
so V

(
Rad (I)

)
= V(W ) as well. If X = V(I) for some ideal I, we say the X is a closed

algebraic set in Kn, or a Zariski closed set in Kn. In fact, we have

(1) Kn = V(0) and ∅ = V(R) are closed algebraic sets.

(2) V(I ∩ J) = V(I) ∪ V(J) for any two ideals I and J .

(3) V(
∑

λ∈Λ Iλ) =
⋂

λ∈Λ V(Iλ) for any family of ideals {Iλ}λ∈Λ.

The conditions above show that the closed algebraic sets are, in fact, the closed sets of
a topology on Kn: this is called the Zariski topology.

Suppose that we are given an arbitrary set of points P ⊆ Kn and we want to understand
the Zariski closure P of P. Since this will be the smallest closed set containinng P, we
want to find I as large as possible such that V (I) ⊇ P. But any element of I must vanish
on V (I), which we want to contain P. Therefore, the largest ideal we can use is the ideal
of all functions in K[x1, . . . , xn] that vanish on P, and this ideal defines P.

Note that if n = 1, the closed sets in K are the finite sets and K itself. In K2 one gets
finite unions of points and/or curves defined by one equation, and K2 itself.
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Every closed algebraic set X ⊆ Kn inherits a Zariski topology, whose closed sets are
simply the closed algebraic sets in Kn that happen to be contained in X.

The fundamental result in this area is:

Hilbert’s Nullstellensatz. Let K be an algebraically closed field and R = K[x1, . . . , xn]
a polynomial ring over K. There is a bijective, order-reversing correspondence between
closed algebraic sets in Kn and radical ideals of K[x1, . . . , xn]. Under this correspondence,
the radical ideal J corresponds to V(J), and the algebraic set X corresponds to the ideal
I(X) = {f ∈ R : for all v ∈ X, f(v) = 0}. In particular, the maximal ideals of R are in
bijective correspondence with the points of Kn: given a point v = (c1, . . . , cn) ∈ Kn, the
corresponding maximal ideal consists of all polynomials that vanish at v. (It can also be
described in terms of generators as the maximal ideal (x1 − c1, . . . , xn − cn)R.)

It follows that polynomials in K[x1, . . . , xn] have a common vanishing point if and
only if they do not generate the unit ideal, and that f ∈ Rad (f1, . . . , fm) if and only
if f vanishes on V(f1, . . . , fm). (Each of these statements is sometimes referred to as
“Hilbert’s Nullstellensatz.”)

When X = V(I) we shall say that I is a defining ideal for X. When, in addition, I
is radical we shall sometimes say that I is the defining ideal of X: it is now uniquely
determined by X.

We want to make the closed algebraic sets over K into a category. When we want to
emphasize that Kn is being thought of as an algebraic set, we use the notation An

K for
Kn. Given closed algebraic sets X ⊆ Am

K and Y ⊆ An
K , we define a K-regular map or K-

morphism from X to Y to be a function θ : X → Y that is the restriction of a map Am
K →

An
K that is given in terms of coordinates by polynomials. That is, there are n polynomials

f1, . . . , fn ∈ K[x1, . . . , xm] such that for every point v ∈ X, θ(v) =
(
f1(v), . . . , fn(v)

)
.

Note that every K-regular map from X to Y is the restriction (where we restrict both
the domain and the target) of a K-regular map Am

K → An
K . This may seem at first to

be an unreasonably strong requirement, but one should keep in mind that given closed
sets X ⊆ Rm and Y ⊆ Rn, every continuous function from X to Y is the restriction of
a continuous function from Rm → Rn. To see this, one must show that the composition
X → Y ⊆ Rn extends to a map on Rm. The composition is given in coordinates by n
continuous maps X → R, and each of these can be extended to Rm by the Tietze extension
theorem.

The identity map X → X is K-regular, and the composition of two K-regular maps is
K-regular, so that the closed algebraic sets and K-regular maps form a category.

Given a closed algebraic set X ⊆ An
K , the K-regular maps from X to A1

K = K are
simply the maps X → K arising from the restriction of a polynomial f ∈ K[x1, . . . , xn]
to X. This set of maps forms a K-algebra, denoted K[X], and called the coordinate ring
of X. We have a surjection K[x1, . . . , xn] � K[X] induced by restriction. The kernel is
precisely the set of polynomials that vanish on X, or I(X), and so

K[X] ∼= K[x1, . . . , xn]/I(X)
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as K-algebras.

Recall that a ring is called reduced if every nilpotent element is 0. Then K[X] is a
reduced, finitely generated K-algebra. What is more, every reduced, finitely generated
K-algebra occurs, up to K-algebra isomorphism, as K[X] for some closed algebraic set
X. For given such a K-algebra R, we may map K[x1, . . . , xn] � R by choosing a finite
set of, say, n generators for R as a K-algebra and sending the the xj to these generators.
The kernel is a radical ideal J . By Hilbert’s Nullstellensatz, J = I(X) for a unique closed
algebraic set X in An

K . But then

R ∼= K[x1, . . . , xn]/J = K[x1, . . . , xn]/I(X) ∼= K[X].

The map X 7→ K[X] is a contravariant functor from closed algebraic sets to reduced
finitely generated K-algebras. Given a K-regular map X → Y , one obtains a K-algebra
homomorphism K[Y ] → K[X] in an obvious way by composition: an element of K[Y ] is
precisely a K-regular map Y → A1

K , and the composite map X → Y → A1
K is an element

of K[X].

The key result about this is:

Theorem. Let K be an algebraically closed field. The category of closed algebraic sets
over K and K-regular maps is anti-equivalent to the category of reduced, finitely generated
K-algebras. The functor X 7→ K[X] provides the anti-equivalece.

We shall not give a complete argument here, but we do indicate how one gets a con-
travariant functor from finitely generated reduced K-algebras to closed algebraic sets over
K. The main point is that given a finitely generated reduced K-algebra R, one can give
the set X of K-homomorphisms R � K, which is in bijective correspondence with the
set of maximal ideals of R, the “structure” of a closed algebraic set, i.e., one can put
this set in bijective correspondence with the points of a closed algebraic set. Choices are
made in setting up this correspondence, but the different closed algebraic sets obtained
are canonically isomorphic in the category of closed algebraic sets.

Specifically, one simply maps a polynomial ring K[x1, . . . , xn] � R. Suppose that
R ∼= K[x1, . . . , xn]/J , where J will be radical. Each K-algebra homorphism R � K
gives a composite homomorphism K[x1, . . . , xn] � R � K, and this map corresponds
to a maximal ideal of K[x1, . . . , xn] and, hence, to a point of An

K . The points obtained
are precisely the points of V(J), which is therefore a closed algebraic set in bijective
correspondence with X = HomK−alg(R, K).

Some motivations for introducing Gröbner bases

Gröbner bases are a tool for doing explicit algorithmic calculations in a polynomial
ring over a field K (or in a homomorphic image of a polynomial ring over K). Whether
Gröbner basis methods actually give an algorithm depends on whether one can perform
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operations in K algorithmically. We shall not worry about this point. We simply assume
that arithmetic operations in K are understood, and seek methods to solve problems
in polynomial rings under the presumption that simple manipulations over the field can
handled.

In dealing with Gröbner basis questions, unless otherwsie specified, K is always un-
derstood to be a field, and a given ring K[x1, . . . , xn] is meant to be assumed to be a
polynomial ring in variables x1, . . . , xn over K.

We want to mention right away that while Gröbner bases are tools for calculation, they
can also be used to prove substantial theorems, such as the Hilbert basis theorem (ideals
in R are finitely generatded) and the Hilbert syzygy theorem (which is discussed further
below). There are also many instances in which Gröbner basis techniques have been used
to prove that certain infinite classes of rings of a special form have good properties.

Moreover, not surprisingly, the systematic study of Gröbner bases introduces a great
many new theoretical problems.

Among the questions we want to consider are the following.

(1) Given generators f1, . . . , fm for an ideal of the polynomial ring R = K[x1, . . . , xn],
how do we tell whether a given element f ∈ R of the polynomial ring is in the ideal?

This is equivalent to determining whether one can solve the equation

f = U1f1 + · · ·+ Umfm

where the Uj are unknown elements of R.

If one knows an a priori bound D for the degrees of the unknown polynomials Uj in
terms of m, n, and the degrees of the fj , one can think of the Uj as polynomials of degree
at most D with unknown coefficients. By working with coefficients, one gets a system of
linear equations over K in the unknown coefficients, and the problem becomes pure linear
algebra. The trouble with this idea is that while bounds for D are known, they are double
exponential, making the implementation of this idea unfeasible. The complexity of the
problem is double exponential in theory in worst cases, but the method of Gröbner bases
often works in cases that arise in practice.

A similar problem arises in determining whether a given element is in the R-span of
finitely many specified elements in the free module Rs. We shall give a Gröbner basis
method that can be used for both of these problems.

(2) If we have finitely many generators for an ideal

I ⊆ K[x1, . . . , xn] = R,

and 1 ≤ s ≤ n− 1, how can we find finitely many generators for I ∩K[xs+1, . . . , xn] ?
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Here, we might intersect with the polynomial subring generated by an arbitrary subset
of the variables, but by renumbering the indeterminates we might as well assume that the
generators of the subring are xs+1, . . . , xn. This type of question is part of what is called
elimination theory: we are eliminating the variables x1, . . . , xs from the equations.

This sort of problem is intimately connected with the problem of solving explicitly
the equations obtained by setting the generators of the ideal equal to 0.

To make this connection, we discuss the situation where K is algebraically closed.

We first want to understand the geometric meaning of the intersection of the ideal
with the subring.

Proposition. Let K be algebraically closed and let I ⊆ K[x1, . . . , xn] be any ideal. Sup-
pose that 1 ≤ s ≤ n−1 and let J = I∩K[xs+1, . . . , xn]. Let π : An

K → An−s
K be projection

on the last n − s coordinates. Let X = V(I) ⊆ An
K . Then V(J) is the Zariski closure of

the projection π(X).

Proof. Let f ∈ K[xs+1, . . . , xn]. By the discussion in the next to last paragraph on p. 3,
f is in the defining ideal of Zariski closure of π(X) if and only if f vanishes on π(X), i.e.,
f
(
π(X)

)
= 0. This says that f ◦ π, which is simply f thought of as a function on all of

Kn (even though it only involves xs+1, . . . , xn), vanishes on X, i.e., that f ∈ I. Thus,
I ∩K[xs+1, . . . , xn] is a defining ideal for the Zariski closure of π(X). �

Now suppose that I = (f1, . . . , fm) ⊆ K[x1, . . . , xn]. Note that the simultaneous
solutions of the system

{
f1(x1, . . . , xn) = 0

· · ·
fm(x1, . . . , xn) = 0

is the same as the set V (I). Assume that V (I) is a finite set. We next want to show if we
have an algorithmic method for doing elimination theory, then we also have an algorithmic
method for finding the solutions V (I), provided that we have a method for solving one
polynomial equation in one variable over K. The assumption that V (I) is finite is not
essential: if V (I) is infinite, the method will show that.

The idea is very simple. One calculates I∩K[xn]. This is a principal ideal, since K[xn]
is a PID. Thus, one gets a single generator g(xn) ∈ K[xn] for the intersection. By the
Proposition above, gR[xn] defines the Zariski closure of the projection of V (I) on A1

K = K
corresponding to the last coordinate. There are three cases.

First case. The intersection is the (0) ideal. This implies that the Zariski closure of the
projection is all of K, which means that the projection is an infinite set.

Second case. The intersection is the unit ideal, i.e., g is a nonzero constant. In this case,
the projection is empty, and this means that there are no solutions.
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Third case. g is a polynomial of positive degree. We are assuming that in this case we
can find the roots of g in K: call them λ1, . . . , λk. This means that the closure of the
projection of V (I) is the set {λ1, . . . , λk}. This implies that the projection is finite, and
since finite sets are closed, we must have that {λ1, . . . , λk} is the projection. This means
that the last coordinate of each point in V (I) is one of λ1, . . . , λk, and that every λj

occurs as the last coordinate of some point of V (I). The problem of solving the original
system of equations now breaks up into k separate problems, one for every λj . To find the
points of V (I) whose last coordinate is λj , substitute λj for xn in each of the equations.
This produces a new system of equations, but the number of variables is one smaller.
Proceeding recursively, we eventually find all solutions of the original system.

(3) Another use of Gröbner bases is in solving the following kind of problem: given ele-
ments f1, . . . , fs ∈ K[x1, . . . , xn], find generators for all the relations on those ele-
ments, i.e., for the module of s-tuples of polynomials (g1, . . . , gs) such that

∑m
j=1 gjfj =

0. In fact, one can require insteasd that the gi satisfy several equations like this, i.e.,
a system

s∑
j=1

gjfi,j = 0, 1 ≤ i ≤ r.

This is equivalent to finding the relations on the s columns of the r×s matrix M =
(
fi,j

)
,

i.e., to finding the all the column vectors g =

 g1
...
gs

 such that

Mg = 0.

Consider the R-submodule M of Rs spanned by these columns. The module of rela-
tions on the columns is called a first module of syzygies of M . More generally, whenever
we have a short exact sequence of finitely generated R-modules 0 → M ′ → Rk → M → 0,
M ′ is called a first module of syzygies of M . A first module of syzygies of a k th module
of syzygies is called a (k + 1) st module of syzygies: when N is an n th module of syzygies
of M there is an exact sequence

0 → N → Rbn−1 → · · · → Rb0 → M → 0

of finitely generated R-modules.

Gröbner bases can be used to prove the famous Hilbert syzygy theorem, that every
finitely generated module over K[x1, . . . , xn] has an n th module of syzygies that is free.
(Equivalently, that every finitely generated R-module has a free resolution of length at
most n.) Beyond that, Gröbner bases can be used to compute the resolution.

As a further application, Gröbner basis methods can be used in the graded case
to calculate Hilbert functions. We shall discuss this in much greater detail, including a
review of what is needed from the theory of Hilbert functions, once we have dome some
basic Gröbner basis theory.


