
Math 615: Lecture of January 8, 2007

Monomial Ideals and Submodules

Let R = K[x1, . . . , xn] be a polynomial ring over a field K. When a free R-module
F is given, it will typically be assumed to be finitely generated with an ordered free
basis b1, . . . , bn. The ordered free basis provides an isomorphism with Rn under which∑n

i=1 ribi corresponds to (r1, . . . , rn). Therefore, for the most part, in working with a free
module with ordered basis, we might as well assume that it is Rn with the standard basis
e1, . . . , en, where ei has 1 in the i th spot and 0 in the other spots. However, especially
when we are working with more than one free module, it may be inconvenient to identify
all of the modules with various Rni .

By a monomial µ in R, we mean an element of the form xa1
1 · · ·xan

n where the ai ∈ N,
the nonnegative integers. If α = (a1, . . . , an) ∈ Nn, we write xα for xa1

1 · · ·xan
n . Thus,

there is a bijection betwen monomials of R and elements of Nn. We write M for the set
of monomials of R.

More generally, given a finitely generated free module F with ordered basis, by a mono-
mial in F we mean an element of the form µbi, where µ ∈ M and bi is in the ordered basis.
In particular, when F = Rs with the standard basis, we mean an element of the form µei

with µ ∈M.

The monomials of F form a K-vector space basis for F . Every element f ∈ F is
uniquely expressible as a K-linear combination of mutually distinct monomials (for 0, the
set of monomials occurring is the empty set). We refer to the monomials that occur as the
monomials of f . We shall refer to the product of a nonzero element of K with a monomial
as a term. Thus, every element of F is uniquely expressible as a sum of terms involving
mutually distinct monomials: these terms are referred to as the terms of f . In particular,
this terminolgy applies in the case where F = R.

Proposition. Let R = K[x1, . . . , xn] be a polynomial ring over K. Let F ∼= Rs be a
free module with ordered basis. The following three conditions on a submodule M of F
(respectively, an ideal I of R) are equivalent:

(1) M (respectively, I) is generated by monomials.

(2) M (respectively, I) is the K-span of monomials.

(3) If f ∈ M (respectively, I), the monomials of f are in M (respectively, I).

Moreover, if M (respectively, I) is generated by monomials νλ (the index set may be
infinite), then f ∈ M if and only if every monomial in f is the product of a monomial
µ ∈M and some νλ.

Proof. It suffices to consider the module case. Suppose that G is a family of monomials in
F . The submodule generated by G must contain all the elements {µν : µ ∈ M, ν ∈ G}.
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The K-span of this set of monomials is closed under multiplication by any element of R, by
the distributuve law. It follows that (1)⇒ (2). This implies the final statement. Moreover,
(2) ⇒ (1) and (2) ⇔ (3) are obvious. �

Of course, it is not true that an arbitrary set of monomials spans a submodule: G spans
a submodule if and only if whenever ν ∈ G and µ ∈M, we have that µν ∈ G.

Consider a K-vector space with basis B, and let S be the set of K-vector subspaces
that are spanned by a subset of B. Then there is an order-preserving bijection between S
and the set of subsets of B. This bijection preserves intersection, even infinite intersection,
and takes sums, even infinite sums, to unions. Thus, for such a family of vector spaces,
intersection distributes over sum (even when the sum is infinite) and union distributes over
intersection (even if the intersection is infinite).

Since monomial ideals (respectively, monomial submodules) have K-bases consisting of
monomials, it follows that for monomial ideals and submodules, intersection distributes
over sums, including infinite sums, and sum distributes over intersections, even infinite
intersections.

Let α = (a1, . . . , an) and let β = (b1, . . . , bn). Let ci = min {ai, bi} for each i and
let di = max{ai, bi) for each i. Let γ = (c1, . . . , cn) and δ = (d1, . . . , dn). We define
GCD(xα, xβ) = xγ , and LCM(xα, xβ) = xδ. These definitions agree with the usual UFD
notions of greatest common divisor and least common multiple.

In particular, xαR ∩ xβR = xδR where xδ = LCM(xα, xβ). Now suppose that I is
generated by monomials xαi where i varies in some index set, and that J is generated by
monomials xβj , where j varies in some index set. Thus, I is the sum of the ideals xαiR
and J is the sum of the ideals xβj R. Since intersection distributes over sum for monomial
ideals, it follows that I ∩ J is the sum of the ideals xγij R, where γij = LCM(αi, βj), since
xγij R = xαiR ∩ xβj R for all choices of i and j.

Now let F be a finitely generated free module with ordered basis B1, . . . , Bs. We can
extend these definitions to pairs of monomials of F that involve the same basis element,
so that GCD(µ1bi, µ2bi) = GCD(µ1, µ2)bi and LCM(µ1bi, µ2bi) = LCM(µ1, µ2)bi

Lemma. If {an}n∈N is an infinite sequence of nonnegative integers, then it has an infinite
subsequence that is either constant or strictly increasing. In particular, it has an infinite
subsequence that is non-decreasing.

Proof. If the sequence is bounded above, then only finitely many integers occur, and so
at least one of them must occur infinitely many times. If the sequence is not bounded,
let n1 = 1 and, recursively, let ni+1 be the least integer strictly larger than ni such that
ani+1 > ani

. (If there is no such integer, then the sequence is bounded above.) Clearly,
{ani

}i is strictly inreasing. �

The Lemma above is quite easy, but it has an interesting consequence. Let F be a
finitely generated free module with ordered basis over R = K[x1, . . . , xn]. The set of
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monomials of F is partiallly ordered by ν1 ≥ ν2 means that ν2 = µν1 for some µ ∈ M,
i.e., ν2 is a multiple (necessarily by a monomial) of µ1. Then:

Proposition. Let R and F be as above. Then there is no infinite subset of F consisting of
mutually incomparable monomials. Equivalently, given any infinite sequence of monomials
in F , one of them divides another. In particular, this holds when F = R.

Proof. Suppose that ν1, ν2, ν3, . . . is an infinite sequence of monomials in F . Then some ei

must occur in infinitely many terms, and so we may pass to an infinite subsequence in which
each term has the form µnei. It therefore suffices to prove the result for an infinite sequence
µ1, µ2, µ3, . . . of monomials in R. Consider the exponents a1, a2, a3, . . . occurring on the
variable x1 in this sequence. Then we may pass to an infinite subsequence such that these
exponents are non-decreasing, by the Lemma above. By the same reasoning we may pass
to a still smaller infinite subsequence such that the exponents b1, b2, b3, . . . on x2 are also
non-decreasing. By a straightforward induction, we may repeat this step for each variable,
and the n th subsequence obtained will have the property that for all of the variables xi,
where 1 ≤ i ≤ n, the sequence of exponents on xi is non-decreasing. But this means
that every monomial in the subsequence divides all monomials that come after it in the
subsequence. �

Corollary. Let R and F be as above. Then every monomial submodule M of F is finitely
generated by the set of minimal monomials in M under the partial ordering by divisibility.
In particular, this holds for monomial ideals in R.

Proof. Given any monomial in F , there are only finitely monomials in F that are smaller
in the partial ordering, and so given any monomial in M , among the monomials in M
that divide it there must be a minimal one. Therefore, M is generated by the minimal
monomials in M . Since these are mutually incomparable, the preceding Proposition shows
that the set of minimal monomials in M is finite. �

The set of minimal monomials in a monomial submodule (or ideal) is also referred to
as the set of minimal monomial generators.

Gröbner bases reduce a multitude of problems about ideals of R and about arbitrary
submodules of a free module F to the monomial case! In particular we shall use them to
give a very simple proof of the Hilbert basis theorem. In order to define Gröbner basis, we
need to introduce the idea of a monomial order.

Monomial orders

Let R = K[x1, . . . , xn] and let M be the set of all monomials in R. A monomial order
on M is a total ordering > of M such that

(1) If µ, µ1, µ2 ∈M and µ1 > µ2 then µµ1 > µµ2.

(2) The element 1 is the least element in M.
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The second property implies that a monomial order refines the partial ordering by
divisibility: since 1 ≤ µ2 for all µ2 ∈ M, we have that µ1 ≤ µ1µ2 for all µ1, µ2 ∈ M By
renumbering the variables, we may assume that x1 > x2 > · · · > xn, and we shall always
assume this about any monomial order that we introduce.

By a monomial order on a finitely generated free module F with ordered basis b1, . . . , bs

we mean a total ordering of the monomials in F such that

(1) If µ ∈M and ν1, ν2 are monomials in F with ν1 > ν2, then µν1 > µν2.

(2) For every i, the element bi is least among the elements of the form µbi for µ in M.

Property (2) implies that if ν ∈ F is a monomial and µ 6= 1 is in M, then ν < µν.
Evidently, this agrees with the first definition when F = R with the ordered basis consisting
of 1.

Given a monomial order > on M we can construct a monomial order on F by requiring
that µ1bi > µ2bj precisely when µ1 > µ2 or µ1 = µ2 and i < j (so that b1 > b2 > · · · bs).
Unless otherwise specified, we shall always do this in working with monomial orders on
free modules.

To see that monomial orders on R exist, we give the example of lexicographic order,
frequently referred to simply as lex order. If α = (a1, . . . , an) and β = (b1, . . . , bn), the
definition is simply that xα > xβ precisely if there exists an integer j, where 1 ≤ j ≤ n,
such that ai = bi for i < j while aj > bj . It is very easy to see that this satisfies (1) and
(2) above. Note that it is true that x1 > · · · > xn as well.

Suppose that x1, x2, x3 . . . , x26 are the letters of the Roman alphabet, A, B, C, . . . , Z.
Suppose that given a monomial we write it out as a string of letters with letters occurring
in alphabetical order, so that x3

1x2x
2
3x

5
4 would be written out as AAABCCDDDDD. The

order we have specified is the same order as these “words” would occur in a dictionary or
lexicon. This is the reason for the term “lexicographic order.”

We shall soon see that if R has two or more variables, there are uncountably many
monomial orders! However, we really only need to make use of two or three of them.


