
Math 615: Lecture of January 10, 2007

The definition of lexicographic order is quite simple, but the totally ordered set that
one gets is not — even if there are only two variables one has
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Thus, there are abundantly many examples of infinite increasing sequences that have
an upper bound within the set. This ordered set is not order-isomorphic with N.

We will write µ′ >lex µ to indicate that we are using lexicographic order, although the
subscript may be omitted if it is clear from context which monomial order we mean.

In a way, it is simpler to consider a variant notion called homogeneous lexicographic
order. This order will be indicated by the subscript hlex. The definition is simple: we
define µ′ >hlex µ to mean that either that deg(µ′) > deg(µ) or that deg(µ′) = deg(µ) and
µ′ >lex µ. Thus, monomials of larger degree are always bigger in this order, while we use
lexicographic order to decided which is bigger of two monomials of the same degree. It is
quite easy to verify that this is also a monomial order. In K[x1, x2] note that x1 >lex x2
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but that x2
2 >hlex x1. It is still the case that x1 > x2 > · · · > xn in homogeneous

lexicographic order. The totally ordered set one gets is easily seen to be order isomorphic
with N for hlex order. Some authors use the term graded lexicographic order instead of
homogeneous lexicographic order, and use the subscript grlex to indicate it.

Another monomial order of great important is reverse lexicographic order, indicated
by the subscript revlex. Some authors use the adjectives “graded” or “homogeneous”
as well, and one may see the subscript grevlex as an indicator, but, as we shall explain
below, in using this order one must make it homogeneous, so the adjective is redundant.
For reverse lexicographic order, given two monomials, the one of larger degree is always
bigger. The issue is how to order the monomials of a given degree. Here ones uses the
opposite of lexicographic order for the monomials numbered backward. Specifically, if
α = (a1, . . . , an) and β = (b1, . . . , bn), then xα >revlex xβ means that deg(xα) > deg(xβ)
(i.e., that

∑n
j=1 aj >

∑n
j=1 bj) or that deg(α) = deg(β) and there exists an integer j with

1 ≤ j ≤ n such that ai = bi for i > j while aj < bj .

There is a double reversal of sorts here, since one is using the opposite of what lex-
icographic order gives when the variables are numbered backwards. One still has that
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x1 > x2 > · · · > xn, and in the two variable case hlex and revlex are the same. In the
three variable case one has that x1x3 >lex x2

2 while x2
2 >revlex x1x3. For the latter, the

variable with the highest index for which the two monomials have different exponents is x3,
and the first monomial has the smaller exponent. The difference between the two condi-
tions might be paraphrased by saying that if two monomials have the same degree, for hlex
the greater involves more of the low index variables while for revlex the greater involves
fewer of the high index variables. This statement is quite misleading, however, since it
is only the first spot (for hlex) and the last spot (for revlex) where the monomials have
differerent exponents that governs which monomial is greater. E.g., with 1000 variables,

x1x
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2 x1000

for both hlex and revlex.

Note that if we simply reverse the order of the variables and take the opposite of
lexicographic order (without putting on the condition that monomials of higher degree are
always larger), we do not get a monomial order, even if there is only one variable. We
always have

1 > xi > x2
i > · · · ,

if we reverse lexicographic order, even if we think of the variables numbered backwards, and
this is not a monomial order. This is what makes it unnecessary to specify homogeneous
or graded when discussing reverse lexicographic order.

We extend lex, hlex, and revlex to free modules by our standard rule. Thus, if b1, . . . , bs

is the ordered free basis for F , for µ, µ′ ∈M, µbi > µ′bj means that µ > µ′ or that µ = µ′

and i < j, no matter which of the three we are working with.

The ordered set is N for revlex as well as for hlex.

Experience has shown that revlex tends to shorten calculation times for certain ap-
plications. It is of some interest that reverse lexicographic order was first considered by
F. S. Macaulay in the early 1900s, long before the computer age.

Recall that a totally ordered set is well-ordered if, equivalently, either

(1) Every nonempty subset has a least element.

(2) Every non-increasing infinite sequence of elements is eventually constant.

If (1) fails and we have a nonempty subset with no least element, we can recursively
construct an infinite strictly decreasing sequence within the subset: choose any element to
be the first element of the subsequence. If we have chosen µ1 > · · · > µn strictly decreasing
within the subset, we can choose µn+1 with µn > µn+1 because otherwise µn would be the
least element in the subset. On the other hand, if (2) fails, by omitting repeated terms we
get an infinite strictly decreasing sequence, and the set of elements in it is a subset with no
least element. Note that condition (2) is often referred to as DCC or Artinian, especially
in reference to partially ordered sets.

The following is a critical property of monomial orders.



3

Theorem. Let R be a polynomial ring over K and F be a finitely generated free R-module
with ordered basis. Then every monomial ordering on R or F is a well-ordering of the
monomials.

Proof. It suffices to consider the case of F . Let S be any nonempty subset of the monomials
in F . Give ν ∈ S, there are only finitely many monomials ν1 in F such that ν1 divides
ν, i.e., such that ν = µν1 for some monomial µ ∈ M. Among these, at least one must
be a minimal element in the partial ordering by divisibility. Thus, every element of S
is a multiple of a minimal element of S. The set S0 of minimal elements of S consists
of mutually incomparable monomials: none of them divides any of the others. By the
Proposition on the top of p. 3 of the Lecture Notes of January 8, this set is finite. Some
element of the finite set S0 is minimum in the monomial order, since the monomial order
is a total order. This element is the least element of S for the monomial order, for given
any ν ∈ S, we can write ν = µν1 with ν1 minimal in S with respect to divisibility, and
then µν1 ≥ ν1 ≥ ν0 in the monomial order. �

Initial terms and the division algorithm

In this section, let R = K[x1, . . . , xn] be a polynomial ring over a field K, let F be
a finitely generated free R-module with ordered basis, and assume that we have a fixed
monomial order > on F . Of course, it may well be that F = R.

We are going to make several definitions, such as “initial term” and “initial module.”
Each of these definitions is relative to a fixed monomial order.

First note that the total ordering of monomials also gives an ordering of terms in a weak
sense. Given two terms cν, c′ν′, where c, c′ ∈ K − {0} are nonzero scalars and ν, ν′ are
monomials in F , we write cν < c′ν′ to mean that ν < ν′ and we write cν ≤ c′ν′ to mean
ν ≤ ν′. There relations are transitive. Given any two terms, they will be comparable.
However, if cν ≤ c′ν′ and c′ν′ ≤ cν, the conclusion that we can draw is that ν = ν′, and
not that the terms are equal.

This terminology will be very convenient, especially in discussing the terms occurring
in a given element f ∈ F − {0}. By definition, these terms involve mutually distinct
monomials, and so the relation we have introudced on terms restricts to give a linear
ordering of the terms of the element f . In particular, f 6= 0 has a unique greatest term
under >, which is called the initial term of f and denoted in>(f). However, if it is clear
from context which monomial order is being used, we may simply write in(f) for the initial
term of f .

When using lexicographic, homogeneous lexicographic, or reverse lexicographic order,
the respective notations inlex(f), inhlex(f), or inrevlex(f), are used.

Let M ⊆ F be an arbitrary submodule. The submodule of F spanned by the initial
terms of all elements of M is a monomial submodule: instead of using cν as a generator,
where c ∈ K−{0} and ν is a monomial, we can use ν itself. This submodule of F is denoted
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in>(M) or in(M) and is called the initial module of M . It is typically not contained in
M (unless M itself is a monomial module). If F = R and I is an ideal, in(I) is called
the initial ideal of I. Just as in the case of individual elements, we may indicate that the
monomial order used is lexicographic, homogeneous lexicographic, or reverse lexicographic
order with the respective notations inlex(M), inhlex(M), or inrevlex(M).

With these notations in place, we want to discuss an analogue of the division algorithm
for polynomial rings in one variable over a field. However, in our case, instead of dividing
by one polynomial to get a quotient and remainder, we may be “dividing” by several.
Furthermore, instead of working with polynomials, we may be working with elements of
F . However, for heuristic reasons, the reader may want to think at first only about the
case where F = R.

Let f ∈ F and g1, . . . , gr ∈ F , where the gi are assumed to be nonzero. By a standard
expression for f in terms of the gi we mean an expression of the form

f =
r∑

i=1

qigi + h

with every qi ∈ R and h ∈ F (technically, one should work with the (r + 1)-tuple
(q1, . . . , qr, h)) such that the following two conditions are satisfied:

(1) No term of h is divisible by any of the terms in(gi).

(2) For every i such that qigi 6= 0, in(qigi) ≤ in(f).

The element h in a standard expression as above is called a remainder for f with respect
to g1, . . . , gr. (But, again, all of these definitions depend on fixing a monomial order.)

Note that gi may occur with coefficient qi = 0, in which case qigi = 0 and has no initial
term: condition (2) is phrased so that the possibility qigi = 0 is allowed. In fact, if f has
no term that is divisible by any in(gi), we may take all the qi = 0 and h = f , and so
obtain a standard expression at once. It may well be that h = 0 in a standard expression.
Condition (2) is then satisfied vacuously because h has no terms.

Also note that (2) is equivalent to the following condition that, a priori, looks stronger:

(2◦) For every i, every term of qigi is ≤ in(f).

When qigi = 0, this condition is satisfied vacuously, and so we do not need to make a
separate statement about that case. If not, this condition follows at once from (2), because
in(qigi) is the greatest term in qigi.

We shall prove that there is always a standard expression for f in terms of the gi. In
fact, we shall prove that the following procedure always yields such an expression:

Deterministic division algorithm. Let >, f , and g1, . . . , gr as above be given. Define
a finite sequence of elements fn with f0 = f , expressions

(#n) f =
r∑

i=1

qi,ngi + fn



5

and monomials νn in F (except that νn is not defined for the final value of n) as follows.
If n = 0 the expression is simply given by taking all qi,0 = 0. If fn has no term divisible by
any of the in(gi) the procedure stops, and we have that (#n) is a standard expression for
f with remainder h = fn. Otherwise, once fn and the corresponding expression (#n) are
known, let cnνn be the largest term of fn that is a multiple of one or more of the elements
in(gi). (The procedure that we are describing will eventually terminate no matter which of
the gi with in(gi) dividing ν we choose, but we want to make it deterministic.) Let in be the
least integer such that in(gin

) divides cnνn, and choose c′nµn such that cνn = c′µnin(gin
).

Finally, we let
fn+1 = fn − c′nµngin ,

and then we may take
qj,n+1 = qj,n

for j 6= in while
qin,n+1 = qin,n + c′nµn.

A straightforward induction then shows the following:

(a) For every j, fj+1 and fj have the same terms for monomials strictly larger than νj ,
and fj has a νj term while fj+1 does not. Hence, if j ≥ k, the terms of fj and fk

agree for monomials strictly larger than νj . Moreover, for every j, the terms of fj

strictly larger than νj are not divisible by any of the in(gi) (or they would have been
subtracted off at an earlier stage).

(b) The sequence
ν0 > ν1 > ν2 > · · ·

is strictly decreasing. Hence, the procedure must stop, because the set of monomials
is well-ordered by the Theorem at the top of p. 3.

(c) Every expression (#n) satisfies the equivalent conditions (2) and (2◦). If this is true
for (#n), it will continue to be true for (#n+1), because the initial term of

c′nµngin

is
c′nµnin(gin

) = cnνn

by construction, and νn ≤ ν0 ≤ in(f).

We have proved:

Theorem. Given f, g1, . . . , gr ∈ F , the deterministic division algorithm presented above
produces a standard expression for f in terms of the g1, . . . , gr. Therefore, a standard
expression for f in terms of the g1, . . . , gr always exists. �

In case F = R = K[x], with r = 1, so that we are dividing f by g1 = g in K[x], the
standard expression we get must be f = qg + h, where deg(h) < deg(g) or h = 0. Here, if
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deg(g) = d, in(g) = cxd for some c 6= 0 in K, and the condition that h has no term divisible
by in(g) is equivalent to the condition that deg(h) < deg(g) or h = 0. The individual steps
in the algorithm are exactly the steps in the usual division algorithm for polynomials in
one variable.

In the general case, we do not have the uniqueness statements that hold for the case of
division of a polynomial in one variable by another. Of course, the determinstic algorithm
we gave produces a unique result, but it is not the only standard expression. There are
important cases where the remainder is unique: we return to this point soon.

Example. Let f = x1x2, g1 = x1 + x3, and g2 = x2 + x3. Suppose we use hlex. Then

f1 = f − x2(x1 + x3) = −x2x3

and
f2 = −x2x3 + x3(x2 + x3) = x2

3,

which is the remainder. The standard expression we get is

x1x2 = x2(x1 + x3)− x3(x2 + x3) + x2
3,

with q1 = x2 and q2 = −x3 while f2 = h = x2
3. However, we also have

x1x2 = (−x3)(x1 + x3) + x1(x2 + x3) + x2
3,

a different standard expression, although the remainders are the same.


