
Math 615: Lecture of January 12, 2007

Example. Now consider

f = x1x2x3, g1 = x1x2 + x2
3, g2 = x1x3 + x2

2

in F = R = K[x1, x2, x3] with hlex as the monomial order. On the one hand,

f = x3g1 + 0 · g2 − x3
3

is a standard expression with remainder −x3
3, while

f = 0 · g1 + x2g2 − x3
2

is a standard expression with remainder −x3
2. Therefore, even the remainder is not unique

in general, although it is in important cases that we shall soon discuss.

Gröbner bases

Before proceeding further, we want to comment on the use of the word “basis.” By
a basis for a module we simply mean a set of generators for the module. There is no
implication that these generators are linearly independent. If we are working with a free
module, the term free basis will mean basis of linearly independent elements. In the phrase
“free module with ordered basis” the basis is understood to be a free basis.

Over a field K, every module is free. We shall use the terms “vector space basis” and
“K-vector space basis” for a set of linearly independent generators in the field case.

Throughout this section R = K[x1, . . . , xn] is a polynomial ring over a field K, M
denotes the set of monomials in R, F is a finitely generated free R-module with ordered
basis, and > is a fixed monomial order on F .

The following very easy result is, nonetheless, extraordinarily useful.

Theorem. Let M ⊆ F be a submodule. If N ⊆ M is a submodule such that in(N) =
in(M), then N = M .

Proof. We shall give two proofs. First, suppose N 6= M . Consider the set S of monomials
of F that occur in the initial term of an element of M −N . If this set is non-empty, it has
a least element with respect to >, since monomial orders are well-orderings. Suppose that
f ∈ M −N has initial term cν where ν is the least element of S. Then ν ∈ in(M) = in(N)
occurs as the initial term of some element g ∈ N , and then f − cg contains only terms
strictly smaller than ν. But this element is still in M − N , and its initial term must be
smaller than ν, contradicting the minimality of ν. �
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Here is an alternative argument. We know that in(M) = in(N) is finitely gener-
ated, since it is a monomial module. We may therefore choose finitely many elements
g1, . . . , gr ∈ N whose initial terms generated in(M). Let f ∈ M be given. By the division
algorithm, there is a regular expression

f =
r∑

j=1

qjgj + h

for f in terms of the gi. Then h ∈ M , but no term of h is divisible by any in(gj). This
implies that h = 0, for otherwise its initial term in(h) ∈ in(M) and so must be divisible
by some in(gj). But this shows that f ∈ N . �

We are immediately led to make the following definition. Let M ⊆ F be any submodule.
Then g1, . . . , gr is called a Gröbner basis for M if the elements in(g1), . . . , in(gr) are a
basis for in(M). We know that since in(M) is monomial, it is finitely generated, and so a
Gröbner basis for M always exists.

Theorem. Every submodule M of F has a Gröbner basis. �

Theorem. A Gröbner basis for M ⊆ F is a basis for M .

Proof. This is immediate from the first Theorem on p. 1. �

Corollary (Hilbert basis theorem). Every submodule of F is finitely generated. In
particular, every ideal of R = K[x1, . . . , xn] is finitely generated.

Proof. The submodule or ideal has a (finite) Gröbner basis, which is then a basis. �

We also have:

Theorem. Let M ⊆ F be a submodule. The monomials of F not in in(M) give a K-vector
space basis for F/M .

Proof. We first show that the set of monomials Q in F and not in in(M) are linearly
independent over K. If we have a linear relation on these monomials, we find that a
nonzero linear combination of monomials in Q is an element f of M . But then the initial
term of f ∈ M involves a monomial not in in(M), a contradiction.

Now let f ∈ F be given, and let g1, . . . , gr be a Gröbner basis for M . By the division
algorithm, we can write f =

∑r
j=1 qjgj + h, where h is in the K-span of Q. But then

f ≡ h mod M . �



3

Corollary. Let M ⊆ F and let g1, . . . , gr be a Gröbner basis for M . Then for all f ∈ F ,
the remainder h in any standard expression

f =
r∑

j=1

qjgj + h

is unique, i.e., h is the same no matter what standard expression is chosen.

In particular, f ∈ F is an element of M if and only if the remainder in any standard
expression for f in terms of the Gröbner basis g1, . . . , gr is 0.

Proof. The remainder h is a K-linear combination of monomials in Q, the set of monomials
of F not in in(M). Any two remainders represent the same element of F/M , and so the
result follows at once from the preceding Theorem.

The final statement is then obvious. �

Notice that if we can find a Gröbner basis g1, . . . , gr for M ⊆ F (or for I ⊆ R), the
result above gives an effective test for whether an element f ∈ F (respectively, R) is in M
(respectively, I): one simply uses the division algorithm to find a remainder for f in terms
of g1, . . . , gr, and f ∈ M (respectively, I) if and only if the remainder is 0.

However, at this point we do not have an effective method for finding a Gröbner basis for
M given a set of generators of M . We shall develop such a method, called the Buchberger
algorithm, at which point we have a solution for the problem of giving an effective test for
membership in M or I when we know specific generators for M or I.

Before discussing the Buchberger algorithm, we want to discuss restrictions on a Gröbner
basis for M (or I) that make it unique.

A Gröbner basis g1, . . . , gr for M ⊆ F is called minimal if the monomials occurring in
in(g1), . . . , in(gr) are the minimal monomials in in(M). Evidently, every Gröbner basis
for M has a subset that is a minimal Gröbner basis. Notice that every minimal Gröbner
basis for M has the same cardinality as the set of minimal monomials in(M). We shall say
that an ordered Gröbner basis g1, . . . , gr for M ⊆ F is reduced if it satisfies the following
four conditions:

(1) g1, . . . , gr is minimal.

(2) in(g1) > in(g2) > · · · > in(gr).

(3) Every in(gi) is a monomial, i.e., the coefficient in every initial term is 1.

(4) For all i 6= j, in(gi) does not divide any term in gj .

There is variation in the literature in the use of the term “reduced Gröbner basis,”
but conditions (1) and (4) are always assumed. We have chosen the usage that makes a
reduced Gröbner basis for M unique, as we shall see below.

As already noted, any Gröbner basis has a subset that is minimal, and the elements
can then be ordered uniquely so that the sequence of initial terms is strictly decreasing.
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Obviously, one can multiply each term by the reciprocal of the coefficient of the initial
term, and therefore conditions (1), (2), and (3) are readily achieved. Note that it is obvous
that the sequence of initial terms is then the same as the sequence of minimal monomial
generators of in(M), arranged in strictly decreasing order. We can guarantee condition (4)
as follows. Replace g1 by its remainder in a standard expression with respect to division
by g2, . . . , gr. Then replace g2 by its remainder in a standard exrpession with respect to
division by g3, . . . , gr. Continue in this way for r − 1 steps. At the i th step, replace gi

by its remainder in a standard expression with respect to division by gi+1, . . . , gr.

It is easy to see that the result satisfies all of the conditions (1) — (4). The first three
conditions are not disturbed. Given i < j, in(gi) is bigger than any term in gj , and so
cannot divide gj , while no term in gi is divisible by in(gj), because gi is the remainder in
a standard expression for division by elements one of which has the same initial term as
gj . Note that while the gk change, their initial terms do not change.

Since we can use the deterministic division algorithm at each step, we see that we can
pass algorithmically from a Gröbner basis to a reduced Gröbner basis. We have now proved
the first statement in the Theorem below.

Theorem. Let M ⊆ F (or I ⊆ R) be given. Then M (respectively, I) has a reduced
Gröbner basis, and it is unique.

Proof. It remains only to prove uniqueness and, as usual, it suffices to consider the case of
modules. We need only show that if g1, . . . , gr and g′1, . . . , g′r are two reduced Gröbner
bases for M , then gi = g′i for all i. We know a priori that in(gi) = in(g′i) for all I. We use
reverse induction on i. Apply the division algorithm to find a standard expression for g′r
in terms of g1, . . . , gr. We know that the remainder will be 0. Moreover, at every stage,
the initial terms of g1, . . . , gr−1 are too large to be used. At the very first step in the
algorithm, we subtract gr from g′r to produce an element of M all of whose terms involve
only monomials < in(gr) = in(g′r). Since this is the least monomial in in(M), it follows
that gr − g′r = 0. This gives the base step of the induction.

Now assume that i < r and that gj = g′j for j > i. Perform the division algorithm for
g′i with respect to g1, . . . , gr. The terms g1, . . . , gi−1 are all too large ever to be used. At
the first step, one gets gi − g′i: the initial terms cancel, all remaining terms are strictly
smaller than in(gi) = in(g′i), and none of them is divisible by in(gj) for j > i, since this is
true for all terms but the greatest in both gi and g′i. Since the remainder must be 0, we
must have that gi − g′i = 0, and so gi = g′i, as required. �

Revisited example. Consider again the example on p. 1, in which g1 = x1x2 + x2
3 and

g2 = x1x3 + x2
2. The elements g1 and g2 are certainly minimal generators for an ideal I

of K[x1, x2, x3]. They are not, however, a Gröbner basis using hlex. The initial terms
of these two elements are x1x2 and x1x3. Note that x3g1 − x2g2 = x3

3 − x3
2 has initial

term −x3
2, which shows that in(g1) and in(g2) are not the only minimal elements of in(I).

In fact, we know this a priori, since remainders of division with respect to g1, g2 are not
unique.


