
Math 615: Lecture of January 17, 2007

The notion of Gröbner basis is non-trivial and of some interest even when there are no
indeterminates, i.e., when R = K is a field, and F = Ks.

Consider an r × s matrix A =
(
ai,j

)
over a field K. The leftmost nonzero entry of a

nonzero row of A is called the leading or initial entry. Recall that A is said to be in reduced
row echelon form if it satisfies the following conditions:

(1) The nonzero rows precede the rows that are 0.

(2) The leading entry of every nonzero row is 1.

(3) If there are ρ nonzero rows, and if the leading entry of the i th row in the ji th column,
then j1 < j2 < · · · < jρ.

(4) If the leading entry of the i th row occurs in the ji th column, then all other entries in
the ji th column are 0.

The key result from elementary linear algebra about reduced row echelon form is that
every r×s matrix over K has the same row space as a unique matrix in reduced row echelon
form. Moreover, the given matrix can be put into reduced row echelon form by a sequence
of elementary row operations (i.e., multiplying a row by a nonzero scalar, permuting the
rows, and adding a multiple of one row to another). This gives a canonical basis for the
row space of the original matrix (but this canonical basis does depend on having made a
choice of basis for Ks).

Suppose that A is in reduced row echelon form and call the nonzero rows f1, . . . , fρ.
The initial term of fi is eji

. Condition (4) guarantees that the initial term of fi does
not divide any term in any other fj . If we have any nonzero element c1f1 + · · ·+ cρfρ of
the row space, its initial term will be cieji for the smallest value of i such that ci 6= 0.
Consequently:

Proposition. Let the monomial order for Ks be such that e1 > e2 > · · · > es. An
r × s matrix over the field K is in reduced row echelon form if and only if its nonzero
rows precede its zero rows and its nonzero rows form a reduced Gröbner basis for its row
space. �

Relations on monomials and terms

Let M ⊆ F = Rs be any monomial submodule. Since M is generated by monomials
µiej , it follows that

M = I1e1 ⊕ · · · ⊕ Ises

where every Ij is a monomial ideal of R. Understanding the relations on generators for
M is therefore equivalent to understanding the relations on generators for several separate
monomial ideals of R.
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We therefore focus first on understanding generators for the module of relations on a
sequence µ1, . . . , µr of monomials in the polynomial ring R = K[x1, . . . , xn]. For each
pair of monomials µi and µj with i 6= j, we get one “obvious” minimal relation: it comes
from the trivial relation that corresponds to the equation

µjµi − µiµj = 0

by dividing both coefficients µj and −µi by ∆ij = GCD(µi, µj). (Trivial relatons are also
called Koszul relations, and the relation obtained by dividing by ∆ is sometimes called a
divided Koszul relation.) Thus, if I = (µ1, . . . , µr)R and we map Rr � R by the map
that sends ei 7→ µi, the kernel will contain the elements

θij =
µj

∆ij
ei −

µj

∆ij
ej ∈ Rr.

In fact, all relations on µi and µj are multiples of θij . This is a consequence of the following:

Lemma. Let µ1 and µ2 be any two nonzero elements of a UFD R, and let ∆ = GCD(µ1, µ2),
so that µ1 = f1∆ and and µ2 = f2∆, with GCD(f1, f2) = 1. Then (f2, −f1) generates
the module of relations on µ1 and µ2. In other words, if g1µ1 + g2µ2 = 0, then (g1, g2) is
a multiple of (f2, −f1).

Proof. Since g1µ1 + g2µ2 = 0, we have that g1∆f1 + g2∆f2 = 0, and so g1f1 + g2f2 = 0.
Since f2 divides g1f1 while GCD(f1, f2) = 1, we have that f2 divides g1, say g1 = qf2.
Then qf2f1 + g2f2 = 0, and so g2 = −qf1, i.e., (g1, g2) = q(f2, −f1), as required. �

Example. If µ1 = x2
1x

3
2x

5
3x4 and µ2 = x3

1x
2
3x

4
4, then the trivial or Koszul relation on these

two monomials is given by (x3
1x

2
3x

4
4, −x2

1x
3
2x

5
3x4), while θ1,2 is the result of factoring out

the GCD, which is x2
1x

2
3x4, i.e., θ12 = (x1x

3
4, −x3

2x
3
3).

We next want to show that the θij generate all relations on the µj . We first discuss the
notion of an Nn-grading, and more general gradings. Let H be a commutative semigroup
(which means that the operation is associative) with identity 0, and suppose that the binary
operation for H is written additively. An H-graded ring is a ring R with a direct sum
decomposition R =

⊕
h∈H Rh as an abelian group such that 1 ∈ R0 and RhRh′ ⊆ Rh+h′

for all h, h′ ∈ H. An H-graded module M over an H-graded ring R is then an R-module
M with a direct sum decomposition M =

⊕
h∈H Mh as an abelian group such that that

RhMh′ ⊆ Mh+h′ for all h, h′ ∈ H. Note that this implies that every Mh is an R0-module.
An element of R or M is called homogeneous or a form if it is in one of the Rh or Mh.

If f is in an H-graded ring or module, the direct sum decomposition provides a decom-
position of f into homogeneous components, one for every element of H, just as in the
N-graded case.

An ideal (respectively, a submodule) of an H-graded ring R (respectively, an H-graded
module M) is called a homogeneous or graded ideal (respectively, submodule) if the follow-
ing two equivalent conditions hold:
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(1) It is generated by homogeneous elements.

(2) It contains all of the homogeneous components of all of its elements.

Suppose that we take H = Nn. Then it is easy to see that the polynomial ring R =
K[x1, . . . , xn] is Nn-graded, where, if α ∈ Nn, Rα = Kxα. This is simply a consequence
of the fact that xαxβ = xα+β . In this case, the homogeneous ideals (with respect to the
Nn-grading) are precisely the monomial ideals. We can now prove:

Proposition. The relations θij generate all the relations on the monomials µ1, . . . , µr.

Proof. Suppose that we have a relation corresponding to

(∗)
r∑

k=1

fjµj = 0.

(Officially, the relation is
∑r

j=1 fjej ∈ Rr.) Only finitely many degrees occur when we
expanded out all the products occurring in the summation: call these degrees α1, . . . , αt.
Fix one of these degrees αi ∈ Nn. For every i, the the sum of the terms of degree αi

occurring in (∗) is 0. If the degree of µj = βj , this sum can be represented as

(∗i)
r∑

k=1

[fj ]αi−βj µj = 0,

where [fj ]γ denotes the degree γ component of fj . The original relation is the sum of the
relations corresponding to the equations (∗i). Therefore, it suffices to show that each of
the relations corresponding to one of the equations (∗i) is an R-linear combination of the
θij . Thus, we need only consider relations in which the degree of every product is xα for
some fixed α. These are homogeneous relations.

We may drop the terms with coefficient 0. After renumbering the monomials, we may
assume without loss of generality that for every j, fj is a nonzero term cjµ

′
j where µ′jµj =

xα, and α is independent of j. The fact that

(∗∗)
r∑

j=1

(cjµ
′
j)µj = 0

is then simply the assertion that
∑r

j=1 cj = 0, and so cr = −
∑r−1

j=1 cj .

The given relation is therefore the sum of r − 1 relations corresponding to equations of
the form

(∗ ∗ ∗) cjµ
′
jµj − cjµ

′
rµr = 0

where 1 ≤ i ≤ r− 1. Since this equation corresponds to a relation on just two monomials,
namely, µj and µr, by the preceding Lemma the corresponding relation must be a multiple
of θjr. �
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Example. The θij are not necessarily a minimal set of generators for the relations on the
µj . For example, suppose that µ1 = x2x3, µ2 = x1x3 and µ3 = x1x2. Then we have that
θ12 = (x1, x2, 0), θ13 = (x1, 0, −x3), and θ23 = (0, x2, −x3). Since θ13 = θ12 + θ23, we
only need two of these three relations in a minimal basis.

We want to extend this type of relation θij to terms γi = ciµiem and γj = cjµjem in a
free module F with ordered basis provided that γi and γj involve the same ordered basis
element em. Here, ci and cj are nonzero scalars in K, while mi and µj are monomials in
R. In this case we let ∆ij = GCD(γi, γj), which we define to be GCD(µi, µj)em. We also
define γi/∆ij to be ciµi/GCD(µi, µj), which is a term in R. We still have

(γi/∆ij)∆ij = γi.

We can now define
θij =

γj

∆ij
ei −

γj

∆ij
ej ∈ Rr,

just as in the case of monomials in R. We have at once:

Lemma. if γ1, . . . , γr are terms in F , the module of relations on the elements γ1, . . . , γr

is generated by the relations θij for those choices of i, j such that γi and γj involve the
same element of the ordered basis for F . �

We shall later discuss a similar result that gives an entire finite free resolution for
monomial ideals and submodules. This resolution was discovered by Diana Taylor in the
1960s. However, it is not minimal. In fact, the minimal resolution of a monomial ideal
may depend on the characteristic of the field K.

The Buchberger criterion and algorithm

Let R = K[x1, . . . , xn] be a polynomial ring over a field K, let F be a finitely generated
free module with ordered basis, and let M ⊆ F be a submodule. Let g1, . . . , gr ∈ M be
elements that generate M . The following theorem gives necessary and sufficient conditions
for the gj to be a Gröbner basis for M . Once this result is known, one immediately gets
an algorithm for enlarging a given set of generators of M to a Gröbner basis for M .

The idea underlying the criterion is to try to produce new elements of in(M) from the
given gj in an obvious way: first take an efficient monomial linear combination of gi and
gj that gets their initial terms to cancel. Divide the result with respect to the g1, . . . , gr.
If the remainder is nonzero, its initial term cannot be in the R-span of the in(gj), and we
have taken a further step towards finding a Gröbner basis. If all of the remainders are 0,
we hope that we already have a Gröbner basis. This is true.

Here is a precise formulation. Let g1, . . . , gr be generators for M ⊆ F and let ν1, . . . , νr

be their respective initial terms. For every pair of indices i 6= j such that νi and νj involve
the same element of the ordered basis for F , let

Gij =
νj

∆ij
gi −

νj

∆ij
gj ,
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where ∆ij = GCD(νi, νj). Let hij be a remainder for division of Gij with respect to
g1, . . . , gr (the remainder in any standard expression can be used: this need not be the
result of using the deterministic division algorithm).

Theorem (Buchberger Criterion). With notation as in the paragraph above, g1, . . . , gr

is a Gröbner basis for M if and only if all of the hij = 0.

We postpone the proof of the sufficiency of the condition momentarily. When we do
give the proof, we shall establish a somewhat weaker sufficient condition.

The condition given above is clearly necessary: if the g1, . . . , gr form a Gröbner basis
for M , then since Gij is clearly in M , our test for membership in M implies that the
remainder in any standard expression when we divide Gij with respect to the Gröbner
basis g1, . . . , gr is 0.

We note that this gives an effective algorithm for finding a Gröbner basis for M given
generators g1, . . . , gr. We calculate values for the hij . If one of these is nonzero, its initial
term cannot be in the span of in(g1), . . . , in(gr). (To make the process choice-free, we
can use the least value of i for which hij 6= 0, and, for that i, the least value of j.) We
then enlarge the original set of generators by including this element hij . The R-span of
the initial terms has increased. Since F is Noetherian, the process must terminate, i.e.,
eventually we reach a set of generators for which all of the hij are 0. The Buchberger
criterion now implies that we have a Gröbner basis for M . This method is called the
Buchberger algorithm.

We do not, however, have an a priori estimate for how many steps will be needed to find
the Gröbner basis. In worst cases, the number of steps is double exponential. However, in
practice, the method is useful in many of the examples that come up.


