
Math 615: Lecture of January 19, 2007

We give one example of how one starts to calculate a Gröbner basis in a specific in-
stance. Let g1 = x2

1x2x4 + x4
3 and g2 = x1x3x

2
4 + x4

4 be generators for an ideal I in
R = K[x1, x2, x3, x4] and suppose that we are using hlex as the monomial order. Then
ν1 = in(g1) = x2

1x2x4 and ν2 = in(g2) = x1x3x
2
4 are elements of in(I). To test whethre

this is a Gröbner basis we calculate G12 and h12. Here, ∆12 = GCD(ν1, ν2) = x1x4, and
so

G12 =
x1x3x

2
4

x1x4
g1 −

x2
1x2x4

x1x4
g2 = x3x4(x2

1x2x4 + x4
3)− x1x2(x1x3x

2
4 + x4

4).

Note that the multiples of the two initial terms cancel. This simplifies to

G12 = x5
3x4 − x1x2x

4
4,

and no term is a multiple of ν1 or ν2, so that we may take G12 = h12. We see that
x1x2x

4
4 ∈ in(I), and we now consider whether g1, g2, h12 might be a Gröbner basis.

We have yet to prove that the Buchberger criterion stated last time gives a sufficient
condition for g1, . . . , gr to be a Gröbner basis. In fact, we shall prove a sharper result.
Before stating the new version, we want to observe:

Lemma. Let g1, . . . , gr be nonzero elements of F , with our usual notation conventions.
If gi and gj are such that all of their terms involve the same element et of the ordered basis
for F (this condition is automatically satisfied if F = R), and if the initial terms νi of gi

and νj of gj are relatively prime (i.e., their GCD is et), then there is a standard expression
for Gij under division with respect to g1, . . . , gr such that the remainder hij = 0.

The proof is left as an exercise: see Problem Set #1, problem 4.

We now state our sharpened version of the Buchberger criterion. R = K[x1, . . . , xn]
is a polynomial ring over a field K, and g1, . . . , gr are nonzero generators of a module
M ⊆ F , where F is a finitely generated free R-module with ordered basis. Let νj = in(gj)
for 1 ≤ j ≤ r. Consider any set of pairs of indices iλ < jλ such that

(1) For every λ, νiλ
and νjλ

involve the same basis element of F .

(2) The standard relations θiλjλ
generate the module of relations on the terms ν1, . . . , νr.

For every λ, let

Giλjλ
=

νj

GCD(νiλ
, νjλ

)
gi −

νi

GCD(νiλ
, νjλ

)
gj .

For every λ, let hiλjλ
be the remainder in any standard expression for Giλjλ

divided by
g1, . . . , gr. (One does not have to use the remainder that arises from the deterministic
division algorithm.)
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Theorem (sharpened Buchberger criterion). Let notation be as in the preceding
paragraph. A necessary and sufficient condition for g1, . . . , gr to be a Gröbner basis for
M is that every hiλjλ

= 0. If F = R, the condition is still sufficient if one only checks
those λ such that in(giλ

) and in(gjλ
) are not relatively prime. (More generally, one can

omit the check for λ whenever giλ
and gjλ

have all terms involving the same element of
the ordered basis for F , and in(giλ

) and in(gjλ
) are relatively prime.)

The original statement used all pairs νi, νj involving the same element of the ordered
basis in defining the hij . We have cut down the number of pairs needed in two ways. First,
we only need to use enough pairs to get a basis for the relations on ν1, . . . , νr. It is often
the case that one can use far fewer pairs. Second, when F = R, one can omit checking
whether the remainder is 0 for any pair such that the monomials in the initial terms are
relatively prime.

It is obvious that the condition in the sharpened Buchberger criterion is necessary.
Before giving the proof of sufficiency, we make the following observation. Given a monomial
order on F , for every element ei in the ordered basis we get a monomial order on the ring,
which we denote >t, defined by the rule µ1 > µ2 precisely when µ1et > µ2et. In many
cases all of these monomial orders on R are the same, but this need not be true in general.
However, if f ∈ R− {0}, g ∈ F − {0}, and in(g) involves et, then

(†) in(fg) = in>t(f)in(g).

To see why this is true, consider what happens when we calculate fg by applying the
distributive law and taking all products of a term of f and a term of g. First consider
only those terms that involve et. The specified term occurs, and it is clear that all other
terms occurring that involve et are strictly smaller, so that it cannot be cancelled. Thus,
it suffices to show that any product of a term µ1 of f and a term µ2ej of g with j 6= t is
also ≤ in>t

(f)in(g) — the inequality must then be strict, because j 6= t. But µ2ej ≤ in(g),
and so

µ1µ2ej ≤ µ2in(g).

Since µ2 ≤t in>t(f) by definition of in>t(f), we have that

µ2in(g) ≤ in>t
(f)in(g),

as required. �

We are now ready to give the argument for sufficiency.

Proof of sufficiency for the sharpened Buchberger criterion. First, in the case where F = R,
note that the omission of checking the remainder when the initial terms are relatively prime
is justified by the Lemma above: one can always choose a standard expression for which
the remainder is 0, and so checking those pairs is unnecessary.

Now suppose that all the hiλjλ
= 0. We must prove that g1, . . . , gr is a Gröbner basis.

We assume the contrary, and obtain a contradiction.
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If the g1, . . . , gr are not a Gröbner basis, we can choose

f =
r∑

j=1

fjgj

such that in(f) is not a multiple of any of the νj . We fix one such element f for the
remainder of the proof. Let φ denote the r-tuple (f1, . . . , fr). Consider those terms on
the right such that fj 6= 0 and for these the ones such that the monomial νφ corresponding
to in(fjgj) is largest as j varies: there may be several values of j that give rise to the same
largest monomial νφ. There are typically many ways to write f as a linear combination
of g1, . . . , gr. Choose such a representation in such a way that νφ is minimum. This is
possible because the monomial ordering on F is a well-ordering. We simply write ν = νφ.

We shall obtain a contradiction by proving that if in(f) is not a multiple of any νj , then
we can find a different representation for f as a linear combination of the gj such that the
value of νφ is strictly smaller.

After renumbering the gj , we may assume that a nonzero scalar multiple of ν is the
initial term of figi for 1 ≤ i ≤ k, and not for fjgj with j > k. Each of fk+1gk+1, . . . , frgr

only involves terms that are strictly smaller than ν. To complete the argument, it will
suffice to show that f1g1 + · · ·+fkgk can be rewritten as a linear combination of g1, . . . , gr

so that the initial term of every product occurring in the sum is < ν.

Suppose that ν involves et. Observe that by the discussion on p. 2 leading to the
displayed formula (†), we know that for 1 ≤ i ≤ k, in(figi) = µiνi, where µi = in>t

(fi).
Here, each µiνi is a scalar multiple of ν. We consider two cases.

First case. Here, we assume that
∑k

i=1 µiνi 6= 0. In this case, the value of the sum is
a nonzero scalar multiple of ν, and so the initial term of f is evidently a nonzero scalar
multiple of ν as well. This is an immediate contradiction, because, up to multiplication
by a nonzero scalar, ν is the same as µiνi for 1 ≤ i ≤ k, and so is a multiple of νi for
1 ≤ i ≤ k. But this contradicts the assumption that ν is not a multiple of any νj .

Second case. We assume that
∑k

i=1 µiνi = 0. We may write fi = µi + f̃i for 1 ≤ i ≤ k,
and then we have

f =
k∑

i=1

µigi +
k∑

i=1

f̃igi +
r∑

j=k+1

fjgj .

All terms occurring in the second and third sums are < ν. Therefore, it will suffice to show
that the first term,

∑k
i=1 µigi, can be rewritten as a linear combination

∑r
j=1 qjgj in such

a way that every in(qjgj) < ν: after combining terms, we will have a new representation
for f with a smaller νφ.

Since
k∑

i=1

µiνi = 0,
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we have that
k∑

i=1

µiei

is a relation on ν1, . . . , νr. This relation has the same degree as ν, in the sense that each
of the products has the same degree in Nn as ν. It follows that it can be written as a linear
combination of the θiλjλ

. Moreover, we may think of θiλjλ
as having the same degree as

LCM(νiλ
, νjλ

). We therefore have an equation

(#)
k∑

i=1

µiei =
∑

λ

ζλθiλjλ

where the sum is extended over the indices λ that are needed (we do not include summands
with coefficient 0), and each ζλ is a term such that

deg(ζλ) + deg(θiλjλ
) = deg(ν).

We now apply to (#) the map Rr → R sending e1, . . . , er to g1, . . . , gr respectively. This
yields

(∗)
k∑

i=1

µigi =
∑

λ

ζλGiλjλ
.

Here,
Giλjλ

=
νjλ

GCD(νiλ
, νjλ

)
gi −

νiλ

GCD(νiλ
, νjλ

)
gj .

Here, the initial term of each summand on the right is the same

νjλ

νiλ

GCD(νiλ
, νjλ

)
) = νiλ

νjλ

GCD(νiλ
, νjλ

)
)

which is the same up to a nonzero scalar multiple as LCM(νiλ
, νjλ

). Since the initial terms
cancel, we have that

in(Giλjλ
) < LCM(νiλ

, νjλ
),

and it follows that when we multiply by ζλ we have that

in(ζλGiλjλ
) < ν.

By hypothesis, every Giλjλ
has a standard expression of the form

∑r
j=1 qλ

j gj in which the
initial term of each product in the sum is ≤ in(Giλjλ

). We now substitute into (∗) above
to obtain

k∑
i=1

µigi =
∑

λ

r∑
j=1

ζλqλ
j gj
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and for all λ and j we have

in(ζλqλ
j gj) ≤ ζλin(Giλjλ

) = in(ζλGiλjλ
) < ν,

exactly as required. �

Review of complexes and homology

By a complex over a ring A we mean a sequence of A-modules and A-module maps

(∗) · · · −→ Gt+1
dt+1−−−→ Gt

dt−→ Gt−1 −→ · · ·

indexed by Z such that for all t, dt ◦ dt+1 = 0. However, we shall frequently consider
complexes such that Gt = 0 for all t < 0, and when we talk about the complex

· · · −→ Gt+1 −→ Gt −→ Gt−1 −→ · · · −→ G1 −→ G0 −→ 0

we mean to imply that all negative terms vanish. We refer to a complex in which Gi = 0
for i < 0 as a left complex. Likewise, when we talk about the complex

0 −→ Gk −→ Gk−1 −→ · · · −→ Gt −→ · · ·

we mean to imply that Gi = 0 for i > k. We frequently write (G•, d•) or simpy G• to
described a complex as in (∗). Note that the condition that dt ◦ dt+1 = 0 is equivalent to
the conditon that Im (dt+1) ⊆ Ker (dt). We define the t th homology module of the complex
G•, denoted Ht(G•), by

Ht(G•) = Ker (dt)/Im (dt+1).

The module Ker (dt) is referred to as the module of cycles in Gt (and its elements are
called cycles, and the module Im (dt+1) is referred to as the module of boundaries in Gt

(and its elements are called boundaries). In a complex, every boundary is a cycle.

The complex G• is called exact at Gt or exact at the t th spot if, equivalently, Im (dt+1) =
Ker (dt) or Ht(G•) = 0. Thus, when we have exactness at Gt, every cycle in Gt is a
boundary (the converse statement always holds in a complex). A complex is called exact
if it is exact at every spot. Equivalently, a complex is exact if all of its homology modules
vanish. A left complex G• is called acyclic if Ht(G•) = 0 for all t ≥ 1. This leaves the
possibility that H0(G•) 6= 0. In this H0(G) = G0/Im (G1), and H0(G•) is sometimes
referred to as the augmentation module for G•. The augmented complex

· · · → Gt → · · · → G1 → G0 → H0(G•) → 0

is exact.
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By a map φ = φ• of complexes of A-modules F• → G• we mean a family of A-module
maps φt : Ft → Gt such that the diagram

· · · −−−−→ Ft+1 −−−−→ Ft −−−−→ Ft−1 −−−−→ · · ·

· · · φt+1

y φt

y φt−1

y · · ·

· · · −−−−→ Gt+1 −−−−→ Gt −−−−→ Gt−1 −−−−→ · · ·

commutes. In this case, for each t there is a map of homology Ht(F•) → Ht(G•): if z ∈ Ft

is a cycle representing an element [z] ∈ Ht(F•), the value of the induced map on [z] is
[φt(z)], which turns out to depend only on [z]. If all the φt are injective, F• is called a
subcomplex of G•, and if all the φt are surjective, G• is called a quotient complex of F•.

One says that
0 → E• → F• → G• → 0

is a short exact sequence of complexes if for every t the sequence

0 → Et → Ft → Gt → 0

is exact and, in this case, the Snake Lemma or Serpent Lemma asserts there is a long exact
sequence of homology

· · · → Ht+1(G•) → Ht(E•) → Ht(F•) → Ht(G•) → Ht−1(E•) → · · · .

The maps ∂t : Ht(G•) → Ht−1(E•) are referred to as the connecting homomorphisms.
If z ∈ Gt is a cycle representing a homology class [z], we can choose an element z̃ ∈ Ft

that maps to it. The image y of z̃ in Ft−1 maps to 0 in Gt−1, and so there is an element
ỹ ∈ Et−1 that maps to y. It is easy to see that ỹ is a cycle in Et−1, and one defines
∂t([z]) = [ỹ]. The definition turns out to be independent of the choices made.

Whenever φ• : E• → F• is a subcomplex, we may form a quotient complex G• by
letting Gt = Coker (φt) ∼= Ft/Im (Et). The differential is induced by the differential on F•.
Similarly, whenever F• → G• is a quotient complex, we may let Et = Ker (φt) ⊆ Ft, and
E• is a subcomplex under the restriction of the differential on F•. In both these cases, the
sequence 0 → E• → F• → G• → 0 is a short exact sequence of complexes.

Some acyclic complexes and Diana Taylor’s resolution for monomial ideals

Let B be any commutative ring. Let k ∈ N be fixed, and let Gt denote the free
module B-module with free basis ui1,... ,it+1 where 1 ≤ i1 < i1 < · · · < it+1 ≤ k, so that
the generators of Gt are in bijective correspondence with the t + 1 element subsets of
{1, 2, . . . , k}. In fact, if σ = {i1, . . . , it+1} with 1 ≤ i1 < · · · < it+1 ≤ k, we shall also
write uσ for ui1,... ,it+1 .

If t > k − 1 or t < 0 we define Gt = 0. Then one forms a complex

0 → Gk−1 → · · · → G0 → 0
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by defining the differential on Gt as follows. Since Gt is free, it suffices to specify the
differential dt on a typical generator, and if σ is the set {i1, . . . , it+1} with

1 ≤ i1 < · · · < it+1 ≤ k

then dt(uσ) =
∑t+1

j=1(−1)juσ−{ij}. It is easy to check that dt−1 ◦ dt = 0. The point is that
after applying both maps, one gets a sum of terms ±uσ−{ij ,ij′} as j 6= j′ run through all
pairs of distinct integers in the set {1, . . . , t + 1}. Each term occurs exactly twice, once
when ij is deleted first and then ij′ , and a second time when ij′ is deleted first and then
ij . It easy to verify that the signs one gets on these two occurrences are opposite, so that
all terms cancel.

For those familiar with simplicial homology, we remark that this complex is precisely
the complex used to calculate the simplicial homology of a (k− 1)-simplex. It is therefore
well-known that:

Proposition. For all k ≥ 1, the complex G• described above is acyclic and H0(G•) ∼= B.
Moreover, if we augment G• by letting G−1 = Bu∅, where the new differential maps every
ui to u∅, the complex

0 → Gk−1 → · · · → G0 → G−1 → 0

is exact.

Proof. We shall give two elementary proofs of this. We leave it to the reader to check that
the first statement implies the second.

In the first proof proceed by induction on k. If k = 1, the complex is simply

0 → Bu1 → 0

and the result is clear. Suppse k > 1. In the general case, note that the complex F•
corresponding to the set 1, 2, . . . k − 1 is a subcomplex. The quotient complex has free
generators indexed by subsets of {1, 2, . . . , k} such that k is an element of the subset.
These are in bijective correspondence with the subsets of {1, . . . , k − 1} (including the
empty set), and this gives a complex isomorphic with the augmented complex of F except
that degrees are shifted by 1. Thus, the quotient G•/F• is not merely acyclic, but exact,
because it is augmented, and the result is now immediate from the Snake Lemma. �

We can also prove acyclicty as follows. Let ht : Gt → Gt+1 be the map that sends
uσ 7→ 0 if 1 ∈ σ and to U{1}∪σ otherwise. Then for every σ,

dt+1

(
ht(uσ)

)
+ ht−1

(
dt(uσ)

)
= uσ

for t ≥ 1 (consider the cases where 1 ∈ σ and 1 /∈ σ separately). Thus, dt+1ht + ht−1dt is
the identity map on Gt. Suppose that z ∈ Gt is a cycle, where t ≥ 1. Then

dt+1

(
h(z)

)
+ ht−1

(
dt(z)

)
= z.
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Since dt(z) = 0, dt+1

(
h(z)

)
= z, so that every cycle z is a boundary for t ≥ 1. It remains

to check that H0(G•) = B, which we leave as an informal exercise. �

We next want to describe Diana Taylor’s resolution of a monomial ideal. We emphasize
that these resolutions are rarely minimal.

We can make use of an arbitrary base ring B. Let A = B[x1, . . . , xn] be a polyno-
mial ring and let µ1, . . . , µk be monomials in A. We shall describe the resolution as
an Nn-graded complex: the generators of the free modules will typically have degrees in
Nn. The free basis of the t th free module will consist of elements Ui1,... ,it+1 indexed by
sequences 1 ≤ i1 < · · · < it+1 ≤ k, just as before. We give this generator the same
degree as LCM(µi1 , . . . , µit+1). Then Ft is spanned as a free B-module by the elements
µUi1,... ,it+1 , where µ is a monomial in A, and this element will have the same degree
as µLCM(µi1 , . . . , µit+1). If σ = {i1, . . . , it+1}, it will be convenient to write Uσ for
Ui1,... ,it+1 , and to define

LCM(µσ) = LCM(µi1 , . . . , µit+1).

We can now define the differential on F• by the rule

dt(Uσ) =
t+1∑
j=1

(−1)j LCM(µσ)
LCM(µσ−{ij})

Uσ−{ij}

Note that this formula preserves degrees. Let I = (µ1, . . . , µk)A, and augment the complex
F• by the map F0 � I such that Ui 7→ µi for 1 ≤ i ≤ k. Note that the maps dt preserve
degree.

Theorem (Diana Taylor). Let A = B[x1, . . . , xn], µ1, . . . , µk, I, and F• be as above.
Then

0 → Fk−1 → · · · → F0 → 0

is an acyclic complex that gives a free resolution of I, i.e., the augmented complex

0 → Fk−1 → · · · → F0 → I → 0

is exact.


