
Math 615: Lecture of January 22, 2007

Proof. Because the maps are degree preserving, it suffices to prove that the complex is
exact in each degree α. In fact, the full complex

0 → Fk−1 → · · · → F0 → I → 0

is the direct sum of the homogeneous subcomplexes

(∗α) 0 → [Fk−1]α → · · · [F0]α → [I]α → 0.

It will therefore suffice to prove that each of the complexes (∗α) is exact.

Noe the following: the contribution to [Ft]α from AUσ is 0 unless LCM(µσ) divides xα.
In this case, there is a unique monomial νσ such that νσLCM(µσ) = xα, so that [Ft]α is
the free B-module generated by the elements νσUσ such that LCM(µσ) divides xα. Let
µj1 , . . . , µjh

with j1 < · · · < jh be the generators of I that divide α. Then LCM(µσ)
divides xα iff µi divides xα for every i ∈ σ iff σ ⊆ {j1, . . . , jh}.

Therefore, if xα /∈ I, every [Ft]α = 0 and [I]α = 0, while if xα ∈ I, and Sα =
{µj1 , . . . , µjh

} is the set of generators of I that divide xα, [Ft]α is the free B-module
on the elements νσUσ such that σ ⊆ Sα and σ is a set with t+1 elements. The set Sα is in
bijective correspondence with {1, . . . , h}, with µji

corresponding to i, and for each t + 1
element subset τ of {1, . . . , h} we may let uτ denote the element νσUσ ∈ [Ft]α, where σ is
the t + 1 element subset of Sα corresponding to τ . The complex [Ft]α is then isomorphic
to an augmented complex G• over B of the form described at the bottom of p. 6 and on
p. 7 of the Lecture Notes of January 19 (but with h replacing k), and so is exact by the
Proposition on p. 7 of those notes. �

Finding Hilbert-Poincaré series

Let M be a finitely generated module over K[x1, . . . , xn]. When we consider the Nn

grading on R, we shall allow Zn-gradings on M . When we consider the N-grading on R,
we shall allow Z-gradings on M .

Note that, quite generally, when H ⊆ H ′ is a subsemigroup of the additive semigroup
H ′ and R is an H-graded ring, we can also view R as H ′-graded by letting Rh′ = 0 for
h′ ∈ H ′ − H. Therefore, we can consider H ′-graded modules M over the H-graded ring
R. In effect, the condition becomes that for h ∈ H and h′ ∈ H ′, RhMh′ ⊆ Mh+h′ .

In our cases H = Nn and H ′ = Zn or H = N and H ′ = Z.

Because M is finitely generated over R = K[x1, . . . , xn], if −B is the smallest integer
such that some generator of M has a degree involving −B, then all nonzero homogeneous
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elements of M have degree ≥ −B in every coordinate: when we multiply by monomials in
R, degrees can only increase.

When M is Z-graded, this means that there only finitely many nonzero components of
M in negative degree.

If α ∈ Zn, we define M(α) (sometimes called M twisted by α or the α th twist of M)
to be the Zn-graded module that is isomorphic to M as an R-module but with grading
shifted so that for all β ∈ Zn,

[M(α)]β = Mα+β .

One reason for introducing these shifted gradings is that in considering free resolutions of
graded modules one often wants to use maps that preserve degree. In doing this, one may
need to shift gradings even when working with free modules.

Consider one of the simplest possible examples, where R = K[x] and M = K[x]/xK[x],
which has the free resolution:

0 → K[x] x·−→ K[x] −→ M −→ 0

The element 1 ∈ K[x] in the leftmost module maps to x in the copy of K[x] to the right.
If the map is to be degree-preserving, we need 1 ∈ K[x] to have degree 1. If the right hand
copy of K[x] has the usual grading, this means that the leftmost copy should be twisted
by −1. The resolution is then

0 → R(−1) x·−→ R → M −→ 0.

Note that [R(−1)]1 = [R]1+(−1) = [R]0 = K, so that 1 has degree 1 in R(−1). Typically,
1 has degree t in R(−t) for all t ∈ Z.

Also note that any finitely generated Zn-graded module M over R = K[x1, . . . , xn]
has a twist M(α) with the property that [M(α)]β is a nonzero component only if β ∈
Nn. If no generator involves a degree smaller than −B in any component, we may take
α = (−B, . . . ,−B). If β has any strictly negative entry, α + β has entry < −B, and
[M(α)]β = 0.

We next define the Hilbert-Poincaré series Pµ
M (z1, . . . , zn) of an Nn-graded module M

over K[x1, . . . , xn] (here, the superscript µ indicates that we are using the Nn-graded
version) by the formula

Pµ
M (z1, . . . , zn) = Pµ

M (z) =
∑

α∈Zn

dimK([M ]α)zα,

which a priori is an element of

Z[[z1, . . . , zn]](1/z1 · · · zn).

However, we shall soon prove that these series are actually rational functions of z1, . . . , zn.
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We first consider the case of R itself. Then

Pµ
M (z) =

∑
α∈Nn

zα = (1 + z1 + z2
1 + · · · )(1 + z2 + z2

2 + · · · ) · · · (1 + zn + z2
n + · · · )

=
n∏

i=1

1
1− zi

=
1∏n

i=1(1− zi)
.

Note that if we have a short exact sequence of Zn-graded finitely generated modules
and degree-preserving maps, say 0 → M2 → M1 → M0 → 0, then we get a short exact
sequence of vector spaces

0 → [M2]α → [M1]α → [M0]α → 0

for every α. It follows that

Pµ
M1

(z) = Pµ
M0

(z) + Pµ
M2

(z).

More generally, given a finite exact sequence

0 → Mh → · · · → M0 → 0

of finitely generated Nn-graded modules and degree preserving maps, we have that

h∑
i=0

(−1)iPµ
Mi

(z) = 0.

This follows simply because the exact sequence of length h can be broken up into short
exact sequences. Diana Taylor’s resolution for monomial ideals now yields the following.

Theorem. Let I be a monomial ideal with generators µ1 = xα1 , . . . , µk = xαk in R =
K[x1, . . . , xn]. Then Pµ

R/I(z) is a rational function of z1, . . . , zn whose numerator has
integer coefficients and whose denominator is at worst

∏n
i=1(1 − zi). More precisely, let

Σt denote the sum of the least common multiples of the monomials zα1 , . . . , zαk taken t
at a time, for 0 ≤ t ≤ k, where Σ0 = 1. Then

Pµ
R/I(z) =

Σ0 − Σ1 + Σ2 − · · ·+ (−1)kΣk∏k
i=1(1− zi)

.

Proof. We can modify Diana Taylor’s resolution slightly by putting it together with the
short exact sequence 0 → I → R → R/I → 0 to give

0 → Fk−1 → · · · → F0 → R → R/I → 0.
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Consequently, we have

(∗) Pµ
R/I(z) = Pµ

R(z)−
k−1∑
i=0

(−1)Pµ
Fi

(z).

Fi is the direct sum of copies of R, one for each i+1 element subset σ of {1, . . . , k}, with
the generator of R in degree LCM(µσ) = xβσ . The Hilbert-Poincare series of this cyclic
free module is zβ

σPµ
R(z). It follows that the Hilbert-Poincaré series

Pµ
Fi

(z) = Σi+1P
µ
R(z).

The result now follows from substituting this in (∗) and noting that

Pµ
R(z) =

1∏n
i=1(1− zi)

. �

Corollary. If F = Rs is free, for every monomial submodule M of F , F/M and M have
Hilbert-Poincaré series that are rational functions whose numerator is a polynomial with
integer coefficients and whose denominator is at worst

∏n
i=1(1− zi).

Proof. The monomial submodule is a direct sum of monomial ideals, one in each Rei. �

We want to consider what happens when the generators of F may have degrees shifted
by twisting. The key point is that for any finitely generate Nn-graded module M and any
α,

Pµ
M(α)(z) =

∑
β∈Zn

dimK([M ]α+β)zβ = z−α
∑

β∈Zn

dimK([M ]α+β)zα+β = z−αPµ
M (z),

since as β runs through all of Zn, so does α + β.

We now want use our monomial results to prove theorems about Hilbert-Poincaré series
in the N-graded case. As in the Zn-graded case,

PM(h)(z) = z−hPM (z).

Next note:

Proposition. Let M be a finitely generated Zn graded modules over K[x1, . . . , xn]. Then
PM (z) = Pµ

M (z, z. . . . , z) (i.e., z is substituted for every zi).

In particular, PR(z) =
1

(1− z)n
. Hence, if M ⊆ F = Rs (which includes the case

I ⊆ R) is monomial then both PM (z) and PF/M (z) are rational functions in which the
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numerator is a polynomial in z with integer coefficients and the denominator is at worst
(1− z)n.

In general, for any finitely geneated Zn-graded module M , PM (z) is a rational function
of z whose numerator is a polynomial in z with integer coefficients and whose denominator
is, at worst, zB(1− z)n for some B ≥ 0.

Proof. If α = (a1, . . . , an) ∈ Zn, we write |α| for a1 + · · ·+ an. Then for every integer i,

[M ]i =
⊕
|α|=i

[M ]α,

and so
dimK([M ]i) =

∑
|α|=i

dimK([M ]α),

and the result follows at once from this observation. The remaining statements are imme-
diate. �

We can now obtain a result for arbitrary finitely generated modules in the graded case.

Theorem. Let N be any finitely generated Z-graded module over R = K[x1, . . . , xn].
Suppose that u1, . . . , us are finitely many homogeneous generators of respective degrees
d1, . . . , ds. Think of Rs as

⊕s
j=1 R(−dj), and map Rs � N so that 1 ∈ R(−dj), which

has degree dj, maps to uj. This map preserves degrees, and the kernel M is an N-graded
submodule of Rs.

Refine the Z-grading on Rs to a Zn-grading, and choose a monomial order. Then N
and F/in(M) have the same Hilbert-Poincaré series! Hence, the Hilbert-Poincaré series
of N is a rational function of z with numerator that is a polynomial in z with integer
coefficients and denominator at worst zB(1− z)n for some B ∈ N.

Proof. By the Theorem near the bottom of p. 2 of the Lecture of January 12, the monomials
of F not in in(M) are a basis for F/M , and they are clearly a basis of homogeneous
elements. Hence, the monomials of a given degree d are a K-vector space basis for [F/M ]d,
and also for [F/in(M)]d, and so dimK([F/M ]d) = dimK([F/in(M)]d) for all d. The first
conclusion follows at once, and the second then follows as well because we already know
the result in the monomial case. �


