
Math 615: Lecture of January 24, 2007

Hilbert functions

Let M be a finitely generated graded module over R = K[x1, . . . , xn], a polynomial
ring over a field. The Hilbert function HilbM of M is defined by the formula

HilbM (d) = dimK([M ]d)

for all d ∈ Z. It is always 0 for d � 0. This means that

PM (z) =
∑
d∈Z

HilbM (d)zd,

so that the Hilbert function and the Hilbert-Poincaré series carry the same information.

Before going furrther, we consider what happens when M = R, in which case we know
that

P(z) =
1

(1− z)n
= (1− z)−n.

We can evaluate the coefficients using Newton’s binomial theorem, which is just a special
case of Taylor’s formula. Then coefficient of zd is then

(−n)(−n− 1)(−n− 2) · · ·
(
−n− (d− 1)

)
d!

(−1)d =
n(n + 1) · · · (n + d− 1)

d!

which is (
n + d− 1

d

)
=

(
d + n− 1

n− 1

)
.

We can get the same formula from a purely combinatorial argument. Hilb(d) is the
number of monomials xα where α = (a1, . . . , an) where the ai ∈ N and a1 + · · ·+ an = d.
Each such monomial can be represented by a string containing d blanks interspersed
with n − 1 slashes /, where there are first a1 blanks, then a slash as a separator, then a2

blanks, then a slash as a separator, and so forth. The string will end with a slash, then
an−1 blanks, then a slash, and, finally an blanks. (For example, if n = 4 and d = 8, the
string corresponding to x3

1x3x
5
4 is

/ / / .

This gives a bijection between monomials of degree d in x1, . . . , xn and strings of length
d+n−1 consisting of d blanks and n−1 slashes. The number of such strings is determined
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by the choice of which positions are occupied by the slashes among the d+n−1 possibilities,

and this is
(

d + n− 1
n− 1

)
.

In any case, we see that the Hilbert function of R agrees with
(

d + n− 1
n− 1

)
for all

sufficiently large d, and this is a polynomial in d of degree n− 1.

We can immediately derive the following result on Hilbert functions from the results we
have on Hilbert-Poincaré series.

Theorem. With hypothesis as the first paragraph, the Hilbert function of a Z-graded
finitely generated R-module M agrees with a polynomial of degree at most n − 1 in d
for all d � 0.

Proof. By the last statement of the Theorem given at the bottom of p. 4 and the top of
p. 5 of the Lecture Notes of January 22, we know that the Hilbert-Poincaré series of PM (z)

is a Z-linear combination of functions of the form
zc

(1− z)n
for c ∈ Z. By the discussion

above, for such a function the Hilbert function is given by
(

d− c + n− 1
n− 1

)
for d � 0, and

this is a polynomial in d of degree n − 1. When we take a Z-linear combination of such
polynomials the highest degree terms may cancel, but the degree is still at most n− 1. �

The polynomial that agrees with HilbM (d) for d � 0 is called the Hilbert polynomial
of M . Note that if one has a short exact sequence of finitely generated Z-graded modules
and degree preserving maps, say

0 → M0 → M1 → M2 → 0,

it follows that
Hilb(M1) = Hilb(M0) + Hilb(M2),

just as in the case of Hilbert-Poincaré series. Obviously, the same holds for Hilbert polyno-
mials. Likewise, if one has a finite exact sequence of finitely generated Z-graded modules
and degree preserving maps, the alternating sum of the Hilbert functions is 0, and the
alternating sum of the Hilbert polynomials is likewise 0.

The module of relations on a Gröbner basis: Schreyer’s method

Let R = K[x1, . . . , xn] be a polynomial ring over a field K and let F be a finitely
generated free R-module with ordered basis b1, . . . , bs for which we have fixed a monomial
order.
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Let M ⊆ F be a submodule of F for which we have a Gröbner basis g1, . . . , gr. Consider
the module N of relations on g1, . . . , gr, i.e.,

N = {(f1, . . . , fr) ∈ Rr :
r∑

j=1

fjgj = 0}.

It turns out that there is an almost unbelievably simple method for finding a finite set
of generators for N : beyond that, for a suitably chosen monomial order on Rr, these
generators a Gröbner basis for N . The method, which is due to Schreyer, is very closely
related to the Buchberger criterion.

This means that once we have a Gröbner basis for M , we immediately get a Gröbner
basis for N , which is a first module of syzygies of M . We are then immediately ready to
find a module of syzygies of N , and we can continue in this way to get as many iterated
modules of syzygies as we wish.

We shall use e1, . . . , er as the ordered basis for Rr: it will be convenient to have a
notation that distinguishes it from the ordered basis for F ∼= Rs. Let νj = in(gj) for
1 ≤ j ≤ r. We define a monomial order on Rr as follows: if µ and µ′ are monomials in
R, then µei > µ′ej if and only if in(µgi) > in(µ′gj) (which is equivalent to µνi > µ′νj) or
in(µgi) = in(µ′gj) and i < j. It is quite straightforward to verify that this is a monomial
order on Rr.

The Buchberger criterion provides certain relations on g1, . . . , gr which we shall refer
to as the standard relations. These arise as follows: for each choice of i < j, we know that
when we take some choice of standard expression for

νj

GCD(νi, νj)
gi −

νi

GCD(νi, νj)
gj

with respect to division by g1, . . . , gr, we get remainder 0. This means that for each i < j
we have

(#ij)
νj

GCD(νi, νj)
gi −

νi

GCD(νi, νj)
gj =

r∑
k=1

qijkgk

where every
in(qijkgk) ≤ in(

νj

GCD(νi, νj)
gi −

νi

GCD(νi, νj)
gj).

We obtain these relations because the remainders upon division must be 0. Note that, as
in the case of Buchberger’s criterion, it suffices to choose one standard expression: it need
not be the result of the deterministic division algorithm.

The equation displayed in (#ij) corresponds to a relation on the gij , namely

ρij =
νj

GCD(νi, νj)
ei −

νi

GCD(νi, νj)
ej −

r∑
k=1

qijkek.
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It is the relations ρij that we refer to as the “standard” relations on g1, . . . , gr. They
are not really unique, since the standard expressions for dividing by g1, . . . , gr are not
unique, but, as we have already indicated, the result below is correct when one makes just
one choice of standard expression for i < j. (Recall, however, that when one has a Gröbner
basis g1, . . . , gr, the remainder upon division by g1, . . . , gr is unique, and will always be
zero if the element one is dividing is in the R-span of g1, . . . , gr.) Here is the punchline:

Theorem (Schreyer). Let notation be as above. Then the standard relations ρij generate
the module of relations on the Gröbner basis g1, . . . , gr. What is more, the relations ρij

form a Gröbner basis for the module of relations on the g1, . . . , gr with respect to the
monomial order on Rr defined above.

Proof. Of course, the second statement implies the first. We begin by studying

in(f1e1 + · · ·+ frer)

for an arbitrary relation on g1, . . . , gr. All we need to do is show that each such initial term
is a multiple of one of the in(ρij). Each νi = in(gi) involves one element of the free basis
b1, . . . , bs for the original free module Re: call this element bL(i). Then the monomial µ in
fi that gives rise to the largest term of fiei after multiplying out is the same monomial µ
that gives the largest term in figi, and this is in>L(i)(fi)νi by the displayed formula (†) on
p. 2 of the Lecture Notes of January 19. It follows that the largest term in fiei is in>L(i)ei.
Thus, in(f1e1 + · · · frer) may be described as follows. Consider the largest initial term for
any figi, call it ν, and choose the smallest i such that ν is in(figi), up to a nonzero scalar
multiple. Then in(f1e1 + · · ·+ frer) is in(fiei) = in>L(i)(fi)ei for this smallest value of i.

This is precisely the same use of ν as in the proof of the Buchberger criterion in the
Lecture Notes of January 19.

We next want to understand in(ρij). In the equations (#ij) from which the ρij are
derived, the initial terms of the two products on the left hand side are the same, and
cancel, while the initial term of every qijkfk is ≤ the initial term on the left. Hence, the
initial term of every qijkfk is strictly smaller than the initial terms of the two products on
the left hand side. When we replace the equation by ρij , there is no cancellation, because
gi and gj on the left have been replaced by ei and ej . Thus, the initial term of ρij is

νj

GCD(νi, νj)
ei.

Since f1g1 + · · ·+ frgr = 0, the initial terms of products fjgj that are, up to a nonzero
scalar multiple, equal to ν must cancel. Suppose the products that have cν as initial term
for c ∈ K − {0} are indexed by j1, . . . , jh where j1 < · · · < jh. Let µj = in>L(j)(fj).

Then each µjt
νjt

has the form ctν for ct ∈ K − {0}, where 1 ≤ t ≤ h, and the sum of
the ct is 0. With this notation, we have that

in(f1e1 + · · ·+ frer) = µj1ej1 .

We also have the relation
∑h

t=1 µtνt = 0. Exactly as in the proof of the Buchberger crite-
rion, this means that (µ1, . . . , µh) is a homogeneous linear combination, with coefficients
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that are terms in R, of the relations θij : see the displayed line (#) near the top of p. 4 of
the Lecture Notes of January 19 and the preceding discussion. However, in fact, we only
need those θij such that i = ja < jb = j. This means that µj1 must be a multiple, by a
term in R, of the coefficient of ej1 in some θj1jt

for t > 1. But this also means precisely
that µj1e1 is a multiple of in(ρj1jt) for some t > 1. �

Finding the relations on elements that are not a Gröbner basis

We next want to address the problem of finding a basis for the relations on g1, . . . , gr

when these elements are not necessarily a Gröbner basis for their span in F . The first step
is to enlarge this set of elements to a Gröbner basis using the Buchberger algorithm. Note
that if another generator hij is needed, it arises as a remainder for division of some

νj

GCD(νi, νj)
gi −

νi

GCD(νi, νj)
gj

by g1, . . . , gr, and so we will have a formula

hij =
νj

GCD(νi, νj)
gi −

νi

GCD(νi, νj)
gj −

r∑
j=1

qjgj ,

so that we will be able to keep track of hij as an R-linear combination of the original
g1, . . . , gr. As we successively find new elements of the Gröbner basis, each can be ex-
pressed as an R-linear combination of its predecessors, and then as an R-linear combination
of the original g1, . . . , gr.

Suppose that the Gröbner basis that we find is g1, . . . , gr+k, where we might as well
assume that k > 0, or we already have a method. Moreover, we may assume that for
1 ≤ i ≤ k we have a formula

(∗∗i) gr+i =
r∑

j=1

fijgj

We can now construct a surjective R-linear map from the module of relations on the
Gröbner basis g1, . . . , gr+k onto the module of relations on g1, . . . , gr. This is really the
obvious thing to do: given the equation of a relation

u1g1 + · · ·+ urgr + v1gr+1 + · · ·+ vkgr+k = 0

we may substitute using the equations (∗∗i) to express gr+1, . . . , gr+k in terms of g1, . . . , gr,
and then collect terms to get a relation on g1, . . . , gr:

(u1 + v1f11 + · · ·+ vkfk1)g1 + · · ·+ (ur + v1f1r + · · ·+ vkfkr)gr = 0.
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Thus, our map sends the vector (u1, . . . , ur, v1, . . . , vk) to the vector whose j th entry
is uj + v1f1j + · · · vkfkj . This map is clearly linear. Moreover, (u1, . . . , ur, 0, 0, . . . , 0)
maps to (u1, . . . , ur), which shows that the map is surjective.

Thus, a basis for the relations on g1, . . . , gr+k maps onto a basis for the relations for
g1, . . . , gr. Since g1, . . . , gr+k is a Gröbner basis, we know how to find a basis for the
relations, and we can then apply the map to get a basis for the relations on g1, . . . , gr.

Finding generators for the intersection of two submodules of a free module

Suppose that we have generators g1, . . . , gr for M ⊆ F , and generators g′1, . . . , g′s for
N ⊆ F . We want to find generators for M ∩ N . Given any element of M ∩ N , it can
be written as an R-linear combination of the elements g1, . . . , gr, and also as an R-linear
combination of the elements g′1, . . . , g′s. This leads to an equation

(#) f1g1 + · · ·+ frgr = f ′1g
′
1 + · · ·+ f ′sg

′
s,

so that (f1, . . . , fr, −f ′1, . . . ,−f ′s) is a relation on g1, . . . , gr, g′1, . . . , g′s. (The original
element is the common value of the two sides of the equation (#).) Conversely, given a
relation, say (f1, . . . , fr+s), on g1, . . . , gr, g′1, . . . , g′s, we have that

f1g1 + · · ·+ frgr = (−fr+1)g′1 + · · ·+ (−fr+s)g′s,

so that the left hand side represents an element of M ∩ N . It follows that we have a
surjection from the module Q of relations on g1, . . . , gr, g′1, . . . , g′s onto M ∩N that sends
(f1, . . . , fr+s) 7→ f1g1 + · · ·+ frgr. Therefore, we can find a basis for Q, which we already
know how to do, and apply the map to obtain a basis for M ∩N .


