Math 615: Lecture of January 26, 2007

Review of the theory of Krull dimension

We recall that the (Krull) dimension of a ring R, which need not be Noetherian, is the
supremum of lengths £ of strictly increasing chains Py C Py C --- C Px_1 C P of chains
of prime ideals of R. The height of a prime ideal P is, equivalently, either the supremum of
lengths of strictly descending chains of primes whose first element is P, or the dimension
of the quasilocal ring Rp (a quasilocal ring is a ring with a unique maximal ideal).

We have:

Proposition. If J is an ideal of R consisting of nilpotent elements, then dim(R) =
dim(R/J). Hence, if I and I' are two ideals of R with the same radical, dim(R/T) =
dim(R/I").

Proof. There is an order preserving bijection between primes of R and primes of R/J:
every prime ideal P of R contains J, and we may let P correspond to P/J. The second
statement now follows because if J = Rad (I) = Rad (I’), then R/J is obtained from either
R/I or R/I' killing an ideal (J/I or J’/I) all of whose elements are nilpotent. [

Theorem. If R C S is an integral extension of rings, then dim(R) = dim(.S).

Proof. Given any finite strictly ascending chain of primes in R there is a chain of the same
length in S by the going up theorem. Hence, dim(R) < dim(.S). On the other hand, given
a strictly ascending chain of primes of S, we obtain a strictly ascending chain of primes in
R by intersecting its elements with R. The intersections with R of comparable but distinct
primes of S are distinct by the lying over theorem. [J

If R is Noetherian, every prime has finite height. In fact:

Krull Height Theorem. If R is Notherian and I C R is generated by n elements, the
height of any minimal prime P of R is at most n. Moreover, every prime ideal of height
n is a minimal prime of an ideal generated by n elements.

By a local ring (R, m, K) we mean a Noetherian ring with a unique maximal ideal m
such that K = R/m.

Corollary. If R is a local ring, the dimension of R (which is the same as the height
of m) is the least number n of elements x1, ... ,x, € m such that m is the radical of
(1, ... ,xn)R.

A set of n elements as described above is called a system of parameters for the local

ring R. When R is zero-dimensional, the system of parameters is empty.
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Corollary. If f € m, where (R, m, K) is local, then dim (R/fR) > dim (R) — 1.

Proof. Choose a system of parameters for R/ f R that are the images of elements x5, ... , x4
in m, where s — 1 = dim (R/xR). Since m/fR is nilpotent on (z3, ..., =), we have that
m is nilpotent on (f, zo, ... ,xs)R. Therefore, dim (R) < s =dim (R/fR) +1. O

Theorem. Let R be a domain finitely generated over a field K. The dimension n of R s
the transcendence degree of its fraction field over K. FEvery maximal ideal of R has height
n, and for any two primes P C Q, a mazximal ascending chain of primes from P to @ (also
called a saturated chain from P to Q) has length equal to height (Q) — height (P).

When R is finitely generated over a field K, it is an integral extension of a polynomial
subring, by the Noether normalization theorem. This suggests why the statements in this
Theorem ought to be true, and a proof can be based on this idea.

Krull dimension for modules

If M is a finitely generated module over a Noetherian ring R, we define the (Krull)
dimension of M to be the Krull dimension of R/I, where I = AnnrM is the annihilator of
I. We make the convention that the Krull dimension of the 0 ring is —1, and this means
that the Krull dimension of the 0 module is also —1. Recall that the support of M, denoted
Supp (M) is

{P € Spec(R) : Mp # 0}.

Also recall:

Proposition. If M is a finitely generated module over a Noetherian ring R, Supp (M) =
V(I), the set of prime ideals containing I = AnngM .

Proof. Let uy, ... ,u generate M. Then the map R — MP¥ that sends r — (ruy, ..., rug)
has kernel precisely I, which yields an injection R/I < MF¥. If I C P, then (R/I)p # 0
injects into (M*)p = (Mp)*, and so Mp # 0. Conversely, if f € I — P, then Mp is
localization of M, which is 0 since fM =0. O

Recall that a prime ideal is an associated prime of M if there is an injection f : R/P —
M. Tt is equivalent to assert that there is an element u € M such that Anngu = P. The
set of associated primes of M is denoted Ass (M ). By a theorem, Ass (M) is finite.
Proposition. Let R be a Noetherian ring and let M be a finitely generated R-module.
(a) The dimension of M is sup{dim (R/P) : P € Supp (M)}.

(b) The dimension of M is sup{dim (R/P) : P is a minimal prime of M}.
(¢) The dimension of M is sup{dim (R/P) : P € Ass(M)}.



(d) Let 0 — M’ — M — M"” — 0 be a short exact sequence. Then dim (M) =
max{dim (M"), dim (M")}.

() If 0 = My € My C --- C My—1 C My = M is a finite fliltration of M, then
dim (M) = sup{dim (M;41/M; : 0 <i <k —1}.

Proof. (a) and (b). Since Supp (M) is V(I), the assertion comes down to the statement
that dim (R/I) = sup{dim (R/P) : I C P}. This is clear, since I has only finitely many
minimal primes P, ..., Py, and so dim (R/I) is the supremum of the integers dim (R/FP;)
where 1 < 5 < h.

(¢) The minimal primes of M (equivalently, of the support of M) are the same as the
minimal primes P of I. As in the proof of the preceding Proposition we have R/I — M¥,
and then

P c Ass(R/I) C Ass (M") = Ass (M),

so that every minimal prime of I is in Ass (M). On the other hand, if P € Ass (M) then
R/P — M and so [ kills R/P, i.e., I C P. Part (c) follows at once.

(d) Let I’, I, and I"” be the annihilators of M’, M, and M" respectively. Then I C I’
and I C I” sothat I CI'NI". If u € M, then I"u C M’ (since I’ kills M/M' = M"),
and so I’ kills I"u, i.e., I'I"u = 0. This implies that I’I"” C I. Now (I’ N 1")? is generated
by products fg where f, g € I’ N I”. Think of f as in I’ and g as in I"”. It follows
that (I’ N I")2 C I'I" C I'N 1", so that Rad (I’ N I"”) = Rad (I'I"), and we have that
Rad (I) = Rad (I'I"”) as well. The result now follows from part (a) and the fact that
VT = V(I UV(I).

(e) We use induction on the length of the filtration. The case where k = 1 is ob-
vious, and part (d) gives the case where k = 2. If k > 2, we have that dim (M) =
max{dim (My_1, My /Mj_1) by part (d), and and

dim (My_1) = sup{dim (M;11/M; : 0 < i < k — 2}
by the induction hypotheis. [

Remark. Let M # 0 be a finitely generated module over an arbitrary ring R. Then M has
a filtration
0=MyC M, C---C Mp_1C M

such that every factor M;,1/M;, where 0 < i < k — 1, is a cyclic module. In fact if
uy, ... ,ur generate M, we may take M; = Ruy +---+ Ru;, 0 < ¢ < k. If R is Noetherian,
we can find such a filtration such that every M; 1 /M; is a prime cyclic module, i.e., has
the form R/P; for some prime ideal I of R. One first chooses u; such that Anngu; = P,
is prime in R. Let M; = Ruy C M. Proceeding recursively, suppose that uq, ..., u;
have been chosen in M such that, with M; = Ruy + --- + Ru; for 1 < j < ¢, we have
that M;/M;_1 = R/P; with P; prime. If M; = M we are done. If not we can choose
ui+1 € M such that the annihilator of its image in M /M, is a prime ideal P;; of R. Then
M;11/M; =2 R/P;y;: in particular, the inclusion M; C M;,1 is strict. The process must



terminate, since M has ACC. This means that evenutally we reach M} such that M = M.
For this type of filtration, it follows from part (e) of the Proposition above that we have

dim (M) = sup{dim (R/F;) : 1 <i < k}.

The graded case

This section contains several results that are useful in studying dimension theory in
the graded case.

Proposition. Let M be an N-graded or Z-graded module over an N-graded or Z-graded
Noetherian ring S. Then every associated prime of M 1is homogeneous. Hence, every
minimal prime of the support of M is homogeneous and, in particular the associated (hence,
the minimal) primes of S are homogeneous.

Proof. Any associated prime P of M is the annihilator of some element u of M, and then
every nonzero multiple of u # 0 can be thought of as a nonzero element of S/P = Su C M,
and so has annihilator P as well. Replace u by a nonzero multiple with as few nonzero
homogeneous components as possible. If u; is a nonzero homogeneous component of u of
degree i, its annihilator J; is easily seen to be a homogeneous ideal of S. If J;, # J; we can
choose a form F' in one and not the other, and then F'u is nonzero with fewer homgeneous
components then u. Thus, the homogeneous ideals J; are all equal to, say, J, and clearly
J C P. Suppose that s € P —.J and subtract off all components of s that are in .J, so that
no nonzero component is in J. Let s, ¢ J be the lowest degree component of s and uy, be
the lowest degree component in u. Then s, up is the only term of degree a + b occurring
in su = 0, and so must be 0. But then s, € Anng u, = J, = J, a contradiction. [J

Corollary. Let K be a field and let R be a finitely generated N-graded K -algebra with
Ry = K. Let M = @2, R; be the homogeneous mazimal ideal of R. Then dim (R) =
height (M) = dim (R ).

Proof. The dimension of R will be equal to the dimension of R/P for one of the minimal
primes P of R. Since P is minimal, it is an associated prime and therefore is homogenous.
Hence, P C M. The domain R/P is finitely generated over K, and therefore its dimension
is equal to the height of every maximal ideal including, in particular, M/P. Thus,

dim (R) = dim (R/P) = dim ((R/P) p) < dim Rpq < dim (R),
and so equality holds throughout, as required. [

Proposition (homogeneous prime avoidance). Let R be an N-graded algebra, and
let I be a homogeneous ideal of R whose homogeneous elements have positive degree. Let
Py, ..., P be prime ideals of R. Suppose that every homogeneous element f € I is in
UI::1 P;. Then I C P; for some j, 1 < j <k.
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Proof. We have that the set H of homogeneous elements of I is contained in Ule Py, If
k =1 we can conclude that I C P;. We use induction on k. Without loss of generality,
we may assume that H is not contained in the union of any £ — 1 if the P;. Hence, for
every ¢ there is a homogeous element g; € I that is not in any of the P; for j # 7, and
so it must be in P;. We shall show that if £ > 1 we have a contradiction. By raising the
g; to suitable positive powers we may assume that they all have the same degree. Then
gffl +g2---gr € I is a homogeneous element of I that is not in any of the P;: g1 is not
in P; for 7 > 1 but is in P;, and g2 --- g is in each of P, ... , P, but is not in P;. [

We can now connect the dimension of a module with the degree of its Hilbert poly-
nomial.

Theorem. Let R be a polynomial ring Klxy, ... ,x,]| over a field K, and let M be a
finitely generated Z-graded module over R. If M has dimension 0, the Hilbert polynomial
of M is 0. If dim (M) > 0, the Hilbert polynomial of M has degree dim (M) — 1.

Proof. M has dimension 0 if and only if it is killed by a power of m = (z1, ... ,z,)R, in
which case [M]q = 0 for all d > 0. We use induction on dim (M).

If dim (M) > 0, then exactly as in the Remark on p. 3 we may construct a finite
filtration of M in which all the factors are prime cyclic modules, but using the fact that
associated primes of graded modules are graded, we may assume that every R/P; occurring
is graded, i.e., that every P; is homogeneous. Then the dimension of M is the same as the
largest dimension of any R/P;, and the degree of the Hilbert polynomial is the same as
the largest degree of the Hilbert polynomial of any R/P;. (The Hilbert polynomial of M
is the sum of the Hilbert polynomials of the R/P;. Note that we cannot have cancellation
of leading coefficients in the highest degree because the leading coefficient of a Hilbert
polynomial is positive: it cannot be negative, since the vector dimension of the space of
forms [R/P;]4 for d > 0 cannot be negative.)

We have therefore reduced to the case where M has the form R/P, and has positive
dimension. It follows that some x; is not in P, and so there is a form f of degree 1 that is
nonzero in the domain R/P. The dimension of N = M/ fM must be exactly dim (M) — 1:
the dimension must drop because we are killing a nonzero element in a domain, and it
cannot drop by more than one, because the rings R/P and R/(P + fR) have the same
dimension when localized at their maximal ideals, and we may apply the Corollary at the
top of p. 2.

We then have a short exact sequence of graded modules and degree preserving maps:
0— M(—1) L M — M/fM — 0,
so that if Hy; denotes the Hilbert polynmial of M we have so that
() Hpy(d) — Hp(d—1) = Hypypar(d)

for all d. In general, if P(d) is a polynomial in d of degree k > 1 and with leading coefficient
a, the first difference P(d) — P(d—1) is a polynomial of degree k—1 with leading coefficient
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ka. Therefore, the degree of the left hand side is deg(Hy;) — 1, while the right hand side,
by the induction hypothesis, is a polynomial of degree dim(M/fM) — 1 (if dim(M) > 1)
or is 0 (if dim(M) = 1). Since dim (M/fM) = dim (M) — 1, the result follows. [

We saw in the final Theorem of the Lecture Notes of January 22 that F//M and
F/in(M) have the same Hilbert-Poincaré series when M is a graded submodule of a finitely
generated free module over a polynomial ring R = Klz1, ... ,x,]. Of course, this also
means that F'/M and F/in(M) have the same Hilbert function and, hence, the same
Hilbert polynomial. We therefore can reduce the problem of finding the Krull dimension
of a module to the monomial case:

Theorem. Let N be any finitely generated Z-graded module over R = Klxy, ..., xy,].
Suppose that uy, ... ,us are finitely many homogeneous generators of respective degrees
dy, ...,ds. Think of R® as @;:1 R(—d;), and map R® - N so that 1 € R(—d;), which
has degree d;j, maps to u;. This map preserves degrees, and the kernel M is an N-graded
submodule of R®.

Refine the Z-grading on R® to a Z™-grading, and choose a monomial order. Then
dim (N) = dim (F/in(M)). O

Since a monomial submodule M of F'is a direct sum I1e; @- - - Ises, where every I is a
monomial ideal, we have that dim (F//M) = sup,;{dim (R/I;)}. We have therefore reduced
the problem of finding the dimension of a module M to that of finding the dimension of
R/I when I is a monomial ideal. We can make one more simplification: since R/Rad (I)
and R/I have the same dimension, it suffices to consider the case where [ is a radical ideal
generated by monomials. Since (z;, -+ - x;, ) is a multiple of z{! ---z{" (here, the a; are
positive integers) whenever k > sup, a;, the radical of an ideal generated by monomials
is generated by square-free monomials. (It is easy to check that any ideal generated by
square-free monomials in K[xq, ... ,z,] is, in fact, radical.)

Rings defined by killing square-free monomials and simplicial complexes

By a finite simplicial complex ¥ with vertices x1, ... ,z,, we mean a set of subsets of
{z1, ...,z } such that

(1) For 1 <i<mn, {z;} € %.
(2) Every subset of a set in X is also in X.

The sets o € ¥ are called the faces. The dimension of ¢ is one less than its cardinality:
the elements of ¥ of dimension ¢ are called i-simplices of o. The dimension of ¥ is the
largest dimension of any face. The maximal faces of X are called facets and these determine
> a set is in X if and only if it is a subset of a facet of X.



If we think of x1, ... ,z, as the points ey, ... ,e, in R™, where e; has 1 in the 7 th
spot and 0 elsewhere, we can define the geometric realization |X| of ¥ to be the topological
space

U convex hull(o)
oEX

in R™. The dimension of ¥ then coincides with its dimension as a topological space.

Ezample. If ¥ has three vertices x1, x2, x3 and facets {z1, x2}, {x1, x3}, and {z2, z3},
then |X| is the union of three line segments: it is a triangle, without the interior. On the
other hand, if 3 has one facet, {x1, 2, x3}, then |¥] is a triangle with interior.

Our reason for discussing simplicial complexes at this point is that there is a bijective
correspondence between the square-free monomial ideals in K|z1, ... ,z,] that do not con-
tain any of the variables x1, ... ,z, and the simplicial complexes with vertices z1, ... ,x,.
One may let the ideal I correspond to the subsets of {z1, ... ,x,} whose product is not in
I. Notice that if a monomial ideal does contain one of the variables z;, the quotient R/I
may be thought of as a quotient of a polynomial ring in fewer variables (omitting x;) by
square-free monomials.

The ring R/ Iy corresponding to simplicial complex ¥ is called the face ring or Stanley-
Reisner ring of X over K. Here, Iy, is simply the ideal generated by all square-free mono-
mials such that the set of variables occurring is not a face of X.

We leave it as an exercise to verify the minimal primes of R/Iy; correspond bijectively
to the facets of ¥: each minimal prime () is generated by the images of the elements in
{z1, ... ,xn} — o for some facet o, the quotient by @ is the isomorphic to a polynomial
ring in the variables that occur in o. It then follows that dim (R/Iy) = dim (X) + 1.

Elimination theory

We now return to the problem of finding the intersection of an ideal I C K{zy, ..., x,]
with K[zg11, ..., £,], which also gives an algorithm for solving a finite system of polyno-
mial equations over an algebraically closed field when there are only finitely many solutions.
The method is incredibly simple!

Theorem. If g1, ... ,g, is a Grobner basis for I with respect to lexicographic order, then
the elements of this basis that lie in K[zpi1, ..., x,] are a Grébner basis for the ideal
J=INK[Tpi1,...,Tp)

Proof. Let gp41, ... ,gr be the elements of the Grobner basis that lie in K[zg41, ..., x,] (if
g1, --- , g are in order of the sizes of their initial terms, these elements will be consecutive
and at the end of the sequence).

Consider any element f € .J. Then there is a standard expression for f divided by
g1, --- ,gr, and the remainder will be zero. Say the expression is f = Z;L:1 gjg;- Any g;



that involves one of x1, ... ,x; has initial term involving one of the variables x1, ..., zg,
and the initial term of g;g; will be too large to use in the standard expression unless
qj = 0. Therefore, we actually have f = Z?:h +19795- The same reasoning shows that
any ¢; for j > k involves only xy41, ..., ,. The initial term of f must be the same,
up to a nonzero scalar multiple, as the intitial term of one of the ¢;g;, and so it is in the
Kxks1, -+ yxp)-span of gpi1, ... ,gr. O



