
Math 615: Lecture of January 26, 2007

Review of the theory of Krull dimension

We recall that the (Krull) dimension of a ring R, which need not be Noetherian, is the
supremum of lengths k of strictly increasing chains P0 ⊂ P1 ⊂ · · · ⊂ Pk−1 ⊂ Pk of chains
of prime ideals of R. The height of a prime ideal P is, equivalently, either the supremum of
lengths of strictly descending chains of primes whose first element is P , or the dimension
of the quasilocal ring RP (a quasilocal ring is a ring with a unique maximal ideal).

We have:

Proposition. If J is an ideal of R consisting of nilpotent elements, then dim(R) =
dim(R/J). Hence, if I and I ′ are two ideals of R with the same radical, dim(R/I) =
dim(R/I ′).

Proof. There is an order preserving bijection between primes of R and primes of R/J :
every prime ideal P of R contains J , and we may let P correspond to P/J . The second
statement now follows because if J = Rad (I) = Rad (I ′), then R/J is obtained from either
R/I or R/I ′ killing an ideal (J/I or J ′/I) all of whose elements are nilpotent. �

Theorem. If R ⊆ S is an integral extension of rings, then dim(R) = dim(S).

Proof. Given any finite strictly ascending chain of primes in R there is a chain of the same
length in S by the going up theorem. Hence, dim(R) ≤ dim(S). On the other hand, given
a strictly ascending chain of primes of S, we obtain a strictly ascending chain of primes in
R by intersecting its elements with R. The intersections with R of comparable but distinct
primes of S are distinct by the lying over theorem. �

If R is Noetherian, every prime has finite height. In fact:

Krull Height Theorem. If R is Notherian and I ⊆ R is generated by n elements, the
height of any minimal prime P of R is at most n. Moreover, every prime ideal of height
n is a minimal prime of an ideal generated by n elements.

By a local ring (R,m, K) we mean a Noetherian ring with a unique maximal ideal m
such that K = R/m.

Corollary. If R is a local ring, the dimension of R (which is the same as the height
of m) is the least number n of elements x1, . . . , xn ∈ m such that m is the radical of
(x1, . . . , xn)R.

A set of n elements as described above is called a system of parameters for the local
ring R. When R is zero-dimensional, the system of parameters is empty.
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Corollary. If f ∈ m, where (R, m, K) is local, then dim (R/fR) ≥ dim (R)− 1.

Proof. Choose a system of parameters for R/fR that are the images of elements x2, . . . , xs

in m, where s− 1 = dim (R/xR). Since m/fR is nilpotent on (x2, . . . , xs), we have that
m is nilpotent on (f, x2, . . . , xs)R. Therefore, dim (R) ≤ s = dim (R/fR) + 1. �

Theorem. Let R be a domain finitely generated over a field K. The dimension n of R is
the transcendence degree of its fraction field over K. Every maximal ideal of R has height
n, and for any two primes P ⊆ Q, a maximal ascending chain of primes from P to Q (also
called a saturated chain from P to Q) has length equal to height (Q)− height (P ).

When R is finitely generated over a field K, it is an integral extension of a polynomial
subring, by the Noether normalization theorem. This suggests why the statements in this
Theorem ought to be true, and a proof can be based on this idea.

Krull dimension for modules

If M is a finitely generated module over a Noetherian ring R, we define the (Krull)
dimension of M to be the Krull dimension of R/I, where I = AnnRM is the annihilator of
I. We make the convention that the Krull dimension of the 0 ring is −1, and this means
that the Krull dimension of the 0 module is also −1. Recall that the support of M , denoted
Supp (M) is

{P ∈ Spec (R) : MP 6= 0}.

Also recall:

Proposition. If M is a finitely generated module over a Noetherian ring R, Supp (M) =
V (I), the set of prime ideals containing I = AnnRM .

Proof. Let u1, . . . , uk generate M . Then the map R → Mk that sends r 7→ (ru1, . . . , ruk)
has kernel precisely I, which yields an injection R/I ↪→ Mk. If I ⊆ P , then (R/I)P 6= 0
injects into (Mk)P

∼= (MP )k, and so MP 6= 0. Conversely, if f ∈ I − P , then MP is
localization of Mf , which is 0 since fM = 0. �

Recall that a prime ideal is an associated prime of M if there is an injection f : R/P ↪→
M . It is equivalent to assert that there is an element u ∈ M such that AnnRu = P . The
set of associated primes of M is denoted Ass (M). By a theorem, Ass (M) is finite.

Proposition. Let R be a Noetherian ring and let M be a finitely generated R-module.

(a) The dimension of M is sup{dim (R/P ) : P ∈ Supp (M)}.

(b) The dimension of M is sup{dim (R/P ) : P is a minimal prime of M}.

(c) The dimension of M is sup{dim (R/P ) : P ∈ Ass (M)}.
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(d) Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence. Then dim (M) =
max{dim (M ′),dim (M ′′)}.

(e) If 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mk−1 ⊆ Mk = M is a finite fliltration of M , then
dim (M) = sup{dim (Mi+1/Mi : 0 ≤ i ≤ k − 1}.

Proof. (a) and (b). Since Supp (M) is V (I), the assertion comes down to the statement
that dim (R/I) = sup{dim (R/P ) : I ⊆ P}. This is clear, since I has only finitely many
minimal primes P1, . . . , Ph, and so dim (R/I) is the supremum of the integers dim (R/Pj)
where 1 ≤ j ≤ h.

(c) The minimal primes of M (equivalently, of the support of M) are the same as the
minimal primes P of I. As in the proof of the preceding Proposition we have R/I ↪→ Mk,
and then

P ∈ Ass (R/I) ⊆ Ass (Mk) = Ass (M),

so that every minimal prime of I is in Ass (M). On the other hand, if P ∈ Ass (M) then
R/P ↪→ M and so I kills R/P , i.e., I ⊆ P . Part (c) follows at once.

(d) Let I ′, I, and I ′′ be the annihilators of M ′, M , and M ′′ respectively. Then I ⊆ I ′

and I ⊆ I ′′, so that I ⊆ I ′ ∩ I ′′. If u ∈ M , then I ′′u ⊆ M ′ (since I ′ kills M/M ′ = M ′′),
and so I ′ kills I ′′u, i.e., I ′I ′′u = 0. This implies that I ′I ′′ ⊆ I. Now (I ′ ∩ I ′′)2 is generated
by products fg where f, g ∈ I ′ ∩ I ′′. Think of f as in I ′ and g as in I ′′. It follows
that (I ′ ∩ I ′′)2 ⊆ I ′I ′′ ⊆ I ′ ∩ I ′′, so that Rad (I ′ ∩ I ′′) = Rad (I ′I ′′), and we have that
Rad (I) = Rad (I ′I ′′) as well. The result now follows from part (a) and the fact that
V (I ′I ′′) = V (I ′) ∪ V (I ′′).

(e) We use induction on the length of the filtration. The case where k = 1 is ob-
vious, and part (d) gives the case where k = 2. If k > 2, we have that dim (M) =
max{dim (Mk−1, Mk/Mk−1) by part (d), and and

dim (Mk−1) = sup{dim (Mi+1/Mi : 0 ≤ i ≤ k − 2}

by the induction hypotheis. �

Remark. Let M 6= 0 be a finitely generated module over an arbitrary ring R. Then M has
a filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mk−1 ⊂ Mk

such that every factor Mi+1/Mi, where 0 ≤ i ≤ k − 1, is a cyclic module. In fact if
u1, . . . , uk generate M , we may take Mi = Ru1 + · · ·+Rui, 0 ≤ i ≤ k. If R is Noetherian,
we can find such a filtration such that every Mi+1/Mi is a prime cyclic module, i.e., has
the form R/Pi for some prime ideal I of R. One first chooses u1 such that AnnRu1 = P1

is prime in R. Let M1 = Ru1 ⊆ M . Proceeding recursively, suppose that u1, . . . , ui

have been chosen in M such that, with Mj = Ru1 + · · · + Ruj for 1 ≤ j ≤ i, we have
that Mj/Mj−1

∼= R/Pj with Pj prime. If Mi = M we are done. If not we can choose
ui+1 ∈ M such that the annihilator of its image in M/Mi is a prime ideal Pi+1 of R. Then
Mi+1/Mi

∼= R/Pi+1: in particular, the inclusion Mi ⊂ Mi+1 is strict. The process must
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terminate, since M has ACC. This means that evenutally we reach Mk such that Mk = M .
For this type of filtration, it follows from part (e) of the Proposition above that we have

dim (M) = sup{dim (R/Pi) : 1 ≤ i ≤ k}.

The graded case

This section contains several results that are useful in studying dimension theory in
the graded case.

Proposition. Let M be an N-graded or Z-graded module over an N-graded or Z-graded
Noetherian ring S. Then every associated prime of M is homogeneous. Hence, every
minimal prime of the support of M is homogeneous and, in particular the associated (hence,
the minimal) primes of S are homogeneous.

Proof. Any associated prime P of M is the annihilator of some element u of M , and then
every nonzero multiple of u 6= 0 can be thought of as a nonzero element of S/P ∼= Su ⊆ M ,
and so has annihilator P as well. Replace u by a nonzero multiple with as few nonzero
homogeneous components as possible. If ui is a nonzero homogeneous component of u of
degree i, its annihilator Ji is easily seen to be a homogeneous ideal of S. If Jh 6= Ji we can
choose a form F in one and not the other, and then Fu is nonzero with fewer homgeneous
components then u. Thus, the homogeneous ideals Ji are all equal to, say, J , and clearly
J ⊆ P . Suppose that s ∈ P −J and subtract off all components of s that are in J , so that
no nonzero component is in J . Let sa /∈ J be the lowest degree component of s and ub be
the lowest degree component in u. Then sa ub is the only term of degree a + b occurring
in su = 0, and so must be 0. But then sa ∈ AnnS ub = Jb = J , a contradiction. �

Corollary. Let K be a field and let R be a finitely generated N-graded K-algebra with
R0 = K. Let M =

⊕∞
d=1 Rj be the homogeneous maximal ideal of R. Then dim (R) =

height (M) = dim (RM).

Proof. The dimension of R will be equal to the dimension of R/P for one of the minimal
primes P of R. Since P is minimal, it is an associated prime and therefore is homogenous.
Hence, P ⊆M. The domain R/P is finitely generated over K, and therefore its dimension
is equal to the height of every maximal ideal including, in particular, M/P . Thus,

dim (R) = dim (R/P ) = dim
(
(R/P )M

)
≤ dim RM ≤ dim (R),

and so equality holds throughout, as required. �

Proposition (homogeneous prime avoidance). Let R be an N-graded algebra, and
let I be a homogeneous ideal of R whose homogeneous elements have positive degree. Let
P1, . . . , Pk be prime ideals of R. Suppose that every homogeneous element f ∈ I is in⋃k

i=1 Pi. Then I ⊆ Pj for some j, 1 ≤ j ≤ k.
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Proof. We have that the set H of homogeneous elements of I is contained in
⋃k

i=1 Pk. If
k = 1 we can conclude that I ⊆ P1. We use induction on k. Without loss of generality,
we may assume that H is not contained in the union of any k − 1 if the Pj . Hence, for
every i there is a homogeous element gi ∈ I that is not in any of the Pj for j 6= i, and
so it must be in Pi. We shall show that if k > 1 we have a contradiction. By raising the
gi to suitable positive powers we may assume that they all have the same degree. Then
gk−1
1 + g2 · · · gk ∈ I is a homogeneous element of I that is not in any of the Pj : g1 is not

in Pj for j > 1 but is in P1, and g2 · · · gk is in each of P2, . . . , Pk but is not in P1. �

We can now connect the dimension of a module with the degree of its Hilbert poly-
nomial.

Theorem. Let R be a polynomial ring K[x1, . . . , xn] over a field K, and let M be a
finitely generated Z-graded module over R. If M has dimension 0, the Hilbert polynomial
of M is 0. If dim (M) > 0, the Hilbert polynomial of M has degree dim (M)− 1.

Proof. M has dimension 0 if and only if it is killed by a power of m = (x1, . . . , xn)R, in
which case [M ]d = 0 for all d � 0. We use induction on dim (M).

If dim (M) > 0, then exactly as in the Remark on p. 3 we may construct a finite
filtration of M in which all the factors are prime cyclic modules, but using the fact that
associated primes of graded modules are graded, we may assume that every R/Pi occurring
is graded, i.e., that every Pi is homogeneous. Then the dimension of M is the same as the
largest dimension of any R/Pi, and the degree of the Hilbert polynomial is the same as
the largest degree of the Hilbert polynomial of any R/Pi. (The Hilbert polynomial of M
is the sum of the Hilbert polynomials of the R/Pi. Note that we cannot have cancellation
of leading coefficients in the highest degree because the leading coefficient of a Hilbert
polynomial is positive: it cannot be negative, since the vector dimension of the space of
forms [R/Pi]d for d � 0 cannot be negative.)

We have therefore reduced to the case where M has the form R/P , and has positive
dimension. It follows that some xi is not in P , and so there is a form f of degree 1 that is
nonzero in the domain R/P . The dimension of N = M/fM must be exactly dim (M)− 1:
the dimension must drop because we are killing a nonzero element in a domain, and it
cannot drop by more than one, because the rings R/P and R/(P + fR) have the same
dimension when localized at their maximal ideals, and we may apply the Corollary at the
top of p. 2.

We then have a short exact sequence of graded modules and degree preserving maps:

0 −→ M(−1)
f−→ M −→ M/fM −→ 0,

so that if HM denotes the Hilbert polynmial of M we have so that

(∗) HM (d)−HM (d− 1) = HM/fM (d)

for all d. In general, if P (d) is a polynomial in d of degree k ≥ 1 and with leading coefficient
a, the first difference P (d)−P (d−1) is a polynomial of degree k−1 with leading coefficient
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ka. Therefore, the degree of the left hand side is deg(HM )− 1, while the right hand side,
by the induction hypothesis, is a polynomial of degree dim(M/fM) − 1 (if dim(M) > 1)
or is 0 (if dim(M) = 1). Since dim (M/fM) = dim (M)− 1, the result follows. �

We saw in the final Theorem of the Lecture Notes of January 22 that F/M and
F/in(M) have the same Hilbert-Poincaré series when M is a graded submodule of a finitely
generated free module over a polynomial ring R = K[x1, . . . , xn]. Of course, this also
means that F/M and F/in(M) have the same Hilbert function and, hence, the same
Hilbert polynomial. We therefore can reduce the problem of finding the Krull dimension
of a module to the monomial case:

Theorem. Let N be any finitely generated Z-graded module over R = K[x1, . . . , xn].
Suppose that u1, . . . , us are finitely many homogeneous generators of respective degrees
d1, . . . , ds. Think of Rs as

⊕s
j=1 R(−dj), and map Rs � N so that 1 ∈ R(−dj), which

has degree dj, maps to uj. This map preserves degrees, and the kernel M is an N-graded
submodule of Rs.

Refine the Z-grading on Rs to a Zn-grading, and choose a monomial order. Then
dim (N) = dim

(
F/in(M)

)
. �

Since a monomial submodule M of F is a direct sum I1e1⊕· · · Ises, where every Ij is a
monomial ideal, we have that dim (F/M) = supj{dim (R/Ij)}. We have therefore reduced
the problem of finding the dimension of a module M to that of finding the dimension of
R/I when I is a monomial ideal. We can make one more simplification: since R/Rad (I)
and R/I have the same dimension, it suffices to consider the case where I is a radical ideal
generated by monomials. Since (xi1 · · ·xih

)k is a multiple of xa1
i1
· · ·xah

ih
(here, the ai are

positive integers) whenever k ≥ supj aj , the radical of an ideal generated by monomials
is generated by square-free monomials. (It is easy to check that any ideal generated by
square-free monomials in K[x1, . . . , xn] is, in fact, radical.)

Rings defined by killing square-free monomials and simplicial complexes

By a finite simplicial complex Σ with vertices x1, . . . , xn we mean a set of subsets of
{x1, . . . , xn} such that

(1) For 1 ≤ i ≤ n, {xi} ∈ Σ.

(2) Every subset of a set in Σ is also in Σ.

The sets σ ∈ Σ are called the faces. The dimension of σ is one less than its cardinality:
the elements of Σ of dimension i are called i-simplices of σ. The dimension of Σ is the
largest dimension of any face. The maximal faces of Σ are called facets and these determine
Σ: a set is in Σ if and only if it is a subset of a facet of Σ.
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If we think of x1, . . . , xn as the points e1, . . . , en in Rn, where ei has 1 in the i th
spot and 0 elsewhere, we can define the geometric realization |Σ| of Σ to be the topological
space ⋃

σ∈Σ

convex hull(σ)

in Rn. The dimension of Σ then coincides with its dimension as a topological space.

Example. If Σ has three vertices x1, x2, x3 and facets {x1, x2}, {x1, x3}, and {x2, x3},
then |Σ| is the union of three line segments: it is a triangle, without the interior. On the
other hand, if Σ has one facet, {x1, x2, x3}, then |Σ| is a triangle with interior.

Our reason for discussing simplicial complexes at this point is that there is a bijective
correspondence between the square-free monomial ideals in K[x1, . . . , xn] that do not con-
tain any of the variables x1, . . . , xn and the simplicial complexes with vertices x1, . . . , xn.
One may let the ideal I correspond to the subsets of {x1, . . . , xn} whose product is not in
I. Notice that if a monomial ideal does contain one of the variables xi, the quotient R/I
may be thought of as a quotient of a polynomial ring in fewer variables (omitting xi) by
square-free monomials.

The ring R/IΣ corresponding to simplicial complex Σ is called the face ring or Stanley-
Reisner ring of Σ over K. Here, IΣ is simply the ideal generated by all square-free mono-
mials such that the set of variables occurring is not a face of Σ.

We leave it as an exercise to verify the minimal primes of R/IΣ correspond bijectively
to the facets of Σ: each minimal prime Q is generated by the images of the elements in
{x1, . . . , xn} − σ for some facet σ, the quotient by Q is the isomorphic to a polynomial
ring in the variables that occur in σ. It then follows that dim (R/IΣ) = dim (Σ) + 1.

Elimination theory

We now return to the problem of finding the intersection of an ideal I ⊆ K[x1, . . . , xn]
with K[xk+1, . . . , xn], which also gives an algorithm for solving a finite system of polyno-
mial equations over an algebraically closed field when there are only finitely many solutions.
The method is incredibly simple!

Theorem. If g1, . . . , gr is a Gröbner basis for I with respect to lexicographic order, then
the elements of this basis that lie in K[xk+1, . . . , xn] are a Gröbner basis for the ideal
J = I ∩K[xk+1, . . . , xn].

Proof. Let gh+1, . . . , gr be the elements of the Gröbner basis that lie in K[xk+1, . . . ,xn] (if
g1, . . . , gr are in order of the sizes of their initial terms, these elements will be consecutive
and at the end of the sequence).

Consider any element f ∈ J . Then there is a standard expression for f divided by
g1, . . . , gr, and the remainder will be zero. Say the expression is f =

∑n
j=1 qjgj . Any gj
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that involves one of x1, . . . , xk has initial term involving one of the variables x1, . . . , xk,
and the initial term of qjgj will be too large to use in the standard expression unless
qj = 0. Therefore, we actually have f =

∑n
j=h+1 qjgj . The same reasoning shows that

any qj for j > k involves only xk+1, . . . , xn. The initial term of f must be the same,
up to a nonzero scalar multiple, as the intitial term of one of the qjgj , and so it is in the
K[xk+1, . . . , xn]-span of gh+1, . . . , gr. �


