
Math 615: Lecture of January 29, 2007

We next want to discuss the notion of a regular sequence in a ring or on a module. We
are aiming to discuss criteria, using revlex, for a sequence to be regular on F/M . However,
we also want to discuss some theorems that we are aiming to prove eventually about the
Cohen-Macaulay property for N-graded algebras finitely generated over a field K.

A sequence of elements f1, . . . , fk ∈ R, where R is a ring, is said to a regular sequence
on the R-module M (when M = R, one may refer to a regular sequence on R or a a regular
sequence in R if

(1) (f1, . . . , fn)M 6= M ,

(2) f1 is not a zerodivisor on M , i.e., M
f1·−−→ M is injective.

(3) For all i, 1 ≤ i ≤ k − 1, fi+1 is not a zerodivisor on M/(f1, . . . , fk)M .

These conditions can be expressed more concisely by allowing i = 0 in condition (1),
with the interpretation that (f1, . . . , fi)M = 0 if i = 0.

The empty sequence is regular sequence on every nonzero module M .

Condition (1) is assumed in order to eliminate certain degerate situations. Without it,
the sequence 1, 1, , 1, . . . , 1 (of any desired length) would be a regular sequence on the 0
module, for example.

Note that f1, . . . , fh, fh+1, . . . , fk is a regular sequence on M if and only if f1, . . . , fh

is a regular sequence on M and fh+1, . . . , fk is a regular sequence on M/(f1, . . . , fh)M .

The term Rees sequence on M is also used, as well as the term R-sequence on M (where
“R” may be thought of as standing for “Rees” or “regular”). The term M -sequence is also
used. We shall always use the term “regular sequence,” however.

For example, if x1, . . . , xn are indeterminates, x1, . . . , xn is a regular sequence on
R = K[x1, . . . , xn] and on S = K[[x1, . . . , xn]], as well as on any free R-module or free
S-module. In fact, we will show that a finitely generated S-module (respectively, a finitely
generated Z-graded R-module) M is S-free (respectively, R-free) if and only if x1, . . . , xn

is a regular sequence on M .

It is worth noting that, in general, regular sequences are not permutable, even in very
well-behaved rings. For example, in the polynomial ring R = K[x, y, z], x, (1−x)y, (1−x)z
is a regular sequence, but (1−x)y, (1−x)z, x is not. For the former, modulo xR, the latter
two elements become y and z in K[y, z]. For the second sequence, (1−x)z is a zerodivisor
modulo (1 − x)yR: the image of y is not 0, but (1 − x)z kills the image of y. However,
we shall see that regular sequences are permutable in the local case when the module is
finitely generated, and in certain graded cases (a precise statement is given below).

Before considering properties of regular sequences further, we want to discuss the local
and graded versions of Nakayama’s Lemma.
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Nakayama’s Lemma. Let R be a ring and let M be an R-module. Suppose that either
of the followng two conditions holds:

(1) R has a unique maximal ideal m and M is finitely generated.

(2) R is N-graded, m ⊆ R consists entirely of elements whose homogeneous components
have positive degree, and M is Z-graded, but [M ]−d = 0 for all d � 0.

If mM = M then M = 0.

Proof. In case (1) let u1, . . . , uk be a set of generators of M of smallest cardinality. If
k = 0 then M = 0 and we are done. If not, then uk ∈ mM = m(Ru1 + · · · + Ruk) =
mu1 + · · · + muk, and so uk = f1u1 + · · · + fkuk with every fj ∈ m. Then (1 − fk)uk =
f1u1+· · ·+fk−1uk−1, and 1−f1 /∈ m. It follows that 1−f1 is a unit of R. If g = (1−fk)−1,
then uk = gf1u1 + · · · + gfk−1uk−1, and u1, . . . , uk−1 generate M , contradicting the
minimality of k.

In case (2), let u ∈ M be a nonzero homogeneous element of smallest possible degree.
Then u ∈ mM implies that u is a sum of elements fjvj where the fj are homogeneous of
positive degree and the vj are homogeneous. Then u is the sum of those nonzero terms
fjvj such that deg(fj) + deg(vj) = deg(u). For those vj occurring, this implies that
deg(vj) = deg(u)− deg(fj) < deg(u), a contradiction. �

Corollary. Let R be a ring and let M be an R-module. Suppose that either of the followng
two conditions holds:

(1) R has a unique maximal ideal m and M is finitely generated.

(2) R is N-graded, m ⊆ R consists entirely of elements whose homogeneous components
have positive degree, and M is Z-graded, but [M ]−d = 0 for all d � 0.

If the images of the elements {uλ}λ∈Λ generate M/mM (and, in case (2), are homoge-
neous) then the elements {uλ}λ∈Λ generate M .

Proof. Let N be the R-span of {uλ}λ∈Λ. In case (2), N and M/N are homogeneous. Since
the images of the uλ span M/mM , we have that N +mM = M , and consequently we also
have that (mM + N)/N = M/N , and this implies that m(M/N) = M/N . Thus, by the
appropriate case of Nakayama’s Lemma, M/N = 0, and M = N . �

As a consequence of Nakayama’s Lemma, we can prove the permutability of regular
sequences in local and graded cases.

Proposition (permutability of regular sequences). Let R be a ring, let M be an
R-module, and let f1, . . . , fk ∈ R be a regular sequence on M . Suppose that either of the
following two conditions holds:

(1) (R, m, K) is local, f1, . . . , fk ∈ m, and M is finitely generated.
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(2) R is N-graded, M is Z-graded but [M ]−d = 0 for all d � 0, and f1, . . . , fk are
homogeneous of positive degree.

For every permutation π of 1, 2, . . . , k, fπ(1), fπ(2), . . . , fπ(k) is a regular sequence on
M .

Proof. Because the permutations on 1, 2, . . . , k are generated by transpositions (i i + 1)
of consecutive integers, we need only consider the case where π is such a transposition.
We may replace M by M/(f1, . . . , fi−1)M without affecting any relevant issues. Thus, we
may assume without loss of generality that we are simply transposing the first two terms
of the regular sequence. But once we have shown that f2, f1 is a regular sequence, the
rest is automatic, since M/(f1, f2)M = M/(f2, f1)M . Therefore, we need only consider
the case where k = 2 and we are transposing the elements.

We first need to see that f2 is not a zerodivisor on M . Let N ⊆ M be the annihilator
of f2. (In the graded case, N is graded.) If u ∈ N , then f2u = 0 certainly implies that
f2u = f1v, and so u = f1w for some w ∈ M . But then 0 = f2u = f2f1w = f1(f2w), and
since f1 is not a zerodivisor on M , we have that f2w = 0, so that w ∈ N . But we have
now shown that if u ∈ N , then u = f1w with w ∈ N . Thus, N = f1N . By the appropriate
form of Nakayama’s Lemma, N = 0.

Now suppose that f1v = f2u where v, u ∈ M , so that f1 kills the image of v in M/f2M .
Then, since f2 is not a zerodivisor on M/f1M , we have that u ∈ f1M , say u = f1w. Then
f1v = f2f1w and f1(v − f2w) = 0. Since f1 is not a zerodivisor on M , v = f2w. �

Regular local rings

A local ring (R, m, K) is called regular if the Krull dimension of R is equal to the least
number of generators of the maximal ideal m. The least number of generators of m is the
K-vector space dimension of m/m2 by Nakayama’s Lemma: dimK(m/m2) is called the
embedding dimension of R. The Krull dimension is the least number of generators of an
ideal whose radical is m, and we always have dim (R) ≤ dimK(m/m2).

If dim (R) = 0, R is regular if and only if R is a field.

If dim (R) = 1, then m is generated by one element x, which is not nilpotent. Every
nonzero element can be written as a unit times a power of x, since the intersection of
the powers of m is 0: simply factor out x as many times as possible. It follows that R
is a domain. Thus, the one dimensional regular local rings are precisely the Noetherian
discrete valuation rings: we refer to such a ring briefly as a DVR.

Higher dimensional examples include formal power series rings over a field or a DVR.

Note that if R is regular and x1, . . . , xk have images that are linearly indepedent in
m/m2, then R = R/(x1, . . . , xk)R is again regular. (Call the maximal ideal in the quotient
ring m. We can extend the sequence to x1, . . . , xn, where n = dim (R), and then the
images of the remaining elements xk+1, . . . , xn are linearly independent in m/m2 and are
a system of parameters for R).
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We have:

Theorem. A regular local ring (R, m, K) is a domain, and a local ring is regular if and
only if its maximal ideal m is generated by a regular sequence.

Proof. We use induction on dim (R) to prove that R is a domain. Therefore, we may
assume that dim (R) ≥ 2. Let x, y have linearly independent images in m/m2. It follows
that each of the elements x− yn is prime, for R/(x− yn) is a regular, and is a domain by
the induction hypothesis. It is easy to see that none of these elements divides any of the
others. If x − yn were a multiple of x − yh then in R/(x − yh) the images of x − yn and
x − yh are both 0, and so yn ≡ yh. Since R/(x − yh) is a domain, this forces y ≡ 0 (y is
in the maximal ideal, and so no power of y can equal 1). But then (x− yh)R contains y,
which is false even modulo m2. If uv = 0 in R, then either u is divisible by infinitely many
x − yn or v is. Suppose u is. But the intersection of ideals generated by prime elements,
none of which divides any of the others, is their product. This forces u into arbitrarily
high powers of m, and so u = 0.

It now follows that if x1, . . . , xn generate m minimally, then R/(x1, . . . , xk) is a domain
for every k, and so xk+1 is not a zerodivisor modulo (x1, . . . , xk)R.

On the other hand, if m is generated by a regular sequence one sees at once that the
dimension and embedding dimension of R are the same. �

We can now charactize when a module is free in terms of regular sequences in certain
cases. We need Nakayama’s Lemma to hold.

Theorem. Let R be a ring and M 6= 0 an R-module. Suppose that one of the following
conditions holds:

(1) (R, m, K) is regular local, x1, . . . , xn is a regular sequence generating m, and M is
finitely generated.

(2) R = K[x1, . . . , xn] is a polynomial ring over a field K, and M is Z-graded such that
[M ]−d = 0 for all d � 0. Then M is free if and only if x1, . . . , xn is a regular
sequence on M .

Proof. In both cases, x1, . . . , xn form a regular sequence on R. If elements form a direct
sequence on each module in a family, then they form a regular sequence on the direct sum.
Hence, x1, . . . , xn is a regular sequence on any free module.

It remains to show that, under the hypothesis of the Theorem, if x1, . . . , xn form a
regular sequence on M then M is free. Choose elements {uλ}λ∈Λ in M whose images are
a K-vector space basis for M/(x1, . . . , xn)M . Moreover, in case (2) choose these elements
to be homogeneous. By the appropriate form of Nakayama’s Lemma, they span M . It is
therefore sufficient to prove that they are independent over R. We use induction on n. The
case n = 0 is clear. Assume that n ≥ 1. It follows that M/x1M is free on the images of the
uλ over R/x1R. Consider h elements from this set of generators, say u1, . . . , uh, and let
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N ⊆ Rh be the set of relations on these elements over R. (In the graded case, let ui have
degree si and view Rh as R(−s1) ⊕ · · · ⊕ R(−sh).) In the graded case, N is graded. We
can complete the proof by showing that N = 0. Now consider any relation (f1, . . . , fh) on
u1, . . . , uh, so that f1u1 + · · ·+ fhuh = 0. Working modulo x1M (and x1R), we see that
we must have that every fj is divisible by x1, say fj = x1gj . Then x1(g1u1 + · · · ghuh) = 0,
and x1 is not a zerodivisor on M . It follows that (g1, . . . , gh) ∈ N . Thus, N = x1N . By
the appropriate form of Nakayama’s Lemma, N = 0. �

Discussion: homogeneous systems of parameters. Let R be a finitely generated N-graded
K-algebra, where R0 = K. Let m =

⊕∞
d=1 Rd be the homogeneous maximal ideal of R.

Since the minimal primes of R are homogeneous, if dim (R) > 0 we can choose a form
F1 ∈ m such that F1 is not in any minimal prime of R. Then dim (R/F1R) = dim (R)− 1.
Now suppose that forms F1, . . . , Fi have been chosen such that dim

(
R/(F1, . . . , Fi)R

)
=

dim (R) − i. If i < n = dim (R), we can choose Fi+1 ∈ m not in any minimal prime
(these are homogeneous) of (F1, . . . , Fi)R, and it follows that dim

(
R/(F1, . . . , Fi+1)

)
=

dim (R) − (i + 1). Thus, eventually we have a sequence of forms F1, . . . , Fn of positive
degree such that dim

(
R/(F1, . . . , Fn)

)
= 0. Such a sequence of forms is called a homogeous

system of parameters for R.

Theorem. Let R be a finitely generated N-graded K-algebra with R0 = K such that
dim (R) = n. A homogeneous system of parameters F1, . . . , Fn for R always exists. More-
over, if F1, . . . , Fn is a sequence of homogeneous elements of positive degree, then the
following statements are equivalent.

(1) F1, . . . , Fn is a homogeneous system of parameters.

(2) m is nilpotent modulo (F1, . . . , Fn)R.

(3) R/(F1, . . . , Fn)R is finite-dimensional as a K-vector space.

(4) R is module-finite over the subring K[F1, . . . , Fn].

Moreover, when these conditions hold, F1, . . . , Fn are algebraically independent over
K, so that K[F1, . . . , Fn] is a polynomial ring.

Proof. We have already shown existence.

(1) ⇒ (2). If F1, . . . , Fn is a homogeneous system of parameters, we have that
dim

(
R/F1, . . . , Fn)

)
= 0. We then know that all prime ideals are maximal. But we

also know that the maximal ideals are also minimal primes, and so must be homogeneous.
Since there is only one homogenous maximal ideal, it must be m/(F1, . . . , Fn)R, and so
m is nilpotent on (F1, . . . , Fn)R.

(2) ⇒ (3). If m is nilpotent modulo (F1, . . . , Fn)R, then the homogeneous maximal
ideal of R = R/(F1, . . . , Fn)R is nilpotent, and it follows that [R]d = 0 for all d � 0.
Since each Rd is a finite dimensional vector space over K, it follows that R itself is finite-
dimensional as a K-vector space.

(3) ⇒ (4). This is immediate from the homogeneous form of Nakayama’s Lemma:
a finite set of homogeneous elements of R whose images in R are a K-vector space basis
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will span R over K[F1, . . . , Fn], since the homogenous maximal ideal of K[F1, . . . , Fn] is
generated by F1, . . . , Fn.

(4)⇒ (1). If R is module-finite over K[F1, . . . , Fn], this is preserved mod (F1, . . . , Fn),
so that R/(F1, . . . , Fn) is module-finite over K, and therefore zero-dimensional as a ring.

Finally, when R is a module-finite extension of K[F1, . . . , Fn], the two rings have the
same dimension. Since K[F1, . . . , Fn] has dimension n, the elements F1, . . . , Fn must be
algebraically independent. �

Discussion: making a transition from one system of parameters to another. Let R be a
Noetherian ring of Krull dimension n, and assume that either

(1) (R, m, K) is local and f1, . . . , fn and g1, . . . , gn are two systems of parameters.

(2) R is finitely generated N-graded over R0 = K, a field, m is the homogeneous maximal
ideal, and f1, . . . , fn and g1, . . . , gn are two homogeneous systems of parameters for
R.

We want to observe that in this situation there is a finite sequence of systems of
parameters (respectively, homogeneous systems of parameters in case (2)) starting with
f1, . . . , fn and ending with g1, . . . , gn such that any two consecutive elements of the
sequence agree in all but one element (e.g., after reordering, only the i th terms are possibly
different for a single value of i, 1 ≤ i ≤ n. We can see this by induction on n. If n = 1
there is nothing to prove. If n > 1, first note that we can choose h (homogeneous of
positive degree in the graded case) so as to avoid all minimal primes of (f2, . . . , fn)R and
all minimal primes of (g2, . . . , gn)R. Then it suffices to get a sequence from h, f2, . . . , fn

to h, g2, . . . , gn, since the former differs from f1, . . . , fn in only one term and the latter
differs from g1, . . . , gn in only one term. But this problem can be solved by working in
R/hR and getting a sequence from the images of f2, . . . , fn to the images of g2, . . . , gn,
which we can do by the induction hypothesis. We lift all of the systems of parameters
back to R by taking, for each one, h and inverse images of the elements in the sequence in
R (taking a homogeneous inverse image in the graded case), and always taking the same
inverse image for each element of R/hR that occurs. �

Cohen-Macaulay rings were discussed in the first lecture. But we are now in a position
to prove several of the assertions made there.

Theorem. Let R be a finitely generated graded algebra over R0 = K. The following
conditions are equivalent.

(1) Some homogeneous system of parameters is a regular sequence.

(2) Every homogeneous system of parameters is a regular sequence.

(3) For some homogeneous system of parameters F1, . . . , Fn, R is a free-module over
K[F1, . . . , Fn].

(4) For every homogeneous system of parameters F1, . . . , Fn, R is a free-module over
K[F1, . . . , Fn].
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Proof. We first show that (1) and (2) are equivalent. We want to show that if one ho-
mogeneous system of parameters is a regular sequence, then every homogeneous system
of parameters is a regular sequence. By the Discussion above, we may assume that they
agree except possibly in one term. Since regular sequences are permutable (and systems
of parameters are obviously permutable), we may assume that they agree except possi-
bly for the last term. Call them F1, . . . , Fn and F1, . . . , Fn−1, G. The issue is whether
the last term is a nonzerodivisor modulo the earlier terms. Therefore, we may pass to
R = R/(F1, . . . , Fn−1), which is one-dimensional. It follows that we may assume that R
is one-dimensional, and we need only show that if F , G both generate ideals whose radical
is m and F is a nonzerodivisor, then G is a nonzerodivisor. But F has a power in GR,
say F k = GH. If G is a zerodivisor, it follows that F k is as well, and then F must be a
zerodivisor. This proves the equivalence of (1) and (2). The preceding Theorem yields the
equivalence of (1) and (3), as well as the equivalence of (2) and (4), immediately. �

As mentioned earlier, we shall say that R is Cohen-Macaulay of these equivalent
conditions hold. The same argument as given in the proof just above also shows:

Theorem. Let (R, m, K) be a local ring. Then one system of parameters is a regular
sequence if and only if every system of parameters is a regular sequence. �

We shall say that the local ring R is Cohen-Macaulay if every system of parameters
is a regular sequence. Of course, regular rings are Cohen-Macaulay. We shall later show
that an N-graded ring over R0 = K is Cohen-Macaulay if and only if all of its local rings
are Cohen-Macaulay.

We shall eventually prove two substantial results about when rings are Cohen-Macaulay.
One of them is Reisner’s criterion for when the face ring of a finite simplicial complex is
Cohen-Macaulay. The other concerns the Cohen-Macaulay property for certain rings of
invariants of matrix groups acting on polynomial rings.

To state Reisner’s criterion, we need the notion of link in a simplicial complex Σ. If
x is a vertex of Σ, we define the link of x in Σ to be the simplicial complex Λ such that
τ ∈ Λ if and only if τ ∈ Σ, x /∈ τ , and {x} ∪ τ ∈ Σ.

For example, suppose that Σ corresponds to the triangulation of a convex pentagon
obtained by connecting an interior point to the vertices, and x is the interior point. If the
vertices on the perimeter are x1, , x2, x3, x4, x5, then the facets of Σ are the five 2-simples
{x, xi, xi+1}, for 1 ≤ i ≤ 5, where xi+1 is to be interpreted as x1 when i = 5 (i.e., the
subscripts are read modulo 5). The link of x is the perimeter of the pentagon: its facets
are the five 1-simplices (or edges) {xi, xi+1}, where 1 ≤ i ≤ 5.

If we take Σ to have facets {x1, x3}, {x2, x3}, and {x3, x4, x5} (the geometric re-
alization consists of a triangle with interior and two additional line segments jutting out
from one vertex), then the link of x3 has facets {x1}, {x2}, and {x4, x5}: a line segment
with two additional isolated points.

Once one has a link, one can treat it as a new simplicial complex, and take the link
of one of its vertices. This may be iterated several times. But these iterated links can be
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obtained in a single step as follows. If σ0 ∈ Σ, define the link of σ0 ∈ Σ as the simplical
complex {τ ∈ Σ : τ ∩ σ0 = ∅ and τ ∪ σ0 ∈ Σ}. One gets the same simplicial complex by
iterating the operation of taking links of vertices, using all vetices in σ0: the iterated link
obtained is independent of the order in which one takes links of vertices.

We also recall that the reduced simplicial homology of Σ over K is the the same as the
simplicial homology over K, except in dimension 0, where it has K-vector space dimension
one smaller. (Thus H̃0(X; K) = 0 if and only if Σ is connected.)

We can now state:

Theorem (Reisner). Let K be a field, let Σ be a finite simplical complex with vertices
x1, . . . , xn, and let IΣ be the ideal of R = K[x1, . . . , xn] generated by the square free
monomials such that the set of variables that occur is not a face of Σ. Then R/IΣ is
Cohen-Macaulay if and only if both of the following conditions hold:

(1) The reduced simplicial homology H̃i(Σ; K) with coefficients in K vanishes, 0 ≤ i ≤
dim (Σ)− 1.

(2) For every link Λ, the reduced simplicial homology H̃i(Λ; K) = 0, 0 ≤ i ≤ dim (Λ)− 1.

We defer the proof. We also note that by a result of Munkres, Reisner’s condition is
actually a topological property of |Σ|.

Note that in dimension 0, every finite simplicial complex is Cohen-Macaulay. In
dimension 1, Σ is Cohen-Macaulay if and only if it is connected.

In dimension 2, a triangulation of a sphere gives a Cohen-Macaulay ring, a triangu-
lation of a cylinder does not, while what happens with a triangulation of a real projective
plane depends on the characteristic. In characteristic 2, the first homology group of the
the real projective plane does not vanish, and the ring one gets is not Cohen-Macaulay. In
all other characteristics, the ring is Cohen-Macaulay.

Finally, we mention one more Theorem. Let G be a Zariski closed subgroup of
GL(n, K): thus, G is a group of matrices. Suppose that G is linearly reductive, by
which we mean that every (algebraic) representation is completely reducible. There are
many such groups in characteristic 0: the general and special linear groups, the orthogonal
group, and the symplectic group are examples, as well as finite groups, the multiplicative
group of the field, and products of the groups already mentioned In characteristic p > 0,
there are relatively few such groups: products of copies of the multiplicative group of the
field and finite groups whose order is not divisibile by p are the main examples .

Then G may be thought of as acting on the space of forms of degree 1 in K[x1, . . . , xn],
and the action extends to an action on the polynomial ring R itself. One may form the
ring of invariants RG = {f ∈ R : γ(f) = f for all γ ∈ G}. When G is linearly reductive,
this group turns out to be finitely generated. Beyond that:

Theorem. With hypothesis as in the paragraph above, RG is a Cohen-Macaulay ring.


