
Math 615: Lecture of January 31, 2007

Invariant Theory

We want to present some examples from classical invariant theory to which one can
apply the Theorem on the Cohen-Macaulay property for rings of invariants stated at the
end of the Lecture Notes of January 29, as well as a strong form, stated below.

For simplicity, in this discussion we assume that we are working over an algebraically
closed field K when describing what is meant by a linear algebraic group and an action
of such a group: this minimizes prerequisites from algebraic geometry. However, the
statements identifying the rings of invariants of various group actions are all valid over
any infinite field, and the statements about rings being Cohen-Macaulay are valid over any
field. In fact, we note the following result:

Proposition. If R is a finitely generated graded K-algebra over a field K with R0 = K,
then R is Cohen-Macaulay if and only if L⊗K R is Cohen-Macaulay.

The proof is left as an exercise: see problem 4(d). of Problem Set #2.

Next note that if X ⊆ As
K is a closed algebraic set and f ∈ K[X] is a regular function on

X, the open subset Xf = X − V (f) has the structure of a closed algebraic set embedded
in As+1

K : if X = V (I), then Xf is in bijective correspondence with V (I, fxs+1 − 1) ⊆
As+1

K . The coordinate ring of Xf is easily shown to be K[X]f , and the inclusion Xf ⊆ X
corresponds to the natural K-algebra homomorphism K[X] → K[X]f .

Therefore, if we identify n × n matrices over K with An2
and D denotes the determi-

nant function, GL(n, K) may be identified with An2

D , and so has the structure of a closed
algebraic set. For any finite-dimensional vector space V over K, by choosing a basis we
may identify the group GLK(V ) of K-linear automorphisms of V with GL(r, K), where
r = dim(V ), and so GL(V ) acquires the structure of an algebraic set. Since conjugation
by a fixed invertible r× r matrix is an automorphism of GL(r, K) as an algebraic set, the
algebraic set structure on GL(V ) is independent of the choice of the K-vector space basis
for V .

By a representation of the linear algebraic group G we mean a group homomorphism
G → GLK(V ) that is also a K-regular map of closed algebraic sets. The representation
evidently gives an action of G on V , and may also be described by giving a K-regular
map G × V → V satisfying the conditions for a group action. A representation is called
irreducible if no proper nonzero subspace W of V is stable under the action of V .

As was mentioned in the Lecture of January 29, G is called linearly reductive if every
representation is completely reducible, which means that it is a direct sum of irreducible
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representations. As was also mentioned in that lecture, the general linear group and the
special linear group are examples in characteristic 0. The multiplciative group of the field
is GL(1,K): finite products of copies of the multiplicative group of the field (such groups
are called algebraic tori) are examples in all characteristics.

In fact, one has the following more general statement:

Theorem. Let G be a linearly reductive linear algebraic group over K acting on the vector
space of forms of degree one in the polynomial ring R = K[x1, . . . , xn]. The action extends
uniquely to an action of G on R by degree-preserving K-algebra automorphisms. For this
action, the ring of invariants RG is Cohen-Macaulay.

The proof is deferred for a while. One of the surprising aspects of this Theorem is that
the most interesting examples are in characteristic 0, but the first proof [M. Hochster and
J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-
Macaulay, Advances in Math. 13 (1974) 115–175] of the result and, by far, the simplest
proof [M. Hochster and C. Huneke, Tight closure, invariant theory, and the Briançon-Skoda
theorem, Amer. J. Math. 3 (1990) 31–116] use reduction to characteristic p > 0.

In classical invariant theory there were two fundamental problems. The first was to
determine generators for the ring of invariants of a group action. The second was to give
generators for the ideal of relations on these generating invariants. See [Hermann Weyl,
The Classical Groups, Princeton Univ. Press, Princeton, 1946] for the solution of several
important problems of this type. In the light of the Theorem above, the rings of invariants
studied classically provide many interesting examples of Cohen-Macaulay rings.

We want to consider some of these examples. We first introduce two notations. If X is a
matrix with entries in a K-algebra R, we denote by It(X) the ideal of R generated by the
t × t minors (determinants of t × t submatrices) of X, and by K[X] the K-subalgebra of
R generated by the entries of X. More generally, we denote by K[X/t] the K-subalgebra
of R generated by the t× t minors of X.

In the three examples just below, the field is assumed to be infinite.

First example. Let G = K − {0} ∼= GL(1,K) act on the polynomial ring

R = K[x1, . . . , xm, y1, . . . , yn]

in m + n variables so that if a ∈ G, xi 7→ xja
−1 and yj 7→ ayj for all i and j. It is easy to

verify that the ring of invariants is

K[xiyj : 1 ≤ i ≤ m, 1 ≤ j ≤ n].

(It is certainly clear that these elements are invariant: xia
−1ayj = xiyj .) If U =

(
uij

)
is an m × n matrix of new indeterminates, we can map K[U ] � RG = K[xiyj : i, j] as
K-algebras by sending uij 7→ xiyj . Note that

(xiyj)(xi′yj′) = (xiyj′)(xi′yj),
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which shows that I2(U) is in the kernel. In fact, RG ∼= K[U ]/I2(U). This ring is Cohen-
Macaulay in all characteristics.

Second example. We can generalize the preceding example as follows. Let t, m, n be
positive integers with t ≤ min{m, n}, let X =

(
xij

)
be an m× t matrix of indeterminates

over K, and let Y =
(
yjk

)
be a t× n matrix of indeterminates over K. Let G = GL(t, K)

act on K[X, Y ] as follows: if A ∈ G, A acts by sending the entries of X to the entries of
XA−1 and the entries of Y to the entries of AY . The preceding example is the case where
t = 1. It is proved, for example, in Weyl’s book that the ring of invariants is generated
by the entries of the m× n product matrix XY . These entries are the scalar products of
the various rows of X with the various columns of Y . It is clear that then entries of XY
are invariant, because (XA−1)(AY ) = XY . Again, one can map K[U ] � K[XY ] = RG

as K-algebras, where U is an m× n matrix of new indetermnates, and it is easy to show
that the ideal generated by the (t + 1)× (t + 1) size minors of U is in the kernel. It turns
out that, in fact, RG = K[XY ] ∼= K[U ]/It+1(U). The Theorem above then implies that
K[U ]/It+1(U) is Cohen-Macaulay in characteristic 0. (This is true in all characteristics:
see [M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic
perfection of determinantal loci, Amer. J. Math. 93 (1971) 1020–1058].)

Third example. Let X be an n × s matrix of indeterminates over the field K, where
1 ≤ n ≤ s, and let G = SL(n, K) act on on K[X] be sending the entries of X to the
corresponding entries of AX. Note that if C denotes any column of X, the entries of C
are sent to the corresponding entries of AC. It follows that if Y is any n × k submatrix
of X (so that Y consists of a set of columns of X), then the entries of Y are sent to
the corresponding entries of AY . Consequently, if Y is any n × n submatrix of X, then
det(AY ) = det(A) det(Y ) = det(Y ), since the elements of SL(n, K) are precisely the n×n
matrics with determinant 1. In this case RG = K[X/n], the ring generated over K by the(

s

n

)
n× n minors of X, the so-called maximal minors of X. The relations on the minors

are generated by certain standard quadratic relations called the Plücker relations.1

By the Theorem above, these rings K[X]G = K[X/n] are Cohen-Macaulay in char-
acteristic 0. (This is also true in characteristic p > 0: see for example, [M. Hochster,

1These rings are well-known in algebraic geometry: the set of n-dimensional vector subspaces of Ks

has the structure of a projective algebraic variety, which can be embedded in a projective space over K of

dimension
(

s
n

)
−1. The idea is that given a subspace V , one can choose an s×n matrix M whose rows are

a basis for V : the
(

s
n

)
minors of this matrix do not all vanish, and satisfy the Plücker relations. Therefore

they give a point in the algebraic set G defined by the Plücker relations. G turns out to be irreducible. If

one changes the matrix, the new matrix can be gotten from M by multiplying on the left by an invertible
n×n matrix A: each of the n×n minors of AM is the product of det(A) with the corresponding minor of

M , and so one gets the same point in projective space no matter which matrix whose rows are a basis for

V is chosen. It can be shown that every point of G can be obtained in this way from a unique subspace of
Ks of dimension n, so that this gives a bijective correspondence between the projective variety G and the

set of n-dimensional vector subspaces of Ks. The projective variety V is called the Grassmann variety or

Grassmannian.
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Grassmannians and their Schubert subvarieties are arithmetically Cohen-Macaulay, J. of
Algebra 25 (1973) 40–57]. They are also known to be unique factorization domains.

We shall also deduce from the Theorem stated above that an integrally closed ring
that is a subring of Kx1, . . . , xn] generated by monomials is Cohen-Macaulay. In general,
normality is far from sufficient for the Cohen-Macaulay property. The proof we give will
depend on showing that any such ring is isomorphic with a ring of invariants of an algebraic
torus, i.e., a product of copies of GL(1,K), acting on a polynomial ring. Cf. [M. Hochster,
Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes,
Annals of Math. 96 (1972) 318–337].

Monomial submodules and the colon operation

Our next objective is to use revlex to give a criterion for when a sequence of indeter-
minates is a regular sequence on a module. We need some preliminaries concerning the
behavior of monomial submodules and the colon operation.

If M ⊆ F are any two R-modules and J is an ideal of R, we define

M :F J = {f ∈ M : Jf ⊆ M}.

When J = uR is the principal, we may write M :F u instead of M :F uR.

When u is a nonzerodivisor (we shall typically be in this situation, for u will almost
always be a nonzero element of a polynomial ring in the sequel), we have the following:

(∗) u(M :F u) = M ∩ uF and so M :F u =
1
u

(M ∩ uF ).

In fact, uf ∈ M means precisely that f ∈ M :F u, and then f =
1
u

uf is uniquely
determined.

We proved early that for monomial submodules and ideals, intersection distributes over
sum. Hence (∗) yields:

Proposition. Let R = K[x1, . . . , xn] be a polynomial ring over the field K, and F a
fintely generated free module. Let M1, . . . ,Mk be monomial submodules of F , and let
µ ∈ R be a monomial. Then

(M1 + · · ·+ Mk) :F µ = (M1 :F µ) + · · ·+ (Mk :F µ). �

This gives a very easy way of calculating M :F µ when M is a monomial module. If
νjeij

is a typical generator, M is the sum of the modules νjeij
R. It follows that M :F µ

is the sum of the modules νjeij R :F µ. Each of these is simply (νjR :R µ)eij . Thus, we
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have reduced to calculating νR :R µ when ν and µ are monomials in R. Each of these is
a cyclic module generated by one monomial, namely ν/GCD(µ, ν).

An alternative description is as follows: if a, b ∈ N, let a −· b = max{a − b, 0}, and
if α = (a1, . . . , an) and β = (b1, . . . , bn) ∈ Nn, let γ = (a1 −· b1, . . . , an −· bn). Then
xαR : xβ = xγR.

It is quite easy to see that a monomial µ is a nonzero divisor on F/M , where M is
monomial, if and only if the variables occurring in µ do not occur in any minimal generator
of M . This implies that µ1, . . . , µh is a regular sequence on F/M if and only the variables
occurring in µi do not occur in any other µj nor in any minimal generator of M .

We shall next aim to show that for reverse lexicographic order on F , if M ⊆ F is
graded, xk+1, . . . , xn is a regular sequence on F/M if and only if it is a regular sequence
on F/in(M).


