
Math 615: Lecture of February 2, 2007

Regular sequences in the monomial case

We want to analyze what it means for a sequence of monomials µ1, . . . , µk in R =
K[x1, . . . , xn] to be a regular sequence on F/M when F is a finitely generated free R-
module and M is a monomial submodule of F .

First note that, quite generally, f ∈ R is not a zerodivisor on Q/N if and only if
N :Q f = N . This says precisely that fu ∈ N if and only if u ∈ N . This yields:

Proposition. Let R = K[x1, . . . , xn] and let µ1, . . . , µk be a sequence of monomials
in R. Let M be a monomial submodule of the finitely generated free module F . Then
µ1, . . . , µk is a regular sequence on F/M if and only if no variable that occurs in µi occurs
in another µj, nor in any of the minimal monomial generators of M .

Proof. Since M = I1e1⊕· · · Ises where the Ij are monomial ideals, we reduce at once to the
case where M = I is a monomial ideal: call the minimal monomial generators ν1, . . . , νh.
We use induction on k. If k = 1, note that if µ1 shares a variable xt with νi then νi :R µ1

is generated by a monomial that divides νi and has a smaller exponent on xt then νi does.
This element is not in I, by the minimality of νi, but is in I : µ1. Hence the condition
that µ1 not involve a variable occurring in any νi is necessary. On the other hand, if that
is true then νi :R µ = νiR for every i, 1 ≤ i ≤ h, and since colon distributes over sum we
have that

I :R µ1 = (
h∑

i=1

νiR) :R µ1 =
h∑

i=1

(νiR :R µ1) =
h∑

i=1

νiR = I,

as required. Moreover it is clear that ν1, . . . , νh, µ1 are minimal generators for I + µ1R.
The inductive step is then an application of the case where k = 1. �

Compatible orders and a sufficient condition for regularity of a sequence

Given a polynomial ring K[x1, . . . , xn] over a field K and a monomial order > on a
finitely generated R-free module F with ordered free basis e1, . . . , es, recall that for every
t, 1 ≤ t ≤ s, there is a monomial order >t on R defined by the condition µ > µ′ precisely
if µet > µ′et. Moreover, if g ∈ R − {0} and f ∈ F − {0} are such that in(f) involves et,
then

(†) in(gf) = in>t
(g)in(f).

See the second page of the Lecture Notes of January 19. We shall say that a monomial
order >R on R is compatible with a given monomial order > on F if all of the orders >t
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are the same, and agree with >R. It follows at once that if >R and > on F are compatible,
then for all g ∈ R− {0} and f ∈ F − {0},

(††) in(fg) = in>R
(g)in(f).

In fact, condition (††) is easily seen to be equivalent to compatibility. In working with
compatible monomial orders, we typically use the same symbol > for both.

If two of the >t are distinct, which can happen, there is no compatible order on R.
If there is a compatible order on R, it is unique. The standard method of extending a
monomial order on R to a monomial order on F (i.e., µei > µ′ej if µ > µ′ or µ = µ′ and
i < j) always produces a monomial order on F with which the original monomial order is
compatible. In particular, revlex on F is compatible with revlex on R. In the sequel, when
F is graded so that its generators do not necessarily all have degree 0, we give a slightly
different way of extending revlex to F — but it is still compatible with revlex on R.

We next observe the following sufficient (but not necessary) condition for elements of
R to be a regular sequence on F/M . Notice that we are not assuming that M is graded,
nor that > is revlex.

Theorem. Let R = K[x1, . . . , xn], f1, . . . , fk ∈ R and let M be any submodule of a
finitely generated free R-module F . Suppose that we have compatible monomial orders on R
and F . If in(f1), . . . , in(fk) form a regular sequence on in(M), then f1, . . . , fk is a regular
sequence on M and, for 1 ≤ i ≤ k, in

(
M+(f1, . . . , fi)F

)
= in(M)+

(
in(f1), . . . , in(fi)

)
F .

Proof. We use induction on k, and we consequently can reduce at once to the case where
k = 1. We write f for f1, and we must show that if in(f) is a not a zerodivisor on F/in(M)
then (1) f is not a zerodivisor on F/M and (2) in(M + fM) = in(M) + in(f)F .

If (1) fails we have fu ∈ v ∈ M with u /∈ M , and we can choose such an example with
in(u) minimum, since the monomial order on F is a well-ordering. By the compatibility
of orders, in(fu) = in(f)in(u) = in(v) ∈ in(M), and since in(f) is not a zerodivisor on
in(M), we have that in(u) ∈ in(M), so that we can choose u′ ∈ M with in(u) = in(u′).
Then fu and fu′ are both in M , and so f(u− u′) ∈ M . But the initial terms of u and u′

cancel, so that u = u′ or in(u − u′) < in(u). The latter contradicts the minimality of the
choice of u, and the former shows that u ∈ M .

To prove (2), note that in(M) + in(f)F ⊆ in(M + fF ) is obvious, and so we need only
prove the opposite inclusion. If it fails, we can choose u + fv ∈ M + fF where u ∈ M ,
v ∈ F , such that in(u+fv) /∈ in(M)+ in(f)F , and, again, we can make this choice so that
in(v) is minimum (note that v cannot be 0). We consider two cases.

First case: in(fv) ∈ in(M). Then in(f)in(v) ∈ in(M) and, since in(f) is not a ze-
rodivisor on in(M), we have that in(v) ∈ in(M) and we can choose v′ ∈ M such that
in(v) = in(v′). Then u + fv = (u + fv′) + f(v − v′) still has initial form not in M + fV ,
and we have u + fv′ ∈ M while v − v′ has smaller initial form than v, a contradiction.

Second case: in(fv) /∈ in(M). In this case, in(fv) and in(u) ∈ in(M) cannot cancel,
and so one of them must be in(u + fv). But then either in(u + fv) = in(u) ∈ in(M) or
in(u + fv) = in(fv) = in(f)in(v) ∈ in(f)F , as required. �
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Special properties of reverse lexicographic order and a converse result

Throughout this section, R = K[x1, . . . , xn] is a polynomial ring over K considered with
reverse lexicographic order, F is a finitely generated graded free R-module with ordered
free homogeneous basis e1, . . . , es, also with reverse lexicographic order, which we define as
follows. In the graded case we still want revlex to define total degree. Therfore, we define
µei >revlex µ′ej to mean either that (1) deg(µei) > deg(µ′ej) or (2) deg(µei) = deg(µ′ej)
and µ < µ′ in lexicographic order for the variables ordered so that

xn > xn−1 > · · · > x2 > x1,

or (3) deg(µei) = deg(µ′ej), µ = µ′, and i < j.

Let M be a graded submodule of F . We already noted at the end of the Lecture of
January 31 that xk+1, . . . , xn is a regular sequence on F/M if and only if xk+1, . . . , xn

is a regular sequence on F/in(M), which we know is equivalent to the condition that no
minimal monomial generator of in(M) invovles any of the variables xk+1, . . . , xn. The
preceding Theorem already shows that the condition is sufficient. We next want to prove
that it is necessary as well. The following very easy result is a key fact about revlex that
we shall use repeatedly.

Lemma. Let notation be as above and let u ∈ F − {0} be a homogeneous element. Then
for every positive integer h, xh

n divides u if and only if xh
n divides in(u).

Proof. “Only if” is obvious. The “if” part is immediate from the definition: since all terms
have the same degree, any term not divisible by xh

n is strictly larger than any term divisible
by xh

n. �

Proposition. Let notation be as above, with M ⊆ F graded, and let g1, . . . , gr be a
Gröbner basis for M consisting of homogeneous elements. Let k be a positive integer.

(a) in(M + xh
nF ) = in(M) + xh

nF , and g1, . . . , gr, xk
ne1, . . . , xk

nes is a Gröbner basis
for M + xh

nF .

(b) in(M :F xh
n) = in(M) :F xh

n. Moreover, if for 1 ≤ j ≤ r, tj denotes the greatest
integer in the interval [0, h] such that xtj |gj and hj = gj/x

tj
n , then h1, . . . , hr is a Gröbner

basis for M :F xh
n.

Proof. (a) Clearly, in(M) + xh
nF ⊆ in(M + xh

n)F . Now consider in(u + xh
nf) where u ∈ U

and f ∈ F . In revlex, the homogeneous component of an element of highest degree has the
same initial form as the element, and so we may assume that u + xh

nf is homogeneous. If
the initial term is divisible by xh

n the result is proved. If not, it must be a term of u, and xn

must occur with a strictly smaller exponent than h. All other terms of u must be smaller:
either they are not divisible by xh

n and persist in u+xh
nf , or they are divisible by xh

n, which
forces them to be smaller than u in revlex, by the definitiion of revlex. The statement
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about the Gröbner basis is immediate, since the specified elements are in M + xh
nF and

their initial terms span in(M) + xh
nF .

(b) We have that a monomial ν ∈ in(M :F xh
n) iff and xhν ∈ in(M) iff xhv = in(w) with

w ∈ M homogeneous. But xh
n divides w if and only xh

n divides in(w), by the Lemma above,
and the result is immediate. We then have that in(M) is the span of the in(gj)R : Fxh

n,
and these are the same as the in(gj/x

tj

j )R. Again, we are using that a power of xn divides
gj if and only if it divides in(gj). �

We can now prove:

Theorem. Let notation be as above, with M ⊆ F graded, and use revlex order on F and
R. Then xk+1, . . . , xn is a regular sequence on F/M if and only if it is a regular sequence
on F/in(M).

Proof. Since regular sequences are permutable in the graded case, we may show instead
the same result for xn, . . . , xk+1. We already know the “if” part. Now suppose that xn

is not a zerodivisor on F/M . Then M :F xn = M , and so

in(M) = in(M :F xn) = in(M) : Fxn = in(M).

The proof is now completed by induction: when we work mod xn, R is replaced by
R/xnR = K[x1, . . . , xn−1], F by F/xnF , and M by M/xnM ↪→ F/xnF , since xn is not
a zerodivisor on M/xnM . The hypothesis is preserved because of the preceding Proposi-
tion. �


