Math 615: Lecture of February 2, 2007

Regular sequences in the monomial case

We want to analyze what it means for a sequence of monomials μ_1, \ldots, μ_k in $R = K[x_1, \ldots, x_n]$ to be a regular sequence on F/M when F is a finitely generated free R-module and M is a monomial submodule of F.

First note that, quite generally, $f \in R$ is not a zerodivisor on Q/N if and only if $N :_Q f = N$. This says precisely that $fu \in N$ if and only if $u \in N$. This yields:

Proposition. Let $R = K[x_1, \ldots, x_n]$ and let μ_1, \ldots, μ_k be a sequence of monomials in R. Let M be a monomial submodule of the finitely generated free module F. Then μ_1, \ldots, μ_k is a regular sequence on F/M if and only if no variable that occurs in μ_i occurs in another μ_i , nor in any of the minimal monomial generators of M.

Proof. Since $M = I_1 e_1 \oplus \cdots I_s e_s$ where the I_j are monomial ideals, we reduce at once to the case where M = I is a monomial ideal: call the minimal monomial generators ν_1, \ldots, ν_h . We use induction on k. If k = 1, note that if μ_1 shares a variable x_t with ν_i then $\nu_i :_R \mu_1$ is generated by a monomial that divides ν_i and has a smaller exponent on x_t then ν_i does. This element is not in I, by the minimality of ν_i , but is in $I : \mu_1$. Hence the condition that μ_1 not involve a variable occurring in any ν_i is necessary. On the other hand, if that is true then $\nu_i :_R \mu = \nu_i R$ for every $i, 1 \le i \le h$, and since colon distributes over sum we have that

$$I:_{R} \mu_{1} = \left(\sum_{i=1}^{h} \nu_{i}R\right):_{R} \mu_{1} = \sum_{i=1}^{h} \left(\nu_{i}R:_{R} \mu_{1}\right) = \sum_{i=1}^{h} \nu_{i}R = I,$$

as required. Moreover it is clear that $\nu_1, \ldots, \nu_h, \mu_1$ are minimal generators for $I + \mu_1 R$. The inductive step is then an application of the case where k = 1. \Box

Compatible orders and a sufficient condition for regularity of a sequence

Given a polynomial ring $K[x_1, \ldots, x_n]$ over a field K and a monomial order > on a finitely generated R-free module F with ordered free basis e_1, \ldots, e_s , recall that for every $t, 1 \leq t \leq s$, there is a monomial order $>_t$ on R defined by the condition $\mu > \mu'$ precisely if $\mu e_t > \mu' e_t$. Moreover, if $g \in R - \{0\}$ and $f \in F - \{0\}$ are such that in(f) involves e_t , then

(†)
$$\operatorname{in}(gf) = \operatorname{in}_{>_t}(g)\operatorname{in}(f).$$

See the second page of the Lecture Notes of January 19. We shall say that a monomial order $>_R$ on R is *compatible* with a given monomial order > on F if all of the orders $>_t$

are the same, and agree with $>_R$. It follows at once that if $>_R$ and > on F are compatible, then for all $g \in R - \{0\}$ and $f \in F - \{0\}$,

$$(\dagger\dagger) \quad \operatorname{in}(fg) = \operatorname{in}_{>_{B}}(g)\operatorname{in}(f).$$

In fact, condition $(\dagger\dagger)$ is easily seen to be equivalent to compatibility. In working with compatible monomial orders, we typically use the same symbol > for both.

If two of the $>_t$ are distinct, which can happen, there is no compatible order on R. If there is a compatible order on R, it is unique. The standard method of extending a monomial order on R to a monomial order on F (i.e., $\mu e_i > \mu' e_j$ if $\mu > \mu'$ or $\mu = \mu'$ and i < j) always produces a monomial order on F with which the original monomial order is compatible. In particular, review on F is compatible with review on R. In the sequel, when F is graded so that its generators do not necessarily all have degree 0, we give a slightly different way of extending review to F — but it is still compatible with review on R.

We next observe the following sufficient (but not necessary) condition for elements of R to be a regular sequence on F/M. Notice that we are not assuming that M is graded, nor that > is revlex.

Theorem. Let $R = K[x_1, \ldots, x_n]$, $f_1, \ldots, f_k \in R$ and let M be any submodule of a finitely generated free R-module F. Suppose that we have compatible monomial orders on R and F. If $in(f_1), \ldots, in(f_k)$ form a regular sequence on in(M), then f_1, \ldots, f_k is a regular sequence on M and, for $1 \le i \le k$, $in(M+(f_1, \ldots, f_i)F) = in(M)+(in(f_1), \ldots, in(f_i))F$.

Proof. We use induction on k, and we consequently can reduce at once to the case where k = 1. We write f for f_1 , and we must show that if in(f) is a not a zerodivisor on F/in(M) then (1) f is not a zerodivisor on F/M and (2) in(M + fM) = in(M) + in(f)F.

If (1) fails we have $fu \in v \in M$ with $u \notin M$, and we can choose such an example with in(u) minimum, since the monomial order on F is a well-ordering. By the compatibility of orders, $in(fu) = in(f)in(u) = in(v) \in in(M)$, and since in(f) is not a zerodivisor on in(M), we have that $in(u) \in in(M)$, so that we can choose $u' \in M$ with in(u) = in(u'). Then fu and fu' are both in M, and so $f(u - u') \in M$. But the initial terms of u and u' cancel, so that u = u' or in(u - u') < in(u). The latter contradicts the minimality of the choice of u, and the former shows that $u \in M$.

To prove (2), note that $in(M) + in(f)F \subseteq in(M + fF)$ is obvious, and so we need only prove the opposite inclusion. If it fails, we can choose $u + fv \in M + fF$ where $u \in M$, $v \in F$, such that $in(u + fv) \notin in(M) + in(f)F$, and, again, we can make this choice so that in(v) is minimum (note that v cannot be 0). We consider two cases.

First case: $in(fv) \in in(M)$. Then $in(f)in(v) \in in(M)$ and, since in(f) is not a zerodivisor on in(M), we have that $in(v) \in in(M)$ and we can choose $v' \in M$ such that in(v) = in(v'). Then u + fv = (u + fv') + f(v - v') still has initial form not in M + fV, and we have $u + fv' \in M$ while v - v' has smaller initial form than v, a contradiction.

Second case: $\operatorname{in}(fv) \notin \operatorname{in}(M)$. In this case, $\operatorname{in}(fv)$ and $\operatorname{in}(u) \in \operatorname{in}(M)$ cannot cancel, and so one of them must be $\operatorname{in}(u + fv)$. But then either $\operatorname{in}(u + fv) = \operatorname{in}(u) \in \operatorname{in}(M)$ or $\operatorname{in}(u + fv) = \operatorname{in}(fv) = \operatorname{in}(f)\operatorname{in}(v) \in \operatorname{in}(f)F$, as required. \Box

Special properties of reverse lexicographic order and a converse result

Throughout this section, $R = K[x_1, \ldots, x_n]$ is a polynomial ring over K considered with reverse lexicographic order, F is a finitely generated graded free R-module with ordered free homogeneous basis e_1, \ldots, e_s , also with reverse lexicographic order, which we define as follows. In the graded case we still want revlex to define total degree. Therfore, we define $\mu e_i >_{\text{revlex}} \mu' e_j$ to mean either that (1) $\deg(\mu e_i) > \deg(\mu' e_j)$ or (2) $\deg(\mu e_i) = \deg(\mu' e_j)$ and $\mu < \mu'$ in lexicographic order for the variables ordered so that

$$x_n > x_{n-1} > \cdots > x_2 > x_1,$$

or (3) $\deg(\mu e_i) = \deg(\mu' e_j), \ \mu = \mu', \ \text{and} \ i < j.$

Let M be a graded submodule of F. We already noted at the end of the Lecture of January 31 that x_{k+1}, \ldots, x_n is a regular sequence on F/M if and only if x_{k+1}, \ldots, x_n is a regular sequence on F/in(M), which we know is equivalent to the condition that no minimal monomial generator of in(M) involves any of the variables x_{k+1}, \ldots, x_n . The preceding Theorem already shows that the condition is sufficient. We next want to prove that it is necessary as well. The following very easy result is a key fact about review that we shall use repeatedly.

Lemma. Let notation be as above and let $u \in F - \{0\}$ be a homogeneous element. Then for every positive integer h, x_n^h divides u if and only if x_n^h divides in(u).

Proof. "Only if" is obvious. The "if" part is immediate from the definition: since all terms have the same degree, any term not divisible by x_n^h is strictly larger than any term divisible by x_n^h . \Box

Proposition. Let notation be as above, with $M \subseteq F$ graded, and let g_1, \ldots, g_r be a Gröbner basis for M consisting of homogeneous elements. Let k be a positive integer.

(a) $\operatorname{in}(M + x_n^h F) = \operatorname{in}(M) + x_n^h F$, and $g_1, \ldots, g_r, x_n^k e_1, \ldots, x_n^k e_s$ is a Gröbner basis for $M + x_n^h F$.

(b) $\operatorname{in}(M :_F x_n^h) = \operatorname{in}(M) :_F x_n^h$. Moreover, if for $1 \leq j \leq r$, t_j denotes the greatest integer in the interval [0,h] such that $x^{t_j}|g_j$ and $h_j = g_j/x_n^{t_j}$, then h_1, \ldots, h_r is a Gröbner basis for $M :_F x_n^h$.

Proof. (a) Clearly, $in(M) + x_n^h F \subseteq in(M + x_n^h)F$. Now consider $in(u + x_n^h f)$ where $u \in U$ and $f \in F$. In revlex, the homogeneous component of an element of highest degree has the same initial form as the element, and so we may assume that $u + x_n^h f$ is homogeneous. If the initial term is divisible by x_n^h the result is proved. If not, it must be a term of u, and x_n must occur with a strictly smaller exponent than h. All other terms of u must be smaller: either they are not divisible by x_n^h and persist in $u + x_n^h f$, or they are divisible by x_n^h , which forces them to be smaller than u in revlex, by the definition of revlex. The statement

about the Gröbner basis is immediate, since the specified elements are in $M + x_n^h F$ and their initial terms span in $(M) + x_n^h F$.

(b) We have that a monomial $\nu \in in(M :_F x_n^h)$ iff and $x^h \nu \in in(M)$ iff $x^h v = in(w)$ with $w \in M$ homogeneous. But x_n^h divides w if and only x_n^h divides in(w), by the Lemma above, and the result is immediate. We then have that in(M) is the span of the $in(g_j)R : Fx_n^h$, and these are the same as the $in(g_j/x_j^{t_j})R$. Again, we are using that a power of x_n divides g_j if and only if it divides $in(g_j)$. \Box

We can now prove:

Theorem. Let notation be as above, with $M \subseteq F$ graded, and use revlex order on F and R. Then x_{k+1}, \ldots, x_n is a regular sequence on F/M if and only if it is a regular sequence on F/in(M).

Proof. Since regular sequences are permutable in the graded case, we may show instead the same result for x_n, \ldots, x_{k+1} . We already know the "if" part. Now suppose that x_n is not a zerodivisor on F/M. Then $M :_F x_n = M$, and so

$$in(M) = in(M :_F x_n) = in(M) : Fx_n = in(M).$$

The proof is now completed by induction: when we work mod x_n , R is replaced by $R/x_n R = K[x_1, \ldots, x_{n-1}]$, F by $F/x_n F$, and M by $M/x_n M \hookrightarrow F/x_n F$, since x_n is not a zerodivisor on $M/x_n M$. The hypothesis is preserved because of the preceding Proposition. \Box