Math 615: Lecture of February 2, 2007

Regular sequences in the monomial case

We want to analyze what it means for a sequence of monomials py, ...,y in R =
K[z, ... ,x,] to be a regular sequence on F/M when F' is a finitely generated free R-
module and M is a monomial submodule of F.

First note that, quite generally, f € R is not a zerodivisor on /N if and only if
N :g f = N. This says precisely that fu € N if and only if v € N. This yields:

Proposition. Let R = Kz, ... ,x,] and let py, ..., pux be a sequence of monomials
in R. Let M be a monomial submodule of the finitely generated free module F. Then
W1y - - Mk 1S a reqular sequence on F'/M if and only if no variable that occurs in p; occurs

in another p;, nor in any of the minimal monomial generators of M.

Proof. Since M = I1e1®- - - I;e; where the I; are monomial ideals, we reduce at once to the
case where M = I is a monomial ideal: call the minimal monomial generators vy, ..., vp.
We use induction on k. If k£ = 1, note that if u; shares a variable x; with v; then v; :p 1y
is generated by a monomial that divides v; and has a smaller exponent on x; then r; does.
This element is not in I, by the minimality of v;, but is in I : pu;. Hence the condition
that 1 not involve a variable occurring in any v; is necessary. On the other hand, if that
is true then v; :p u = ;R for every ¢, 1 <4 < h, and since colon distributes over sum we
have that

h h h
I:ppu= (ZVZ'R) ‘R M1 = Z(ViR ‘R M) = ZVZ-R =1,
i=1 i=1 i=1
as required. Moreover it is clear that vy, ... ,vp, p1 are minimal generators for I + pq R.

The inductive step is then an application of the case where £k =1. [

Compatible orders and a sufficient condition for regularity of a sequence

Given a polynomial ring K[zy, ... ,z,] over a field K and a monomial order > on a
finitely generated R-free module F' with ordered free basis e, ... ,es, recall that for every
t, 1 <t < s, there is a monomial order >; on R defined by the condition u > u’ precisely
if pe; > p'es. Moreover, if g € R — {0} and f € F — {0} are such that in(f) involves e,
then

() in(gf) = ins,(g)in(f).
See the second page of the Lecture Notes of January 19. We shall say that a monomial

order >g on R is compatible with a given monomial order > on F if all of the orders >;
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are the same, and agree with >p. It follows at once that if > and > on F' are compatible,
then for all g € R — {0} and f € F — {0},

(1) in(fg) = ins , (9)in(f).
In fact, condition (1) is easily seen to be equivalent to compatibility. In working with
compatible monomial orders, we typically use the same symbol > for both.

If two of the >; are distinct, which can happen, there is no compatible order on R.
If there is a compatible order on R, it is unique. The standard method of extending a
monomial order on R to a monomial order on F' (i.e., pe; > p'e; if p > p or p =/ and
i < j) always produces a monomial order on F' with which the original monomial order is
compatible. In particular, revlex on F'is compatible with revlex on R. In the sequel, when
F' is graded so that its generators do not necessarily all have degree 0, we give a slightly
different way of extending revlex to F' — but it is still compatible with revlex on R.

We next observe the following sufficient (but not necessary) condition for elements of
R to be a regular sequence on F'/M. Notice that we are not assuming that M is graded,
nor that > is revlex.

Theorem. Let R = Klx1, ..., 2y, fi,---,fx € R and let M be any submodule of a
finitely generated free R-module F'. Suppose that we have compatible monomial orders on R
and F. Ifin(f1), ..., in(fx) form a reqular sequence onin(M), then fi, ..., fi is a reqular
sequence on M and, for1 <i <k, in(M+(f1, ,fi)F) = in(M)+(in(f1), cee in(fi))F.

Proof. We use induction on k, and we consequently can reduce at once to the case where
k = 1. We write f for fi, and we must show that if in(f) is a not a zerodivisor on F/in(M)
then (1) f is not a zerodivisor on F'/M and (2) in(M + fM) = in(M) +in(f)F.

If (1) fails we have fu € v € M with u ¢ M, and we can choose such an example with
in(u) minimum, since the monomial order on F' is a well-ordering. By the compatibility
of orders, in(fu) = in(f)in(u) = in(v) € in(M), and since in(f) is not a zerodivisor on
in(M), we have that in(u) € in(M), so that we can choose v’ € M with in(u) = in(u’).
Then fu and fu' are both in M, and so f(u —u’) € M. But the initial terms of u and u’
cancel, so that u = «’ or in(u — ') < in(u). The latter contradicts the minimality of the
choice of u, and the former shows that u € M.

To prove (2), note that in(M) + in(f)F C in(M + fF) is obvious, and so we need only
prove the opposite inclusion. If it fails, we can choose u + fv € M + fF where u € M,
v € F, such that in(u+ fv) ¢ in(M) +in(f)F, and, again, we can make this choice so that
in(v) is minimum (note that v cannot be 0). We consider two cases.

First case: in(fv) € in(M). Then in(f)in(v) € in(M) and, since in(f) is not a ze-
rodivisor on in(M), we have that in(v) € in(M) and we can choose v € M such that
in(v) = in(v’'). Then v+ fv = (u+ fv') + f(v —v’) still has initial form not in M + fV,
and we have u + fv’ € M while v — v/ has smaller initial form than v, a contradiction.

Second case: in(fv) ¢ in(M). In this case, in(fv) and in(u) € in(M) cannot cancel,

and so one of them must be in(u + fv). But then either in(u + fv) = in(u) € in(M) or
in(u+ fv) =in(fv) = in(f)in(v) € in(f)F, as required. O



Special properties of reverse lexicographic order and a converse result

Throughout this section, R = K|z, ... , 2] is a polynomial ring over K considered with
reverse lexicographic order, F' is a finitely generated graded free R-module with ordered
free homogeneous basis e, ... , es, also with reverse lexicographic order, which we define as

follows. In the graded case we still want revlex to define total degree. Therfore, we define
pe; >reviex p'ej to mean either that (1) deg(pe;) > deg(p'e;) or (2) deg(ue;) = deg(pe;)
and p < p’ in lexicographic order for the variables ordered so that

Ty > Tp—1 > "> Tg > X1,

or (3) deg(ue;) = deg(p'e;), p =y, and i < j.
Let M be a graded submodule of F. We already noted at the end of the Lecture of

January 31 that zp41, ..., , is a regular sequence on F/M if and only if xgy1,..., @,
is a regular sequence on F'/in(M), which we know is equivalent to the condition that no
minimal monomial generator of in(M) invovles any of the variables zx41, ..., x,. The

preceding Theorem already shows that the condition is sufficient. We next want to prove
that it is necessary as well. The following very easy result is a key fact about revlex that
we shall use repeatedly.

Lemma. Let notation be as above and let w € F'— {0} be a homogeneous element. Then
for every positive integer h, x divides u if and only if z! divides in(u).

Proof. “Only if” is obvious. The “if” part is immediate from the definition: since all terms
have the same degree, any term not divisible by 2" is strictly larger than any term divisible
by . O

Proposition. Let notation be as above, with M C F graded, and let g1, ...,g. be a
Grobner basis for M consisting of homogeneous elements. Let k be a positive integer.

(a) in(M + 2" F) = in(M) + 2" F, and g1, ... ,g., vke1, ... ,2Fe, is a Grébner basis
for M + 2" F.

(b) in(M :p a') = in(M) :p 2. Moreover, if for 1 < j < r, t; denotes the greatest
integer in the interval [0, h] such that 2% |g; and h; = gj/mif, then hy, ..., h, is a Grébner
basis for M :p x.

Proof. (a) Clearly, in(M) + 2" F C in(M + z")F. Now consider in(u + x” f) where u € U
and f € F. In revlex, the homogeneous component of an element of highest degree has the
same initial form as the element, and so we may assume that u 4 2" f is homogeneous. If
the initial term is divisible by z” the result is proved. If not, it must be a term of u, and z,,
must occur with a strictly smaller exponent than h. All other terms of « must be smaller:
either they are not divisible by z” and persist in u+z” f, or they are divisible by 2", which
forces them to be smaller than u in revlex, by the definitiion of revlex. The statement
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about the Grébner basis is immediate, since the specified elements are in M + 2" F' and
their initial terms span in(M) + z" F.

(b) We have that a monomial v € in(M :p z!) iff and 2"v € in(M) iff 2"v = in(w) with
w € M homogeneous. But 2" divides w if and only #” divides in(w), by the Lemma above,
and the result is immediate. We then have that in(M) is the span of the in(g;)R : Fa!,
and these are the same as the in(g;/ xé-j )JR. Again, we are using that a power of z,, divides
g; if and only if it divides in(g;). O

We can now prove:

Theorem. Let notation be as above, with M C F' graded, and use revlex order on F' and

R. Then xpyq, ..., Ty 1S a reqular sequence on F/M if and only if it is a reqular sequence
on F/in(M).

Proof. Since regular sequences are permutable in the graded case, we may show instead
the same result for x,, ..., xx11. We already know the “if” part. Now suppose that x,,
is not a zerodivisor on F/M. Then M :p x,, = M, and so

in(M) =in(M :p x,,) =in(M) : Fz,, = in(M).

The proof is now completed by induction: when we work mod z,, R is replaced by
R/x,R = K|x1, ... ,xp_1]|, F by F/z,F, and M by M/x,M — F/x,F, since x,, is not
a zerodivisor on M /x, M. The hypothesis is preserved because of the preceding Proposi-
tion. [



