
Math 615: Lecture of February 5, 2007

Associated primes and primary decompostion for modules

Throughout this section R is a Noetherian ring and M an R-module. Recall that P is
an associated prime of M if, equivalently

(1) There is an injection R/P ↪→ M .

(2) There is an element u ∈ M such that AnnRu = P .

The set of associated primes of M is denoted Ass (M). Although we have made this
definition even when M need not be finitely generated, the rest of our study is restricted
to the case where M is Noetherian. Note that if M = 0, then Ass (M) = ∅. The converse
is also true, as we shall see below.

Proposition. Let M be a finitely generated R-module, where R is Noetherian

(a) If u 6= 0 is any element of M , one can choose s ∈ R such that AnnRsu is a prime
ideal P of R, and P ∈ Ass (M). In particular, if M 6= 0, then Ass (M) is nonempty.

(b) If ru = 0 where r ∈ R and u ∈ M − {0}, then one can choose s ∈ R such that
AnnRsu = P is prime. Note that r ∈ P . Consequently, the set of elements of R that
are zerodivisors on M is the union of the set of associated primes of M .

(c) If M 6= 0 it has a finite filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M in which all the
factors Mi/Mi−1 for 1 ≤ i ≤ n are prime cyclic modules, i.e., have the form R/Pi for
some prime ideal Pi of R.

(d) If N ⊆ M , then Ass (N) ⊆ Ass (M).

(e) If 0 → M ′ → M → M ′′ → 0 is exact, then Ass (M) ⊆ Ass (M ′) ∪Ass (M ′′).

(f) If 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M is a finite filtration of M , then

Ass (M) ⊆
n⋃

i=1

Ass (Mi/Mi−1).

(g) If one has a prime cyclic filtration of M as in part (c), Ass (M) ⊆ {P1, . . . , Pn}. In
particular, Ass (M) is finite.

(h) If W is a multiplicative system in R, Ass (W−1M) over W−1M is the set

{PW−1R : P ∈ Ass (M) and P ∩W = ∅}.

Proof. (a) The family of ideals {AnnRtu : t ∈ R and tu 6= 0} is nonempty since we may
take t = 1. Since R has ACC, it has a maximal element AnnRsu = P . We claim that P
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is prime. If ab ∈ P , then abu = 0. If a /∈ P , we must have b ∈ P , or else bu 6= 0 and has
annihilator containing P + aR strictly larger than P .

(b) This is immediate from (a). Note that it is obvious that if P = AnnRu with u ∈ M ,
then u 6= 0, and so every element of P is a zerodivisor on M .

(c) Choose a sequence of elements u1, u2, · · · in M recursively as follows. Choose u1 to
be any element of M such that AnnRu1 = P1 is prime. If u1, . . . , ui have been chosen and
Ru1+ · · ·+Rui = M , the seqeunce stops. If not, choose ui+1 ∈ M such that its image ui+1

in M/(Ru1 + · · ·+Rui) has annihilator Pi+1 that is prime. Let Mi = Ru1 + · · ·+Rui. The
sequence must stop, since the Mi are strictly increasing and M has ACC. By construction,
the factors are prime cyclic modules.

(d) This is obvious, since if R/P ↪→ N , we have a composite map R/P ↪→ N ↪→ M .

(e) Let u ∈ M be such that AnnRu = P , which means that Ru ∼= R/P . If Ru meets
M ′−{0}, say ru = v is a nonzero element of M ′, then AnnRv = P since v may be thought
of as a nonzero element of R/P , and P ∈ Ass (M ′). If Ru ∩M ′ = 0, then the composite
map R/P ∼= Ru ⊆ M � M ′′ is injective, and so P ∈ Ass (M ′′).

(f) We use induction on n. By part (e),

Ass (M) ⊆ Ass (Mn−1) ∪Ass (M/Mn−1)

and we may apply the induction hypothesis to 0 ⊆ M1 ⊆ · · · ⊆ Mn−1.

(g) This is immediate from part (f), since Ass (R/Pi) = {Pi}.

(h) If R/P ↪→ M and P does not meet W , then W−1R/PW−1R ↪→ W−1M . Conversely,
suppose that u/w0 ∈ W−1M where u ∈ M and w0 ∈ W has annihilator Q in W−1R. The
same is true for w0(u/w0) = u/1. We know that Q = PW−1R for some prime P of R
such that P ∩ W = ∅. Choose w ∈ W such that AnnRwu is maximal. If f ∈ P , we
know that fwu/1 is 0 in W−1M , and so we can choose v ∈ W such that vfwu = 0. But
AnnR(vwu) = AnnR(wu) by the maximality of AnnR(wu), so that we must have fwu = 0.
On the other hand, if fwu = 0 for f ∈ R, then f/1 ∈ Q, and so f is in the contraction of
Q to R, which is P . We have shown that P = AnnR(wu), and so P ∈ Ass (M). �

Remark. If M is nonzero module over a Noetherian domain R, then M is torsion-free over
R if and only if Ass (M) = {(0)}, since this says precisely that no nonzero element of R is
a zerodivisor on M .

Remark. There does not necessarily exist a filtration of M with prime cyclic factors in
which the only primes that occur are associated primes of M . For example, let R = K[x, y]
be the polynomial ring in two variables over a field K and let M = (x, y)R ⊆ R, which is an
ideal of R, but which we are viewing as a torsion-free R-module. Then Ass (M) = (0), but
there is no finite filtration of M in which every factor is R, since M needs two generators
but is rank one, and so is not free over R.

Recall that if M is finitely generated over a Noetherian ring R and I = AnnRM , then
P ∈ Supp (M), which means that MP 6= 0, if and only if I ⊆ P . The minimal primes of
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Supp (M) are the same as the minimal primes of I, and are called the minimal primes of
M .

Proposition. Let M be a finitely generated module over a Noetherian ring R, and let
I = AnnRM .

(a) Every associated prime of R/I is an associated prime of M .

(b) Every associated prime of M contains a minimal prime of M . Every minimal prime
of M is an associated prime of M , and so the minimal primes of M are the same as
the minimal primes of Ass (M).

(c) Let m be a maximal ideal of R. Then the following conditions on M are equivalent:

(1) Ass (M) = {m}.

(2) Supp (M) = {m}.

(3) M is killed by a power of m.

(4) M has a finite filtration in which all the factors are ∼= R/m.

Proof. (a) Let u1, . . . , uh generate M . The map R → Mh that sends r 7→ (ru1, . . . , ruh)
has kernel I, yielding an injection R/I ↪→ Mh. Since M ⊆ Mh, Ass (M) ⊆ Ass (Mh).
Since Mh has a finite filtration 0 ⊆ M ⊆ M ⊕M ⊆ · · · ⊆ Mh−1 ⊆ Mh in which all factors
are M , Ass (Mh) ⊆ Ass (M). Thus, Ass (R/I) ⊆ Ass (Mh) = Ass (M).

(b) Since R/P ↪→ M , we have that I kills R/P , and so I ⊆ P , so that P contains a
minimal prime of I. Every minimal prime of M is a minimal prime of R/I and, hence, an
associated prime of R/I. Therefore every minimal prime of M is an associated prime of
M by part (a). The final statement is now clear.

(c) (1) ⇔ (2) since in both cases m is the only minimal prime of M . This implies
that Rad (I) = m, and so mh ⊆ I for some h and (2) ⇒ (3). If mhM = 0, M has a finite
filtration 0 = mhM ⊆ mh−1M ⊆ · · · ⊆ m2M ⊆ mM ⊆ M and each factor miM/mi−1M
is killed by m, and so is a finite-dimensional vector space over K = R/m. Hence, this
filtration can be refined to one in which every factor is ∼= R/m, since every miM/mi−1M
has a finite filtration in which all factors are ∼= R/m. Thus (3) ⇒ (4). Finally, (4) ⇒ (1)
by part (g) of the earlier Proposition. �

If P is a prime ideal of R, M is called P -coprimary if, equivalently,

(1) Ass (M) = {P}.

(2) M 6= 0, for some h ≥ 1, PhM = 0, and every element of R−P is a nonzerodivisor on
M .

(3) M ↪→ MP is injective, and MP has finite length over RP .

We need to check that these three conditions are equivalent. (1) ⇒ (3), for if
Ass (M) = P all elements of R − P are nonzerodivisors on M and M ↪→ MP . But
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since Ass (MP ) = {PRP } by part (h) of the Proposition on p. 1, and PRP is maximal in
RP , this implies that MP has finite length by the equivalence of (1) and (4) in part (c) of
the preceding Proposition.

Assume (3). Then (PRP )h kills MP for some h, and so Ph kills M ↪→ MP . Since the
elements of R−P act invertibly on MP , they are not zerodvisors on M ⊆ RP . This shows
that (3) ⇒ (2).

Finally, assume (2). Choose k as large as possible such that P kM 6= 0: we allow
k = 0. By hypothesis, k ≤ h− 1. Choose u 6= 0 in P kM . Then Pu ⊆ P k+1M = 0, while
no element of R− P kills u. It follows that P ∈ Ass (M). Moreover Ph ⊆ Ann(M) shows
that every associated prime contains of M contains P . But there cannot be an associated
prime strictly larger than P , since it would contain an element of R − P , and such an
element is a nonzerodivisor on R. Hence, (2) ⇒ (1), as required. �

Remark. When M = R/I with R a proper ideal of R, it is easy to see that M is P -
coprimary if and only if I is primary to P .

We shall say that a proper submodule N of M is irreducible if it is not the intersection
of two strictly larger submodules of M . It is easy to see that this is equivalent to the
condition that N not be the intersection of finitely many larger submodules of M . Note
that in each part of the Lemma below, we can replace M by M/N , N by 0, and each
submodule of M containing N by its image modulo N without affecting any relevant
issue.

Lemma. Let R be a Noetherian ring and let N ⊂ M be finitely generated R-modules,
where the inclusion is strict.

(a) N is a finite intersection of irreducible submodules of M (this includes the possibility
that N itself is irreducible).

(b) If N is irreducible, then M/N it is P -coprimary for some prime P .

(c) If N1, . . . , Nk are submodules such that each M/Nj is P -coprimary to P for the same
prime P , then M/

⋂k
j=1 Nj is also P -coprimary.

Proof. (a) Let N denote the set of proper submodules of M that are not finite intersections
of irreducible submodules. If N is nonempty, it has a maximal element N . Then N cannot
itself be irreducible. Suppose that N = N1∩N2 where N1 and N2 are strictly larger. Then
each Ni is a finite intersection of strictly larger submodules, and, hence, so is N1∩N2 = N ,
a contradiction.

(b) We replace M by M/N and so assume that N = 0. If Ass (M) contains two or
more relevant primes, then we can choose u ∈ M such that AnnRu = P and v ∈ M such
that AnnRv = Q, where P 6= Q are distinct primes. Then Ru∩Rv must be 0: any nonzero
element of Rv has annihilator P , while any nonzero element of Ru has annihilator Q. This
contradicts the irreducibility of 0.
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(c) The map M →
∏k

j=1 M/Nj that sends u 7→ (u + N1, · · · , u + Nk) has kernel

N =
⋂k

j=1 Nj , and so we have M/(
⋂k

j=1 Nj) ↪→
∏k

j=1 Nj
∼=

⊕k
j=1(M/Nj) The latter has

a filtration by submodules M/N1 ⊕ · · · ⊕ M/Nj with factors M/N1, M/N2, . . . ,M/Nk.
Hence, Ass (N) ⊆

⋃k
j=1 Ass (M/Nj) = {P}, as required. �

If N ⊂ M is a strict inclusion of finitely generated modules over a Noetherian ring R,
we shall say that N = N1 ∩ · · · ∩Nk is a primary decomposition for N in M if

(1) Each M/Ni is Pi-coprimary for some prime Pi of R.

(2) If i 6= j then Pi 6= Pj .

(3) The intersection is irredundant in the sense that if any Nj is omitted, the intersection
of the others is strictly larger than N .

Theorem (primary decomposition for modules). Let R be a Noetherian ring and
let N ⊂ M , where the inclusion is strict. Then N has a primary decomposition. In any
primary decomposition, the primes occurring are precisely the elements of Ass (M/N), and
the number of terms is the number of primes in Ass (M/N). If Pi is a minimal prime
of M/N , then the corresponding Pi-coprimary module Ni in the primary decomposition is
uniquely determined and is, in fact, Ker

(
M → (M/N)Pi

)
.

Proof. To prove existence, first write N as a finite intersection of irreducibles Nj , by part
(a) of the preceding Lemma. For each prime P such that one of these is coprimary to P ,
replace those Nj that are P -coprimary by their intersection. Thus, N is an intersection of
P -coprimary modules such that the primes that occur are mutually distinct. If the inter-
section is not irredundant, we may successively omit terms until we reach an intersection
that is irredundant.

We now want to prove the uniqueness statement. We pass to M/N and so assume
that N = 0. Suppose that 0 = N1 ∩ · · · ∩Nk is a primary decomposition for 0 in M , where
M/Nj is Pj-coprimary. As in part the proof of part (c) of the preceding Lemma, we have an
injection M ↪→

⊕k
j=1(M/Nj), and it folows that Ass (M) is contained in the set of primes

{P1, . . . , Pk}. To see that Pi ∈ Ass (M), note that since the intersection is irredundant,
we can choose an element u ∈

⋂
j 6=i Nj −Ni. The image of u under M ↪→

⊕
j=1 M/Nj is

0 in every M/Nj except M/Ni, and is nonzero in M/Ni. Hence,

Ass (Ru) ⊆ Ass (M/Ni) = {Pi},

and so Ass (Ru) = {Pi}. But Ru ⊆ M , and so Ass (Ru) ⊆ Ass (M), i.e., Pi ∈ Ass (M).
The statement about the number of terms is now obvious.

Finally, suppose that P = Pi is minimal among the associated primes. For every
Pj 6= Pi, Pj − Pi is nonempty. It follows that (M/Nj)Pi

= 0, so that MPi
= (Nj)Pi

. Now,

NPi
= (N1 ∩ · · · ∩Nk)Pi

= (N1)Pi
∩ · · · ∩ (Nk)Pi

= (Ni)Pi
,
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so that (M/N)Pi
∼= (M/Ni)Pi

. Hence, the kernel of M → (M/N)Pi
is the set of u ∈ M

such that for some w ∈ R − Pi, wu ∈ Ni. Since M/Ni is Pi-coprimary, no element of
R− Pi is a zerodivisor on M/Ni, it follows that the kernel is Ni. �

Depth

We give a brief introduction to the theory of depth without using homological methods:
the homological proofs of certain results, such as the fact that maximal regular sequences
in I on a module M all have the same length, are very slick, but in some ways mask the
simplicity of what is going on.

We shall assume that R → S is a homomorphism of Noetherian rings, that I is an
ideal of R, and that M is a finitely generated S-module. By far the most important case
is the one where R = S, and the reader is encouraged to focus on this situation if this is a
first encounter with depth. The greater generality is very useful, however, in that one can
frequently choose regular sequences that arise from a “smaller” ring.

If IM = M , we define the depth of M on I to be +∞. If IM 6= M , it turns out
that all maximal regular sequences on M consisting of elements of I have the same length,
and we define this length to be the depth of M on I. This fact is proved below. Before
giving the proof, we want to characterize the “degenerate” situation in which IM = M in
a down-to-earth way.

Proposition. Let R → S be a homomorphism of Noetherian rings, let N be a finitely
generated R-module, and let M a finitely generated S-module. Let I be the annihilator of
N in R, and let J be the annihilator of M in S.

(a) The support of N ⊗R M over S is V(IS + J) = {Q ∈ Spec (S) : IS + J ⊆ Q}. In
particular, N ⊗R M = 0 if and only if IS + J = S, the unit ideal.

(b) In particular, if N = R/I is cyclic, IM = M if and only if IS + J = S.

Proof. (a) Since I kills N , IS kills N ⊗R M , and since J kills M , J kills N ⊗R M . Thus,
any prime in the support of N ⊗R M must contain IS +J . Now suppose that IS +J ⊆ Q,
a prime of S, and the Q lies over P in R. It suffices to see that (N ⊗R M)Q 6= 0, and this
may be identified with NP ⊗RP

MQ. Here, I ⊆ P , and so NP 6= 0. Let RP /PRP = K. By
Nakayama’s Lemma, NP /PNP is a nonzero K-vector space, say Kh, h ≥ 1, and, similarly,
MQ/QMQ is a nonzero vector space over L = SQ/QSQ, say Lk. Then NP ⊗RP

MQ maps
onto Kh ⊗K Lk ∼= (K ⊗K L)hk ∼= Lhk 6= 0, as required.

(b) This is immediate from part (a), since N ⊗R M ∼= M/IM in this case. �

We will need the following:

Lemma. Let R be a ring and let x1, . . . , xn be a regular sequence on an R-module M .
Suppose that x2 is not a zerodivisor on M . Then x2, x1, x3, x4, . . . , xn−1, xn is a regular
sequence on M .
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Proof. It suffices to show that x1 is a nonzerodivisor modulo x2M : since M/(x1, x2)M =
M/(x2, x1)M , the remaining conditions are unaffected by the interchange of x2 and x1.
Suppose that x1u ∈ x2M , say x1u = x2v. Since x1, x2 is a regular sequence on M and
x2v ≡ 0 mod x1M , we have that v ∈ x1M , say v = x1w. Then x1u = x2x1w, and
x1(u− x2w) = 0. Since x1 is not a zerodivisor on M , u ∈ x2M , as required. �

We can now justify the definition we want to give for depth.

Theorem. Let R → S be a homomorphism of Noetherian rings, let M be a finitely gen-
erated S-module, and let I ⊆ R be an ideal of R. Assume that IM 6= M .

(a) There is no infinite regular sequence x1, x2, x3, . . . on M consisting of elements of I.

(b) There is no zerodivisor on M in I if and only if I is contained in the contraction of
a prime in Ass (M) to R. Hence, there is a no nonzerodivisor on M in I if and only
if there is an element u ∈ M − {0} such that Iu = 0.

(c) Every regular sequence in I on M (including the empty regular sequence) can be ex-
tended to a maximal regular sequence in I on M , and this maximal regular sequence
is always finite.

(d) All maximal reqular sequences in I on M have the same length.

Proof. (a) Suppose we have such a sequence. Let In = (x1, . . . , xn)R. Since R is Noe-
therian, we eventually have In = In+1. This means that xn+1 ∈ In, and so kills M/InM .
Since xn+1 is not a zerodivisor on M/InM , we must have M/InM = 0, i.e., M = InM .
But In ⊆ I and M 6= IM , a contradiction.

(b) Let θ denote the map R → S. Note that the action of x ∈ R on M is the same as
the action of θ(x). Hence, x ∈ R is a zerodivisor on M if and only if θ(x) is a zerodivisor
on M , and this means that θ(x) is in the union of the associated primes Q1, . . . , Qk of
M in S. Let Pi denote the contraction of Qi to R. We then have that I consists entirely
of zerodivisors on M if and only if it is contained in the union of the Pi. But then it is
contained in some Pi. Choose u ∈ M −{0} such that AnnSu = Qi. Then, since θ(I) ⊆ Qi,
Iu = 0, as required.

(c) Suppose that we have a regular sequence x1, . . . , xk and that Ik is the ideal
(x1, . . . , xk)R. If every element of I is a zerodivisor on M/IkM , then we have constructed
the required maximal regular sequence on M in I. If not, we can enlarge the regular
sequence to x1, . . . , xk+1 by taking xk+1 to be an element of I that is not a zerodivisor
on M/IkM . We can continue recursively in this way. The process must terminate by part
(a).

(d) Suppose that we have a counterexample. Since M has ACC, among all submodules
N of M such that M/N provides a counterexample, there is a maximal one. (The family
is nonempty, since it contains 0.) Therefore, we may assume the result holds for every
proper homomorphic image of M . If I consists entirely of zerodivisors on M , the empty
sequence is the unique maximal regular sequence on M .
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Now suppose that x ∈ I is a maximal regular sequence on M . Then I consists entirely
of zerodivisors on M/xM , and by part (b), there exists an element u ∈ M −xM such that
Iu ⊆ xM . Now let y ∈ I be a nonzerodivisor. We want to show that it constitutes a
maximal regular sequence. Since Iu ⊆ xM , we can write yu = xv for v ∈ M . First note
that v /∈ yM , for if v = yw, then yu = xyw. Since y is a nonzerodivisor, this implies,
u = xw, a contradiction. The argument in this case will therefore be complete if we can
show that Iv ⊆ yM . But if f ∈ I, we have xfv = f(xv) = f(yu) = y(fu) = y(xw) for
some w ∈ M , since Iu ⊆ xM . But then x(fv − yw) = 0, and since x is not a zerodivisor
on M , we have that fv = yw ∈ yM , as required.

Finally, suppose that we have two maximal regular sequences x1, . . . , xh and y1, . . . , yk

on M in I where h ≥ 2 and k ≥ 2. Then the contractions to R of the associated primes of
M/x1M do not cover I (they miss x2), and the contractions to R of the associated primes
of M/y1M do not cover I similarly. Likewise, the contractions of the associated primes of
M do not cover I (they miss x1). It follows that the union of all three sets of primes does
not cover I: if it did, I would be contained in one of these primes, a contradiction. We can
therefore pick z ∈ I not in any of them. Then x1, z is a regular sequence on M , and can
be extended to a maximal regular sequence on M in I, say x1, z, x′3, . . . , x′h′ . Similarly,
we can construct a maximal sequence on M in I of the form y1, z, y′3, . . . , y′k′ .

But if two maximal regular sequence on I in M have the same first term, say x, then
the terms after the first form maximal regular sequences on M/xM , a proper quotient of M .
It follows that they have the same length, since we know the result for M/xM , and so the
original regular sequences have the same length. Thus, h′ = h and k′ = k. By the Lemma
above, z, x1, x′3, . . . , x′h is also a regular sequence on M , and so is z, y1, y′3, . . . , y′k. Since
these two have the same first term, we obtain that h = k. �

We are now justified, under the hypotheses of the Theorem above, in defining the
depth of M on I, which we shall denote depthIM , to be the length of any maximal regular
sequence on M whose terms are in I.

We also note:

Proposition. Let R be a finitely generated N-graded algebra with R0 = K, a field, let
m =

⊕∞
d=1 Rd be the homogeneous maximal ideal, and let M be a finitely generated Z-

graded R-module. Then the depth of M on m is the same as the length of any maximal
regular sequence on M consisting of forms of positive degree. Hence, R is Cohen-Macaulay
if and only if depthmR = dim(R).

Proof. First note that if depthmM > 0, then we can construct a nonzero form F1 of
positive degree that is not a zerodivisor on M , by homogeneous prime avoidance. We can
then proceed recursively to construct a maximal regular sequence of such forms on M : we
begin by passing to M/F1M . The final statement is now obvious. �


