
Math 615: Lecture of February 9, 2007

Elementary matrices and unipotent matrices

We shall write UU
n ⊆ BU

n for the subgroup consisting of upper triangular matrices such
that all diagonal entries are equal to 1. This is the group of upper triangular unipotent
matrices. Similarly, UL

n ⊆ BL
n is the subgroup consisting of lower triangular matrices with

all diagonal entries equal to 1, the group of lower triangular unipotent matrices. The
subscript n will often be omitted.

If i 6= j are integers with 1 ≤ i, j ≤ n and c ∈ K, we denote by Eij(c) the matrix
obtained by adding c times the j th row of the n× n identity matrix to the i th row. This
matrix has all diagonal entries equal to 1, and precisely one off-diagonal entry that may
be nonzero: the entry in the i th row and j th column is c. The field K and the value of n
should be clear from context. For any A ∈ GL(n, K), EijA is the matrix obtained from A
be adding c times the j th row of A to the i th row of A. If i < j, then Eij(c) ∈ UU, while
if i > j, then Eij(c) ∈ UL.

Every element A of BU is the product (on either side) of the diagonal matrix whose
diagonal entries are the same as those of A and an upper triangular unipotent matrix.
The upper triangular unipotent matrices are generated by the Eij(c) for i < j. Note
that Eij(c) and Eij(−c) are inverses. Given any upper triangular unipotent matrix, it
can be “brought to” the identity matrix by a finite sequence of elementary row operations
corresponding to left multiplication by matrices Eij(c) with i < j. One subtracts multiples
of the last row from earlier rows to make all entries of the last column except the bottom
entry equal to 0. Then one subtracts multiples of the n − 1 st row from the earlier rows
to make all entries in the n − 1 st column except the n − 1 st equal to 0. Once the j th
column has only one nonzero entry, which is 1, in the j th spot for all j > i, one subtracts
multiples of the i th row from the earlier rows until all entries of the i th column are 0,
except for the i th entry, which is 1. One continues in this way until off-diagonal entries
are 0. This means that one can choose upper triangular matrices E1, . . . , EN such that

EN · · ·E1A = I.

But this in turn implies that
A = E−1

1 · · ·E−1
N ,

as required. It follows that BU is generated by the diagonal matrices and the matrices
Eij(c) for i < j.

In an exactly similar way (or simply by transposing) we have that every element A
of BL is the product (on either side) of the diagonal matrix whose diagonal entries are
the same as those of A and a lower triangular unipotent matrix. The lower triangular
unipotent matrices are generated by the Eij(c) for i > j, and BL is generated by the
diagonal matrices and the matrices Eij(c) for i > j.
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Lower triangular matrices preserve the initial form

Let R = K[x1, . . . , xn] and let F be a finitely generated free module with ordered basis
e1, . . . , es. We assume a monomial order on F such that if i < j, then xiet > xjet for
1 ≤ t ≤ s. This means that for any term ν,

(#) xh
i ν > xh−d

i xd
jν

for 1 ≤ d ≤ h and i < j. Ignoring the scalar, ν = µet, and

xh
i νet = xh−1

i νxiet > xh−1
i νxjet = xh−1

i xjνet

which is the case d = 1. But then, by induction on d, if d > 1 the last term is greater than
x

(h−1)−(d−1)
i xd−1

j xjνei, which yields the result.

Theorem. Let A ∈ BL. For every nonzero element f ∈ F , in(Af) = in(f). Hence, for
every submodule M ⊆ F , we have that in(AM) = in(M).

Proof. The second statement is clear from the first. Since A can be written as a product
of diagonal matrices and matrices Eij(c) with i > j, it suffices to prove the first statement
for each of the two types. If A is diagonal, it is clear that the monomials occurring in
terms of Af are the same as the monomials occurring in terms of f : the action is such
that each term of f is multiplied by a nonzero scalar in the field, and no new terms are
introduced.

Therefore we may assume that A = Eji(c) with j > i. We consider the effect of the
action of A on a typical term of f . Note that A sends xi 7→ xi + cxj while fixing all the
other xk. The term can be written as xh

i ν where ν is a term not divisible by xi. Then A
maps this term to (xi + cxj)hν. When we expand we get xh

i ν and a sum of other terms,
which, if nonzero, have the form c′xh−d

i xd
jν where c′ ∈ K − {0} and 1 ≤ d ≤ h. Thus,

the original term occurs, and the other terms are strictly smaller, by (#) displayed above.
It follows that if xh

i ν is the initial term of f , it still occurs in Af , and all other terms
occurring are strictly smaller, so that it remains the initial term. �

Corollary. If U is a Zariski dense open subset of GL(n, K) such that in(AM) is Gin(M)
for all A ∈ U , then BLU is a Zariski dense open set with the same property.

Proof. If in(AM) = Gin(M) and B ∈ BL, then we have from the preceding Theorem that
in

(
B(AM)

)
= in(AM) = Gin(M), from which it follows that every matrix in BLU =

{BA : B ∈ BL, A ∈ U} consists entirely of matrices that map M to a module whose initial
module is Gin(M). Multiplication by B ∈ GL(n, K) is an automorphism of GL(n, K) as
an algebraic set (not as a group), so that for all B ∈ BL, BU = {BA : A ∈ U} is again a
dense open set. Since BLU is the union of the family {BU : B ∈ BL}, it is also a dense
open set. �

We next note:
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Lemma. BLUU = {BA : B ∈ BL, A ∈ UU} is a Zariski dense open set in GL(n, K).

Proof. For 1 ≤ k ≤ n, let Dk be the polynomial function on GL(n, K) given by the
determinant of the k × k submatrix in the upper left corner. Let D be the product
D1D2 · · ·Dn−1. We claim that BLUU = GL(n, K)D, the set of invertible n × n matrices
such that the nested minors in the upper left corner do not vanish. Evidently, UU ⊆
GL(n, K)D. Next note that if A ∈ GL(n, K)D and B is an invertible diagonal matrix,
then BA ∈ GL(n, K)D (the relevant minors are each multiplied by a nonzero scalar) and
Eij(c)B ∈ GL(n, K)D for all i > j and c ∈ K (adding a multiple of an earlier row to later
row does not change any of the relevant minors). Hence, BLUU ⊆ GL(n, K)D.

It remains to prove the opposite inclusion. Now consider any matrix A ∈ GL(n, K)D.
By the hypothesis on the nonvanishing of D, we have that D1 does not vanish, i.e., the
entry in the upper left hand corner is not 0. Hence, we can subtract multiples of the
first row from lower rows to obtain a matrix in which the first column is 0 below the first
entry. In the course of this process, at each stage we are multiplying by a lower triangular
elementary matrix. We can proceed by, indiuction on j, to multiply by lower triangular
elementary matrices unitl we reach a matrix such that all entries below the main diagonal
in the first j columns are 0. At every stage, we continue to have a matrix in GL(n, K)D.
Suppose this has been done for all columns preceding the j th column. The hypothesis
that D does not vanish implies that Dj does not vanish, and since the j × j submatrix
in the upper left corner is now upper triangular, this implies that the j, j entry on the
diagonal is nonzero. We can therefore subtract multiples of the j th row from lower rows
until the j th column contains only 0 entries below the main diagonal. In this way, we
eventually reach an upper triangular matrix. We have multiplied the original matrix A
on the left by a lower triangular unipotent matrix B in the process, thereby obtaining an
upper triangular matrix C. Since BA = C, we have A = B−1C, as required. �

Corollary. Let R = K[x1, . . . , xn] be a polynomial ring over an infinite field K, let F
be a finitely generated free R-module with ordered basis e1, . . . , es, and suppose that we
have a monomial order on F such that for all t and i < j, xiet > xjet. Let M ⊆ F be
a submodule. Let U ⊆ GL(n, K) be such that BLU ⊆ U and in(AM) = Gin(M) for all
A ∈ U . Then U has nonempty intersection with UU.

Proof. Since U and BLUU are Zariski dense open sets, their intersection is nonempty.
Choose A ∈ U such that A = BC with B ∈ BL and C ∈ UU. Then C = B−1A ∈ U , as
required. �

Ideals stable under the action of the group of invertible diagonal matrices

We want to show that when K is infinite, an ideal I of the polynomial ring R =
K[x1, . . . , xn] over a field K is stable under the action of Dn, i.e., mapped into itself by
every element of Dn, if and only if it is a monomial ideal.

We shall prove some much stronger results. We first want to prove a result on the
invertibility of Van der Monde matrices.
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Discussion: Van der Monde matrices. Let u1, . . . , uh be elements of a commutative ring.
Let Q be the h× h matrix

(
uj−1

i

)
, which is called a Van der Monde matrix. We want to

show that if the elements ui − uj are all invertible, then so is Q. We give two proofs.

(a) We shall show that the determinant of Q is
∏

j>i(uj − ui). Hence, Q is invertible
if uj − ui is a unit for j > i. It suffices to prove the first statement when the ui are
indeterminates over Z. Call the determinant D. If we set uj = ui, then D vanishes
because two rows become equal. Thus, uj − ui divides D in Z[u1, . . . , uh]. Since the
polynomial ring is a UFD and these are relatively prime in pairs, the product P of the
uj − ui divides D. But they both have degree 1 + 2 + · · · + h − 1. Hence, D = cP for
some integer c. The monomial u2u

2
3 · · ·uh−1

h obtained from the main diagonal of matrix in
taking the determinant occurs with coefficient 1 in both P and D, so that c = 1. �

(b) We can also show the invertibility of Q as follows: if the determinant is not a unit,
it is contained in a maximal ideal. We can kill the maximal ideal. We may therefore
assume that the ring is a field K, and the ui are mutually distinct elements of this field.
If the matrix is not invertible, there a nontrivial relation on the columns with coefficients
c0, . . . , cn−1 in the field. This implies that the nonzero polynomial

ch−1x
h−1 + · · ·+ c1x + c0

has h distinct roots, u1, . . . , uh, in the field K, a contradiction. �

Next note the following. Suppose that R is an N- or Z-graded algebra and that u ∈ R0 is
a unit. The there is an automorphism ηu : R → R such that if f ∈ [R]d, then ηu(f) = udf .

Proposition. Let R be an N- or Z-graded algebra such that R0 contains an infinite field
or, more generally, such that R0 contains infinitely many elements ui that are units and
such that for all i 6= j, the element ui − uj is a unit. Let I ⊆ R be any ideal that is stable
under all of the automorphism ηui

, with notation as just above. Then I is a homogeneous
ideal of R.

Proof. Let ft+1 + · · ·+ ft+h = f be an element of I, where the interval [t + 1, . . . , t + h]
includes all degrees in which the element has a nonzero homogeneous component, and fj

denotes the homogeneous component in degree j. Choose invertible elements u1, . . . , uh

in R0 such that ui − uj is invertible for i 6= j. By letting ηui
act we obtain an equation

(∗i) ut+1
i ft+1 + · · ·+ ut+j

i ft+j + · · ·+ ut+h
i ft+h = ηui(f) ∈ I

We can multiply this equation by u−t−1
i and let gi = u−t−1

i ηui
(f) ∈ I to obtain

(∗∗i) ft+1 + · · ·+ uj−1
i ft+j + · · ·+ uh−1

i ft+h = gi

for 1 ≤ i ≤ h. In matrix form, these equations can be written as

Q

 ft+1

...
ft+h

 =

 g1
...

gh

 ,
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where Q is the Van der Monde matrix discussed above, and so is invertible over R. We
then have  ft+1

...
ft+h

 = Q−1

 g1
...

gh

 ,

and since Q−1 has entries in R and the gj ∈ I, it follows that all of the homogeneous
components of f are in I, as required. �

Corollary. Let R = K[x1, . . . , xn] be a polynomial ring over an infinite field K, and let
I be an ideal of R that is stable under the action of the diagonal matrices Dn ⊆ GL(n, K).
Then I is a monomial ideal of R.

Proof. Let Sk be the polynomial ring in the remaining variables with xk omitted for
1 ≤ k ≤ n, so that R = Sk[xk]. Then R is N-graded thinking of it as a polynomial
ring in one variable over Sk, with [R]d = Skxd

k for every d ∈ N, and K ⊆ R0 = Sk. If
u ∈ K − {0}, the automorphism ηu conincides with the action of the diagonal matrix
with u on the diagonal in the k, k spot and all other entries equal to 1 on R, and so I is
stable with respect to this action. Hence, I is homogeneous with respect to each of the xk

gradings. Given an element f of I, it is a sum of xn-homogeneous componets all of which
are in I: these have the form gn−1x

d
n where gn−1 ∈ K[x1, . . . , xn−1]. Each of these is in

turn a sum of xn−1-homogeneous components, all of which are in I. These have the form
gn−2x

dn−1
n−1 xdn

n where gn−2 ∈ K[x1, . . . , xn−2]. Continuing in this way, we see that every
monomial term of f is in I, as required. �

Borel-fixed ideals

We shall show soon that in the graded case, generic initial monomial ideals are stable
under the action of BU

n . In this section we want to charactize the ideals of the polynomial
ring R = K[x1, . . . , xn] that are stable under the action of BU

n .

We first prove an elementary fact about the behavior of binomial coefficients modulo a
prime integer p that we shall need to handle the characteristic p > 0 case.

In the Lemma below, the binomial coefficients
(

k

h

)
, where h, k ∈ N, are defined to be 0

if h > k. Otherwise, they have their usual meaning,
k!

h!(k − h)!
. Note that

(
k

h

)
is always

nonzero if 0 ≤ h ≤ k: in particular, if h = 0 its value is 1, even if k = 0.

Lemma. Let h and k be nonnegative integers and let p be a positive prime integer. Let

h = hdp
d + hd−1p

d−1 + · · ·+ h0

and
k = kdp

d + kd−1p
d−1 + · · ·+ k0
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be expansions of h and k respectively in base p, so that 0 ≤ hi ≤ p− 1 and 0 ≤ ki ≤ p− 1
for all i. (The length d of the expansion is permitted to be longer than needed, so that, for
example, hd, or several of the initial hi, may be 0, and the same holds for k.) Then(

k

h

)
≡

(
kd

hd

)(
kd−1

hd−1

)
· · ·

(
k1

h1

)(
k0

h0

)
mod p.

Hence,
(

k

h

)
6≡ 0 mod p if and only if hi ≤ ki for all i.

Proof. Let z be an indeterminate over Zp = Z/pZ. Then

(1 + z)k =
(
(1 + z)pd)kd

(
(1 + z)pd−1)kd−1 · · ·

(
(1 + z)p

)k1(1 + z)k0 ,

and since we are in prime characteristic p > 0 we may rewrite this as

(1 + zpd

)kd(1 + zpd−1
)kd−1 · · · (1 + zp)k1(1 + z)k0 .

If we expand each factor by the binomial theorem and then multiply out, using the gener-
alized distributive law, we obtain the sum of (kd + 1)(kd−1 + 1) · · · (k0 + 1) terms, one for
every choice of integers hd, . . . , h0 with 0 ≤ hi ≤ ki, namely:(

kd

hd

)(
kd−1

hd−1

)
· · ·

(
k1

h1

)(
k0

h0

)
(zpd

)hd(zpd−1
)hd−1 · · · (zp)h1zh0 =

(
kd

hd

)(
kd−1

hd−1

)
· · ·

(
k1

h1

)(
k0

h0

)
zhdpd+hd−1pd−1+···+h1p+h0 .

Because the exponents are distinct expansions of nonnegative integers in base p, they are
all distinct, and there are no cancellations of terms. These coefficients are all nonzero,

because p does not occur as factor in the formula for the binomial coefficient
(

ki

hi

)
when

0 ≤ hi ≤ ki ≤ p − 1. There is no nononzero term involving zh if the expansion of h in
base p is such that hi > ki for some i, and the formula given remains correct in this case

because
(

ki

hi

)
= 0 when hi > ki. The final statement is now clear. �

For each integer p in the set {0, 2, 3, 5, . . . } consisting of 0 and the positive prime

integers, if h, k ∈ N we define h ≤p k to mean
(

k

h

)
does not vanish modulo p. If p = 0

this is the usual total order on N, but if p > 0 it is a partial ordering because of the
characterization in the last statement of the Lemma just above.

Let R = K[x1, . . . , xn] be a polynomial ring in n variables over a field. We define an
ideal of R to be Borel-fixed if it is stable under the action of BU

n , the Borel subgroup of
GL(n, K) consisting of upper triangular matrices. Such an ideal is stable under the action
of Dn, and so it must be a monomial ideal. We have the following:
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Proposition. Let notation be as in the paragraph above, and let I ⊆ R. Then I is Borel-
fixed if and only if it is a monomial ideal and has a set of monomial generators µ with the
following property:

(#) if µ = xk
j ν where xj 6 | ν, then xh

i xk−h
j ν ∈ I for all h such h ≤p k.

If I is Borel-fixed, condition (#) is satisfied by every monomial µ ∈ I.

Proof. I is stable under the action D if and only if it is monomial, and a monomial ideal
I is Borel-fixed if and only if every Eij(c), c ∈ K −{0} and i < j, maps I into itself, since
the diagonal matrices together with the Eij(c) for i < j generate BU. It is sufficient that
every µ in a set of monomial generators for I map into I, and it is necessary that every
µ ∈ I map into I. But given µ, its image under the map that sends xj 7→ cxi + xj while
the other variables are fixed is

(cxi + xj)kν =
∑

0≤h≤pk

(
k

h

)
ckxh

i xk−h
j ν,

since the integers h satisfying 0 ≤ h ≤p k are precisely the ones that yield a nonzero
binomial coefficient. The stated result is now immediate. �


