
Math 615: Lecture of February 12, 2007

We next want to consider one example where the generic initial ideal depends on the
characteristic. The example also illustrates that, even when the given ideal is monomial,
the generic initial ideal can be rather different.

Consider I = (x2
1, x

2
2) in R = K[x1, x2] where K is infinite. Suppose that we use either

hlex or revlex as the monomial order. If A =
(
aij

)
,

Gin(I) = in
(
((a11x1 + a21x2)2, (a12x1 + a22x2)2)R

)
for a11, a12, a21, a22 in sufficiently general position. In characteristic different from 2, we
get x2

11 as the initial term from either generator. The initial term of

a2
12(a11x1 + a21x2)2 − a2

11(a12x1 + a22x2)2

yields an x1x2 term. In degree d ≥ 3, I contains all monomials of degree d, and, hence,
so does AI. It follows that Gin(I) = (x2

1, x1x2, x
3
2). However, in characteristic two, both

squares are linear combinations of x2
1 and x2

2, and Gin(I) = (x2
1, x

2
2). This is consistent

with out characterization of Borel-fixed ideals because it is false that 1 ≤2 2: the binomial

coefficient
(

2
1

)
vanishes modulo 2.

The following result explains in part why generic initial ideals have great interest.

Theorem. Let R = K[x1, . . . , xn] be a polynomial ring over a field K, and let I be a ho-
mogeneous ideal of R. Let m be the homogeneous maximal ideal of R. Then depthm(R/I) =
k if and only if the minimal monomial generators of Gin(R/I) for revlex involve xn−k but
not xj for j ≥ n− k + 1.

Proof. After the variables are placed in general position, say by a change of coordinates
using a matrix of indeterminates, there is a regular sequence of length k on R/I if and
only if the last k variables form such a sequence: see the Proposition on p. 3 of the Lecture
Notes of February 7. By our results on reverse lexicographic order, this is equivalent to
the absence of the last k variables from the initial ideal with respect to revlex: see the
final Theorem of the Lecture of February 2. �

Actions on vector spaces and exterior algebra

We are aiming to prove results concerning when the initial ideal is Borel-fixed. The
theorems we obtain can actually be viewed as results about actions on on finite-dimensional
K-vector subspaces of R.
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We assume that R = K[x1, . . . , xn], a polynomial ring over an infinite field K, and we
fix a monomial order on R such that x1 > x2 > · · · > xn, as usual.

This gives an ordered basis for every subspace of R spanned by monomials. Recall that
when a vector space V has an ordered basis v1 > v2 · · · > vh, the theory of Gröbner bases
applies directly to V : the base ring may be thought of as K, the polynomials in 0 variables
over the field K. When V is a subspace of R, this gives us, a priori, two notions of initial
term. We write invec(f) to indicate that we are taking the initial term in a vector space
sense. However, in practice, we shall frequently be considering a finite-dimensional K-
vector subspace of R spanned by monomials, with the order of the basis elements obtained
by restricting the monomial order on R. In this case, in(f) and invec(f) agree. However,
invec(W ) is a K-vector subspace of V , not an ideal of R.

Recall that the exterior algebra
∧•(V ) =

⊕
k∈N

∧k(V ) of a K-vector space V is an N-
graded associative algebra generated over K =

∧0(V ) by V =
∧1(V ) with multiplication

denoted ∧ satisfying precisely those relations implied by the condition that v ∧ v = 0 for
every element v ∈ V . Then

0 = (v + w) ∧ (v + w) = v ∧ v + v ∧ w + w ∧ v + w ∧ w = v ∧ w + w ∧ v,

so that
v ∧ w = −w ∧ v

for all v, w ∈ V . This implies that if {vj}j∈J is an ordered basis for V then the elements
vj1 ∧ vj2 ∧ · · · ∧ vji

such that vj1 > vj2 > · · · > vji
form a basis for

∧i(V ). In particular,
it follows that if dim K(V ) = k, then

dim K

(∧i(V )
)

=
(

k

i

)
, 0 ≤ i ≤ k,

while
∧i(V ) = 0 for i > dim (V ).

Moreover, for any elements v1, . . . , vk ∈ V , we have that for every permutation π of
{1, . . . , k},

vπ(1) ∧ · · · ∧ vπ(k) = sgn (π)(v1 ∧ · · · ∧ vk),

where sgn (π) is the sign of the permutation π. We also have that v1 ∧ · · · ∧ vk = 0 if and
only if v1, . . . , vk are linearly dependent over K. We know that if v1, . . . , vk is a basis for
V , then the single element v1 ∧ · · · ∧ vk is a basis for

∧k(V ), which is a one-dimensional
space. If we consider k linear combinations of v1, . . . , vk, say

wi = ci1v1 + · · ·+ cikvk

for 1 ≤ i ≤ k, with the elements cij ∈ K, then

w1 ∧ · · · ∧ wk = det(cij) v1 ∧ · · · ∧ vk,

which will be another generator of
∧k(V ) precisely when w1, . . . , wk is a basis for V .
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Note that forms of even degree in
∧•(V ) are in the center, while if w, w′ are forms of

odd degree, w ∧ w′ = −w′ ∧ w. Notice also that, by definition,
∧0(V ) = K. An N-graded

associative algebra such that for any two nonzero forms w, w′ of degrees d, d′ respectively,
ww′ = (−1)dd′

w′w is called a skew-commutative graded algebra. (Some call such graded
algebras commutative, but we shall not do this.)

If T : V → W is a K-linear map, it extends uniquely to a degree preserving K-
homomorphism of N-graded associative algebras

∧•(T ) :
∧•(V ) →

∧•(W ). This makes∧•( ) into a covariant functor from K-vector spaces and K-linear maps to skew-commutative
graded K-algebras and degree-preserving K-algebra homomorphisms. In particular, we
have functorial maps

∧i(T ) :
∧i(V ) →

∧i(W ) for every i ∈ N. Observe also that

T (v1 ∧ · · · ∧ vk) = T (v1) ∧ · · · ∧ T (vk).

If W ⊆ V is a k-dimensional vector space, then
∧k(W ) ⊆

∧k(V ) is a one-dimensional
subspace of

∧k(V ). This one dimensional subspace uniquely determines W , since if∧k(W ) = Kw then W = {v ∈ V : w ∧ v = 0}.

Given an ordered basis for V , we introduce an order on the basis for
∧k

V mentioned
above. A typical element of the basis for

∧k
V has the form v1 ∧ · · · ∧ vk where v1, . . . , vk

are in the given ordered basis for V and are such that v1 > · · · > vk. The ordering is given
by the following rule: if v1 ∧ · · · ∧ vk and w1 ∧ · · · ∧wk are in this basis with v1 > · · · > vk

and w1 > · · ·wk, we define v1 ∧ · · · ∧ vk > w1 ∧ · · · ∧ wk to mean that there exists i,
1 ≤ i ≤ k, such that vj = wj for j < i and vi > wi. This ordering resembles lexicographic
ordering of monomials.

Remark. Suppose that v1, . . . , vk are distinct elements of the ordered basis, not necessarily
in decreasing order, and that w1, . . . , wk are distinct elements of the ordered basis, also
not necessarily in decreasing order. Suppose that for every i, (∗) vi ≥ wi. Then this
condition also holds when both sequences are arranged in decreasing order. The reason
is simply this: let v′1, . . . , v′k and w′1, . . . , w′k denote the sequences arranged in decreasing
order. For every i, each of the elements w′1, . . . , w′i is less than some element of v1, . . . , vk

coming from the inequalities (∗), where these i elements are mutually distinct. Then wi

is less than or equal to each of these i distinct elements of the v1, . . . , vk. The smallest of
these i elements is evidently at most v′i. �

We then have:

Proposition. Let V be a vector space with ordered basis, and let W be a subspace of
dimension k. Then a reduced Gröbner basis for W is a basis for W , and given such a basis
w1, . . . , wk, we have that invec(w1) ∧ · · · ∧ invec(wk) is the initial term of a generator for
invec

(∧k(W )
)
.

Proof. Fix sufficiently many elements v1 > · · · > vs of the ordered basis for V so that
W is contained in their span. We have already noted in the Lecture Notes of January 17
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that the condition for w1, . . . , wk to be a reduced Gröbner basis is that when each wi is
written in terms of v1, . . . , vs, the coefficients used, formed into the rows of a k×s matrix,
produce a reduced row echelon matrix without any rows that are 0. (If any vi are not
actually used, they contribute columns that are entirely zero, and do not affect whether
the matrix one obtains is in reduced row echelon form.) The leading entries of the rows
correspond to the intial terms of the wi. It is now clear from the Remark above that when
we form ω1 ∧ · · · ∧wk, the initial term is obtained by forming the product, under ∧, of the
initial terms. �

We next observe that we can define a generic vector space of initial forms, Ginvec(W )
when W is a k-dimensional subspace of V .

Theorem. Fix a monomial order on R = K[x1, . . . , xn]: this yields an ordered basis for∧k(R) for all k ∈ N. Let W ⊆ R = K[x1, . . . , xn] be a given subspace of finite dimension.
There is a Zariski open dense subset U of GL(n, K) such that invec(AW ) is the same for
all A ∈ U . U may chosen so that BL

nU = U . If g generates
∧k(W ) as a K-vector space,

then Ginvec(g) is the greatest term occurring in Ag for any A ∈ GL(n, K).

Proof. Let Z =
(
zij

)
be a matrix of new indeterminates. Exactly as in our earlier proof of

the existence of generic initial modules, we may consider ZW over K(Z) and construct the
reduced Gröbner basis, in the K(Z)-vector space sense, there, keeping track of finitely many
polynomials in the zij that are used in denominators and also finitely many polynomials in
the zij that occur as numerators of coefficients of initial terms. We may form the product
P of these polynomials in the zij , and then we may take the set where P does not vanish
as a choice of U . Applying a matrix in BL does not change the initial term of an element,
and hence BL

nU is a larger dense open set for which every matrix yields the same initial
vector space. Finally, note that a term that occurs in some Ag will occur in Zg. Since
the leading term of Zg gives Ginvec(g), and is greater than any other term in Zg, the final
statement follows. �

We next want to characterize when a K-vector subspace of R is stable under the action
of the diagonal matrices Dn, and when such a subspace is stable under the action of the
BU

n . We first note that over an infinite field K, we have a graded vector space analogue of
the Proposition on p. 4 of the Lecture Notes of February 9.

First note that if V is an N or Z-graded vector space over an infinite field K, then
we may define an automorphism ηu of V for each nonzero u ∈ K such that each element
v ∈ [V ]d maps to udv.

Proposition. Let V be an N- or Z-graded vector space over an infinite field K. Then
every subspace W of V stable under all the ηu for u ∈ K − {0} is graded.

Proof. The proof is identical with the proof given for the earlier Proposition: the van Der
Monde matrix Q now has entries in K, and W replaces the ideal I. �
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Theorem. Let R be a polynomial ring K[x1, . . . , xn], where K is a field. Let W be a
K-vector subspace of R. Then W is stable under the action of Dn if and only if W is
spanned by monomials.

Suppose that K has characteristic p (which may be 0). Then W is stable under the
action of BU

n if and only if it is spanned by monomials and for every monomial µ ∈ W , if
µ = xk

j ν, where xj does not divide µ, h ≤p k, and i ≤ j then xh
i xk−h

j ν ∈ W .

Proof. The proof of the first statement is identical with the proof of the Corollary on p. 5 of
the Lecture Notes of February 9, using the Proposition above, and the proof of the second
statement is identical with the proof of the Proposition on p. 7 of the Lecture Notes of
February 9. �

We refer to the subspaces of R stable under BU
n as Borel-fixed.

We next note that there is a monomial grading of
∧•(R). If one has terms v1, . . . , vk

involving mutually distinct monomials µ1, . . . , µk, we define the monomial degree of the
element v1 ∧ · · · ∧ vk to be the product µ1 · · ·µk. If the µi are not mutually distinct, then
v1 ∧ · · · ∧ vk = 0. Let[

∧•(R)]µ denote the K-span of all basis elements whose monomial
degree is µ. Then we have a direct sum decomposition∧•(R) =

⊕
µ∈M[

∧•(R)]µ,

where M is the set of monomials in R. Note that if R = K[x1, x2] and µ = x3
1x

3
2, then

[
∧•(R)]µ contains x3

1x
3
2, x2

1 ∧ x1x
3
2, and x2

1 ∧ x1x2 ∧ x2
2, as well as many other elements.

Remark. A critical observation is the following: if W is a k-dimensional K-vector subspace
of R and w generates

∧k(W ), then the monomial degree of in(w) is strictly larger than the
monomial degree of any other term of w. Consider a Gröbner basis for W as a vector space:
in each element, the initial monomial is strictly larger than any other monomial occurring.
The product of the initial monomials is therefore strictly larger than the product of any
other choice of monomials, one from each factor, from which the assertion follows.

The action of Dn on R induces an action on
∧•(R). Note that if β = (b1, . . . , bn) ∈

(K − {0})n, and diag(b1, . . . , bn) is the diagonal matrix with bi in the i, i position on the
main diagonal for 1 ≤ i ≤ n, then for any element v ∈ [

∧•(R)]µ, we have that Bv = µ(β)v,
where µ(β) denotes the result of substituting x1 = b1, . . . , xn = bn in µ.

Theorem. Let W ⊆ R be any finite dimensional vector space. Let Then Ginvec(W ) is
Borel-fixed.

Proof. First replace W by AW such that invec(AW ) = Ginvec(W ). Let w generate the
one-dimensional vector space

∧k(W ). It suffices to show that for every upper triangular
elementary matrix E = Eij(c), E

(
invec(w)

)
= invec(w). The action of E on a monomial

term produces a linear combination of monomial terms one of which is the original term,
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while the others are strictly larger — if the term has the form xk
j ν where ν is a term not

divisible by xj , this this follows from the expansion

(cxi + xj)kν =
∑

0≤h≤pk

(
k

h

)
ckxh

i xk−h
j ν,

which was used in the proof of the Proposition on p. 7 of the Lecture Notes of February 9.
It follows from the Remark on p. 3 that if E

(
invec(w)

)
6= invec(w), all of its nonzero terms

other than invec(w) are larger than invec(w). Pick one such term τ . It suffices to show
that τ survives in EB(w) for some upper triangular matrix B = diag(b1, . . . , bn) where
β = (b1, . . . , bn) ∈ (K − {0})n. Let µ be the monomial degree of in(w). By the Remark
just above, the monomial degree of every other term in w is strictly smaller than µ, so
that

w = in(w) +
∑
ν<µ

wν .

Then

EB(w) = E(Bin(w)) +
∑
ν<µ

E(B(wnu) = µ(β)E
(
in(w)

)
+

∑
ν<µ

ν(β)E(wnu).

Consider the coefficient of τ in the final expression on the right as a function of β. The first
sumand makes a contribution µ(β) to this coefficient. The other contributions to the sum
have the form cνν(β) for ν < µ. It follows that the coefficient of τ is a nonzero polynomial
in β, since the µ(β) term cannot be canceled. Hence τ occurs in EB(w) for some choice
of B, which contradicts the last statement in the Theorem stated on the bottom of p. 3
and the top of p. 4. �


