Math 615: Lecture of February 14, 2007

We postpone further consideration of Grobner bases to study some results in invariant
theory.

To keep prerequisites from algebraic geometry to a minimum, in our study we will take
the ground field K to be an algebraically closed field. For the kinds of results that we will
be considering, this is no disadvantage: typically, one can deduce results over any infinite
field by passing to the algebraic closure.

Linear algebraic groups and their modules

We have seen that GL(n, K) has the structure of a closed algebraic set, and that
the same is true for the GL,,(V'), the group of K-automorphisms of a finite-dimensional
vector space V. See pages 1. and 2. of the Lecture of January 31. One gives GL, (V)
the structure of a closed algebraic set by choosing a basis for V. If dim (V) = n, this
gives an identification of V' with GL(n, K). However, the structure of V as an algebraic
set is independent of the choice of basis: if one takes a different basis, the identification
of GL(n, K) with V' changes, but this is via an automorphism of GL(n, K) given by
conjugating by the change of basis matrix. This map is not only a group automorphism:
it is also an automorphism in the category of closed algebraic sets.

A linear algebraic group G is a Zariski closed subgroup of some GL(n, K). Thus, G has
the structure of closed algebraic set.

The product of two closed algebraic sets has the structure of a closed algebraic set.
If X = V(I) where I C Klxy,...,2Zp], so that X C AR, and Y = V(J) where
J = Kly1, ... ,Yn], so that Y C A} (the variables are taken to be m + n algebraically
independent elements) then X x Y may be identified with V/(IT + JT) C A", where
T=Kl[z1, ... ,Zm, Y1, --- ,Yn]-

It is easy to show that if G is a linear algebraic group, then the map G x G — G that
corresponds to the group multiplication is regular, as well as the inverse map G — G this
follows from the fact that this is true when G = GL(n, K).

An action of a linear algebraic group G on a finite-dimensional vector space V' is then a
group action G x V' — V such that the defining map is a morphism of closed algebraic sets,
i.e., a regular map over K. The image of (v, v) is denoted ~y(v). Alternatively, it is given
by a homomorphism h : G — GLg(V): the action is recovered by the rule v(v) = h(y)(v).
We then say that V' is G-module (over K, but usually we do not mention the field K).

If W C V is a K-vector subspace such that W is stable under the action of G, the
restriction of the map G x V' — V gives W the structure of a G-module, and we shall say
that W is a G-submodule of V.
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We extend the notion of G-module to infinite-dimensional K-vector spaces as follows:
an action of G on an infinite-dimensional vector space V' is allowed if V' is a directed union
of finite-dimensional spaces W such that the restricted action makes W into a G-module.

The direct sum of G-modules becomes a G-module in an obvious way. A G-stable
subspace of an infinite-dimensional G-module is again a G-module. If V' is a G-module
and W C V', then V/W has the structure of G-module such that for all v € G and v € V,
Y4+ W) =~(v)+ W.

A G-module map f : V — W is a K-linear map such that for all vy € G and v € V,
f(7(v)) =~(f(v)). The inclusion of a G-submodule W C V is a G-module map, as is the
quotient map V' — V/W.

A nonzero G-module M is called irreducible or simple if it has no nonzero proper sub-
module. If M is irreducible it is necessarily finite-dimensional, as it is a directed union of
finite-dimensional G-submodules.

A linear algebraic group is called linearly reductive if every finite-dimensional G-module
is a direct sum of irreducible G-modules. Over an field, the finite groups G such that the
order of G is invertible in the field are linearly reductive, and so is an algebraic torus, i.e., a
finite product of copies of GL(1, K). In characteristic p > 0, these are the main examples.
But over C the semisimple groups are linearly reductive as well. We shall comment further
about this later.

Linearly reductive linear algebraic groups

Theorem. Let G be a linearly reductive linear algebraic group and let W C 'V be G-
modules. Then there is a family of irreducible submodules {Mx}xep in V' such that

V=W+) M,
AEA

W’:ZM,\,

then V.=W @& W', so that W' is a G-module complement for W in V.

and the sum is direct. Hence, if

In particular, we may take W = 0, and so V itself is a direct sum of irreducible sub-
modules, even if it is infinite-dimensional.

Proof. Consider the set of families of irreducible submodues

{Mx}xea

of V such that the sum
VV'+—2£:.A1A
AEA
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is direct, i.e., such that every module occurring has intersection 0 with the sum of the other
modules occurring. The empty set is such a family, and the union of chain of such families
is such a family. Hence, there is a maximal such family, which we denote { M)} en. We
claim that V = V', where
Vi=W+ ) M.
AEA

If not, there is a finite-dimensional submodule V; of V that is not contained in V’. Vj is
a direct sum of irreducibles: one of these, call it My, must also fail to be contained in V.
Then My NV’ is a proper G-submodule of M, and so it is 0. But then the family can be
enlarged by including M, as a new member, a contradiction. []

If V is G-module, let V& be the subspace of invariants, i.e.,
VE={veV: foral~yed, vv) =0}

Then V€ is the largest G-submodule of V on which G acts trivially, and it is a direct sum
(although not in a unique way) of one-dimensional G-modules on which G acts trivially.
Note that if M is an irreducible G-module on which G acts on non-trivially, then M¢ = 0,
for otherwise MY is a proper nonzero G-submodule of M.

Theorem. Let V be a G-module, where G is linearly reductive. Then VC has a unique
G-module complement Vg, which may also be characterized as the sum of all irreducible
submodules M of V' on which G acts non-trivially.

Proof. Let W be any G-module complement for V. Let M be any irreducible in G
on which G acts non-trivially. If M "W # 0, the M N W = M, and so M C W as
required. Otherwise M injects into V/W = V¢ which implies that G acts trivially on M,
a contradiction. Thus, every irreducible on which G acts nontrivially is contained in W.
But W is a direct sum of irreducibles, and G must act non-trivially on each of these, since
there are no invariants in W. Therefore, W is the sum of all irreducible submodules of G
on which G acts non-trivially, which proves that W is unique. [

We also have:

Proposition. If f:V — W is a map of G-modules, then f : VG — WC, i.e., f induces
a map of the respective G-invariant subspaces of V. and W by restriction. Moreover,

f : Vg — Wg. Thus, f preserves the direct sum decompositions V.= V& @ Vg and
W=w¢%sWe.

Proof. If v is invariant so that y(v) = v for all v € G, then v(f(v)) = f(v(v)) = f(v) for
all y € G. Thus, F(VY) C WE.

Now consider any irreducible M on which G acts non-trivially. The kernel of f inter-
sected with M is a G-submodule of M, and, hence, is 0 or M. If it is 0, then M injects into
W, and the image is an isomorphic copy of M, which means that f(M) is an irreducible
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G-submodule of W on which G acts non-trivially. Hence, f(M) C Wg. On the other
hand, if the kernel contains all of M, the image is 0 C Wg. U

Dicussion. Let G be a linear algebraic group that is not necessarily lineaarly reductive.
Consider a short exact sequence of GG-modules
0—-W-—-=V =Y —0.
Clearly, W& C Y%, and the kernel of the map V& — Y& is, evidently, V& N W, which is
obviously W¢. Hence, for any linear algebraic group, we always have that
0—-W%—-YY% V¢

is exact. In general, however, the map Y¢ — V& need not be onto. However:

Corollary. If G is linearly reductive and 0 — W — V — Y — 0 is an exact sequence of
G-modules, then 0 — W& — VG - Y% - 0 is ezact.

Proof. The map V — Y is the direct sum of the maps V¢ — Y& and Vz — Y. Hence, it
is surjective if and only if both V¢ — Y& and Vg — Yg are surjective, which, in particular,
shows that V¢ — Y@ is surjective. [0

When G is linearly reductive, we have a canonical G-module retraction py : V — V&
that is obtained by killing V5. This map is called the Reynolds operator. Note that if we
are given a short exact sequence of G-modules 0 - W — Y — V — 0, then we have a
commutative diagram:

0 0 0
0 —— We Ve Yo 0
0O —— W 1% Y 0
W PV PY
0o —— W€ 745 Y& 0
0 0 0

The columns are split exact, and the rows are exact: the middle row is the direct sum of
the rows above and below it.

The property that when V' — W is a surjection of finite-dimensional G-modules then
V& — WE is surjective actually characterizes linearly reductive groups. To see this, first
note that if V and W are finite-dimensional GG-modules, we can put a G-module structure
on Hompg (V, W) (this is simply the vector space of all K-linear maps) as follows: for
all y € G and all f:V — W, v(f)(v) = v(f(y ). This is easily verified to give
Hompg (V, W) the structure of a G-module. Moreover:
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Lemma. Let V., W be finite-dimensional G-modules. Then Hompg (V, W)€ is the K-
vector space of G-module maps from V to W.

Proof. Suppose that f:V — W. Then f is fixed by G if and only if for all v € G and for
allv eV, y(f(v 1)) = f(v), ie., f(y *v) =" f(v). Since 77! takes on every value in
G as v varies, we have that f is fixed by G iff f is a G-module homomorphism. [

Theorem. Let G be a linear algebraic group. G is linearly reductive if and only if for every
surjective G-module map of finite-dimensional G-modules V. — W, the map VG — WG is
also surjective.

Proof. 1t suffices to show that every finite-dimensional G-module V' is a direct sum of
irreducible G-modules: if not, let V' be a counter-example of smallest possible vector space
dimension. Then V' is not irreducible, and we may choose a maximal proper G-submodule
M # 0, so that W = V/M is irreducible. It suffices to show that the exact sequence

*) 0=M—V-Lw—o0

splits as a sequence of G-modules, since in that case we have that V =2 M & W and
dim g (M) < dim g (V). It is, of course, split as a sequence of K-vector spaces. Apply
Homyg (W, _ ), where this is simply Hom as K-vector spaces. Then

0 — Hompg (W, M) — Homg (W, V) L% Homp (W, W) — 0

is exact (since the sequence (k) is split as a sequence of K-vector spaces), and the map f,
which sends g : W — V to f o g, is therefore surjective. This is a sequence of G-modules,
and so the map

Hom g (W, V)¢ — Homg (W, W)<

is surjective. That is, the set of G-module maps from W — V maps onto the set of
G-module maps from W — W. Hence, there is a G-module map g : W — V such that
f«(g) = fog is the identity map on W, and so (x) is split as a sequence of G-modules. [

Remark. The existence of a functorial Reynolds operator that retracts every finite-dimen-
sional G-module onto its invariant submodule and so, for every G-module map V" — W,
provides a commutative diagram:

v - . sw

v | [

VG WG
f

already implies that when the top arrow is surjective, so is the bottom arrow. For if
w € WY we may choose an arbitrary element v € V such that f(v) = w, and then

flov(v) = pw (f(v)) = pa(w) = w,



as required. Thus, the existence of a functorial retraction onto the modules of invariants
is also equivalent to the condition that G be linearly reductive.

Remark. If G is a finite group such that the order |G| of G is invertible in K, the Reynolds

operator is given by:
1
p) = 1o > g(v),
geG

i.e., averaging over the group G.

It turns out that linear reductive linear algebraic groups over the complex numbers C
are precisely those that have a Zariski dense compact real Lie subgroup H. Then H has
Haar measure, a translation-invariant measure p such that u(H) = 1, and the Reynolds
operator can be obtained by averaging over the group:

p(v) = /YEH v(v) dp.

Early proofs of finite generation for rings of invariants of semisimple groups over C made
use of this idea. Purely algebraic proofs have been available for a long time: these involve
the study of modules over the Lie algebra. See, for example, [A. Borel, Linear Algebraic
Groups, Benjamin, New York, 1969].



