
Math 615: Lecture of February 21, 2007

We need the following:

Lemma. Let R → S be flat, and let I ⊆ R, J ⊆ R be ideals such that J = (f1, . . . , fk)R
is finitely generated. Then (I :R J)S = IS :S JS.

Proof. Consider the map R → (R/I)⊕k that sends r 7→ (f1r, . . . , fkr) where u denotes
the image of u ∈ R modulo I. The kernel of this map is precisely I :R J , i.e.,

0 → I :R J → R → (R/I)⊕k

is exact. Thus, this sequence remains exact when we apply S ⊗R to obtain:

0 → (I :R J)⊗R S → S → (S/IS)⊕k.

The kernel of φ : S → (S/IS)⊕k is therefore the image of (I :R J) ⊗R S → S, which is
(I :R J)S. (The map is injective, so that (I :R J)⊗R S ∼= (I :R J)S. In general, if R → S
is flat and A is an ideal of R, when S ⊗R is applied to the injection 0 → A → R it
yields an isomorphism A ⊗R S ∼= AS.) But the definition of φ implies that the kernel is
IS :S JS. �

Remark. When φ : R → S and I is an ideal of R, IS is generated by the images of the
elements of I under φ. Suppose that R is a ring of prime characteristic p > 0 and let
S = R, made into an R-algebra by means of the structural homomorphism F e : R → R.
Then for any ideal I of R, IS = I [q].

Then:

Theorem. Let R be a polynomial ring K[x1, . . . , xn] over a field K of characteristic
p > 0. For any two ideals I, J ⊆ R, I [q] :R J [q] = (I :R J)[q].

Proof. Since F e : R → R is flat, this is immediate from the Remark just above and the
Lemma. �

The following result now completes, in the case of prime characteristic p > 0, the proof
of the sharper form of the Theorem on the Cohen-Macaulay property for rings of invariants
stated at the top of p. 4 of the Lecture Notes of February 16.

Theorem. Let R be a polynomial ring K[x1, . . . , xn] over a field K of characteristic
p > 0. Let I be an ideal of R, let u ∈ r, and let c ∈ R − {0}. Suppose that cuq ∈ I [q] for
all q = pe � 0. Then u ∈ I.
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Proof. The fact that cuq ∈ I [q] for all q � 0 may be restated as c ∈ Iq :R (uR)[q] for all
q � 0. By the Theorem just above, this means that c ∈ (I :R uR)[q] for all q � 0. If
u /∈ I, then I :R uR is a proper ideal and is contain in some maximal ideal m of R. Then
for some q0 we have

c ∈
⋂

q≥q0

(I :R Ru)[q] ⊆
⋂

q≥q0

m[q] ⊆
⋂

q≥q0

(mRm)[q] ⊆
⋂

q≥q0

(mRm)q = 0,

and so c = 0, a contradiction. Hence, we must have u ∈ I after all. �

Our next objective is to prove the Theorem for fields of characteristic 0 as well, by
reducing to the characteristic p case.

First step: moving towards characteristic p

We now suppose that we have a counter-example to the Theorem stated at the top of
p. 4 over a field K of equal characteristic 0. In the sequel, we want to replace K, insofar as
possible, by a finitely generated Z-subalgebra D ⊆ K. We then obtain a counterexample
by killing a maximal ideal µ of D: it turns out that D/µ must be a finite field.

In order to carry our ideas through, we first need to prove some preliminary results.
One is the fact just stated about maximal ideals in finitely generated Z-algebras. However,
we also need results of the following kind: suppose that AD ⊆ RD are finitely generated
D-algebras. Then one can localize at one nonzero element d ∈ D−{0} such that (RD/AD)d

is flat over Dd. We shall prove one of the strongest known results of this type. This will
enable us to preserve an inclusion AD ⊆ RD while killing a maximal ideal of D. We shall
need to be able to do this and also preserve various other inclusions like this in order to
give the detailed argument.

We first review the Noether Normalization Theorem over a domain. We begin with:

Lemma. Let D be a domain and let f ∈ D[x1, . . . , xn]. Let N ≥ 1 be an integer that
bounds all the exponents of the variables occurring in the terms of f . Let φ be the D-
automorphism of D[x1, . . . , xn] such that xi 7→ xi + xNi

n for i < n and such that xn maps
to itself. Then the image of f under φ, when viewed as a polynomial in xn, has leading
term dxm

n for some integer m ≥ 1, with d ∈ D − {0}. Thus, over Dd, φ(f) is a scalar in
Dd times a polynomial in xn that is monic.

Proof. Consider any nonzero term of f , which will have the form cαxa1
1 xa2

2 · · ·xan
n , where

α = (a1, . . . , an) and cα is a nonzero element in D. The image of this term under φ is

cα(x1 + xN
n )a1(x2 + xN2

n )a2 · · · (xn−1 + xNn−1

n )an−1xan
n ,

and this contains a unique highest degree term: it is the product of the highest degree
terms coming from all the factors, and it is

cα(xN
n )a1(xN2

n )a2 · · · (xNn−1

n )an−1xan
n = cαxan+a1N+a2N2+···+an−1Nn−1

n .
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The exponents that one gets on xn in these largest degree terms coming from distinct
terms of f are all distinct, because of uniqueness of representation of integers in base N .
Thus, no two exponents are the same, and no two of these terms can cancel. Therefore,
the degree m of the image of f is the same as the largest of the numbers

an + a1N + a2N
2 + · · ·+ an−1N

n−1

as α = (a1, . . . , an) runs through n-tuples of exponents occurring in nonzero terms of f ,
and for the choice α0 of α that yields m, cα0x

m
n occurs in φ(f), is the only term of degree

m, and and cannot be canceled. It follows that φ(f) has the required form. �

Theorem (Noether normalization over a domain). Let T be a finitely generated
extension algebra of a Noetherian domain D. Then there is an element d ∈ D − {0} such
that Td is a module-finite extension of a polynomial ring Dd[z1, . . . , zh] over Dd.

Proof. We use induction on the number n of generators of T over D. If n = 0 then T = D.
We may take h = 0. Now suppose that n ≥ 1 and that we know the result for algebras
generated by n − 1 or fewer elements. Suppose that T = D[θ1, . . . , θn] has n generators.
If the θi are algebraically independent over K then we are done: we may take h = n
and zi = θi, 1 ≤ i ≤ n. Therefore we may assume that we have a nonzero polynomial
f(x1, . . . , xn) ∈ D[x1, . . . , xn] such that f(θ1, . . . , θn) = 0. Instead of using the original
θj as generators of our K-algebra, note that we may use instead the elements

θ′1 = θ1 − θN
n , θ′2 = θ2 − θN2

n , . . . , θ′n−1 = θn−1 − θNn−1

n , θ′n = θn

where N is chosen for f as in the preceding Lemma. With φ as in that Lemma, we have
that these new algebra generators satisfy φ(f) = f(x1 + xN

n , . . . , xn−1 + xNn−1

n , xn) which
we shall write as g. We replace D by Dd, where d is the coefficient of xm

n in g. After
multiplying by 1/d, we have that g is monic in xn with coefficients in Dd[x1, . . . , xn−1].
This means that θ′n is integral over Dd[θ′1, . . . , θ′n−1] = T0, and so Td is module-finite
over T0. Since T0 has n− 1 generators over Dd, we have by the induction hypothesis that
(T0)d′ is module-finite over a polynomial ring Ddd′ [z1, . . . , zd−1] ⊆ (T0)d′ for some nonzero
d′ ∈ D, and then Tdd′ is module-finite over Ddd′ [z1, . . . , zh] as well. �

Theorem. Let κ be a field that is a finitely generated Z-algebra. Then κ is a finite field.
Hence, if µ is any maximal ideal of a finitely generated Z-algebra D, then D/µ is a finite
field.

Proof. If Z injects into κ (we shall see that this cannot happen) then κ is a module-finite
extension of a polynomial ring Z[1/d][x1, . . . , xh] where d ∈ Z−{0} (we need not localize
κ at d, since d must already be invertible in the field κ). If p is a prime not dividing d,
then p is not invertible in Zd, nor in the polynomial ring, and hence cannot be invertible
in a module-finite extension of the polynomial ring, a contradiction.

Hence, Z does not inject into κ, which implies that κ has characteristic p > 0 and
is finitely generated over Z/pZ for some prime p > 0. Then κ is module-finite over a
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polynomial ring (Z/pZ)[x1, . . . , xh]. Since κ has dimension 0, we must have h = 0, i.e.,
that κ is module-finite over Z/pZ, which implies that κ is a finite field. �

Second step: generic freeness

Before proving a strong form of generic freeness, we need:

Lemma. Let D be any ring. let

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mk ⊆ · · · ⊆ M

be a non-decreasing possibly infinite sequence of submodules of the module M over D, and
suppose that

⋃∞
k=1 Mk = M . If Mk+1/Mk is free over D for all k ≥ 0, then M is free.

Proof. Choose a free basis for every Mk+1/Mk and for every k ≥ 0, let Bk be a set of
elements in Mk+1 that maps onto the chosen free basis for Mk+1/Mk. In particular, B1 is
a free basis for M1

∼= M1/0. We first claim that B1 ∪ · · · ∪ Bk is a free basis for Mk+1 for
every k ≥ 0. We already have this for k = 0, and we use induction. Thus, we may assume
that Bk−1 is a free basis for Mk, and we must show that Bk is a free basis for Mk+1. This
is clear from the fact that the D-linear map Mk+1/Mk → Mk+1 that sends each element
of the chosen free basis of Mk+1/Mk to the element of Bk that lifts it is a splitting of the
exact sequence

0 → Mk → Mk+1 → Mk+1/Mk → 0.

It then follows at once that B =
⋃∞

k=0 Bk is a free basis for M : first, there can be no
non-trivial relations, for such a relation involves only finitely many basis elements and so
would give a non-trivial relation on the elements of some Bk. Second, since B evidently
contains a set that spans Mk for every k and

⋃∞
k=1 Mk = M , B spans M . �

Theorem (strong form of generic freeness). Let D be a Noetherian domain, and let
D = T0 → T1 → T2 → · · · → Ts be a sequence of maps of finitely generated T0-algebras.
Let M be a finitely generated Ts-module, and for every i, where 0 ≤ i ≤ s, let Ni be a
Ti-submodule of M . Let Q = M/(N0 + · · · + Ns). Then there exists a nonzero element d
in D such that Qd is Dd-free.

Proof. By inserting additional algebras in the chain, we may assume without loss of gen-
erality that every Ti+1 is generated over the image of Ti by one element. We use induction
on s. Note also that we can view Q as the quotient of M ′ = M/Ns by the sum of the
images of N1, . . . , Ns−1, so that there is no loss of generality in assuming that Ns = 0.

If s = 0 we simply have a finitely generated D-module M . In this case, take a maximal
sequence of elements u1, . . . , uh ∈ M that are linearly independent over D, so that G =
Du1 + · · · + Duh is free over D. (Such a sequence must be finite, or one would have an
infinite strictly ascending chain of submodules of M spanned by the initial segments of
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the sequence u1, u2, u3, . . . .) It follows that M/G is a torsion-module over D: for every
element u of M − G there must be a nonzero element of D that multiplies u into G, or
else we may take uh+1 = u to get a longer sequence. Thus, there is an element dj of
D − {0} that multiplies each element vj of a finite set of generators for M into G. Let d
be a nonzero common multiple of these dj . Then Md = Gd is free over Dd.

Now suppose that s ≥ 1. Take a finite set S of generators for M that includes a
finite set of generators for each of the Ni. Let N be the Ts−1 submodule of M generated
by all of these. By the induction hypothesis, we can choose d′ ∈ D − {0} such that
N/(N0 + · · · + Ns−1) becomes free when we localize at d′. If we can choose d such that
M/N becomes free, then localizing at dd′ solves the problem. Let θ be an element of Ts

that generates Ts over the image of Ts−1. Let M0 = 0 and let Mi = N + θN + · · ·+ θi−1N
for i ≥ 1, so that M1 = N , M2 = N + θN , M3 = N + θN + θ2N , and so forth. Let
Wi = Mi/Mi−1 for i ≥ 1. We claim that there are surjections

N = W1 � W2 � · · · � Wk � · · · ,

where the map Wi → Wi+1 is induced by multiplication by θ, which takes Mi → Mi+1

for every i. The image of the map on numerators contains θiN , which spans the quotient,
so that these are all surjections. The kernels of the maps N → Wi form an ascending
sequence of Ts−1-submodules of N , and so the kernels are all eventually the same. This
implies that there exists k such that for all i ≥ k, Wi

∼= Wk. By the induction hypothesis
for each of the modules Wj we can choose dj ∈ D − {0} such that (Wj)dj

is free over
Ddj

. Let d be a common multiple of these dj . By the Lemma above, (M/N)d is free over
Dd. �

Third step: descent to a finitely generated algebra over the integers

The next step in our effort to prove the sharper form of the result on the Cohen-Macaulay
property for rings of invariants is to “replace” K by a finitely generated Z-subalgebra D
of K. The idea is to make D sufficiently large so that all of the salient features of a
counter-example can be discussed in D-algebras instead of K-algebras. We then localize
D at one element so as to make certain quotients free, using the Theorem on generic
freeness. Finally, we kill a maximal ideal of D and so produce a counter-example to the
characteristic p > 0 form of the Theorem. Since we have already proved the result in
positive characteristic, this is a contradiction, and will complete the proof of the Theorem.

We have a field K of chracteristic 0, a polynomial ring R = K[x1, . . . , xn], a K-
subalgebra A of R finitely generated over K by forms u1, . . . , us, and a homogeneous
system of parameters F1, . . . , Fd for A. We also know that for 1 ≤ i ≤ d− 1,

(F1, . . . , Fi)R ∩A = (F1, . . . , Fi)A.

We want to prove that F1, . . . , Fd is a regular sequence. Suppose not, and suppose that

(†) GFi+1 = G1F1 + · · ·+ GiFi
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where G1, . . . , Gi, G ∈ A and G /∈ (F1, . . . , Fi)A, where i ≤ d− 1. We want to show that
we can construct an example with the same properties in prime characteristic p > 0.

Since F1, . . . , Fd is a homogeneous system of parameters for A, every uj has a power
in the ideal generated by F1, . . . , Fd. Hence, for every j we can choose mj ≥ 1 and an
equation

u
mj

j = wj,1F1 + · · ·+ wj,dFd,

where the wj,k ∈ A. Moreover, every Ft, Gt, and G, as well as all the wj,k, can be
expressed as polynomials in u1, . . . , us with coefficients in K, say Fk = Pk(u1, . . . , us),
Gk = Qk(u1, . . . , us) for 1 ≤ k ≤ d, G = Q(u1, . . . , us), and wj,k = Hj,k(u1, . . . , us). As
a first attempt at constructing the domain D, we take the Z-subalgebra of K generated by
all coefficients of the uj (as polynomials in x1, . . . , xn), the Pk, the Qk, Q, and the Hj,k.
However, we may (and shall) enlarge D further, specifically, by localizing at one nonzero
element.

Let RD = D[x1, . . . , xn], and let AD = D[u1, . . . , us] ⊆ RD. The elements Fj , Gj , G,
and wj,k are in AD, and we still have the relation (†) holding in AD. Moreover, every uj is
in the radical of the ideal generated by (F1, . . . , Fd) in Ad, and so Rad

(
(F1, . . . , Fd)AD

)
is a homogeneous prime ideal of AD, call it QD. It is spanned over D by all forms of
positive degree. We have that AD/QD = D.

We are now ready for the dénouement, which involves applying the result on generic
freeness to preserve this situation while passing to positive characteristic.


