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Math 615: Lecture of February 23, 2007

The final step: the application of generic freeness

We have the following:

Lemma. If 0 → N → M → G → 0 is an exact sequence of D-modules and G is D-free,
then the sequence is split, so that M ∼= N⊕G. In this case, for any D-module or D-algebra
Q, the sequence 0 → Q⊗D N → Q⊗D M → Q⊗D G → 0 is exact.

Proof. To construct a splitting f : G → M choose a free basis B for G and for every
element b ∈ B, define f(b) to be an element of M that maps to b. Exactness is preserved
by Q⊗D becaue tensor product commutes with direct sum. �

We are now ready to complete the proof.

There are several exact sequences that we are going to want to preserve while pass-
ing to characteristic p > 0. Since A has Krull dimension d and is module-finite over
K[F1, . . . , Fd], we know that F1, . . . , Fd are algebraically independent over K and, hence,
over the smaller ring D. This yields

(1) 0 → D[F1, . . . , Fd] → AD → AD/D[F1, . . . , Fd] → 0

where D[F1, . . . , Fd] is a polynomial ring over D. After localizing at one element of D−{0}
we may assume that all these modules are D-free, and, henceforth we assume this. We
shall make a number of further localizations like this, but only finitely many. Note that
localizing further preserves freeness. So long as there are only finitely many localizations
at one element, D remains a finitely generated Z-algebra.

Second, we have
(2) 0 → AD → RD → RD/AD → 0.

We may assume that D has been localized at one more element so that the terms of the
exact sequence above are D-free.

For every j, the ideal (F1, . . . , Fj)A is contracted from R = K[x1, . . . , xn]. This implies
that the map A/(F1, . . . , Fj)A → R/(F1, . . . , Fj)R is injective. This map arises from the
map

(∗) AD/(F1, . . . , Fj)AD → RD/(F1, . . . , FD)RD

in two steps: we may tensor over D with the fraction field F of D, and then we may tensor
over F ⊆ K with K. After we tensor with K, we know that the map is injective. Since
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K is faithfully flat (in fact, free) over its subfield F , (∗) is injective once we tensor with
F . Therefore the kernel, if any, is torsion over D. Hence, if we localize at one element of
D − {0} so that AD/(F1, . . . , Fj)AD becomes D-free, the map (∗) is injective. We may
also localize at one element of D − {0} so that the cokernel is free over D, and therefore
we have for every j an exact sequence

(3) 0 → AD/(F1, . . . , Fj)AD → RD/(F1, . . . , FD)RD → RD/(F1, . . . , FD)RD

AD/(F1, . . . , Fj)AD
→ 0

consisting of free D-modules.

Finally, we have that G
(
A/(F1, . . . , Fi)A

)
6= 0. It follows that G

(
AD/(F1, . . . , Fi)AD

)
is not a D-torsion module, since it is nonzero after we apply K ⊗D . Hence, after
localizing further at one element of D − {0}, we may assume that

(4) 0 → G
(
AD/(F1, . . . , Fi)AD

)
→ AD/(F1, . . . , Fi)AD → AD/(F1, . . . , Fi, G)AD → 0

is an exact sequence of free D-modules such that the module G
(
AD/(F1, . . . , Fi)AD

)
is

not zero.

We now choose a maximal ideal µ of D. Then κ = D/µ is a finite field, and has prime
characteristic p > 0 for some p. We write Aκ and Rκ for κ ⊗D AD = AD/µAD and
κ⊗D RD = RD/µRD

∼= κ[x1, . . . , xn], respectively. We use w to indicate the image 1⊗w
of w in Aκ or Rκ. By the preceding Lemma, the sequences displayed in (1), (2), (3), and
(4) remain exact after applying κ⊗D .

From (1) we have an injection of κ[F1, . . . , Fd], which is a polynomial ring, into Aκ.
This shows that the dimension of Aκ is at least d. Since the homogeneous maximal ideal
of Aκ is generated by the uj and these are nilpotent on the ideal (F 1, . . . , F d)Aκ, we
have that F 1, . . . , F d is a homogeneous system of parameters for Aκ. From (2) we have
an injection Aκ ↪→ Rκ. From (3), we have that (F 1, . . . , F j)Aκ is contracted from Rκ for
every j. From (4), we have G is not in (F 1, . . . , F i)Aκ, although we still have that

G F i+1 = G1F 1 + · · ·+ GiF i

in Aκ, so that Aκ is not Cohen-Macaulay. This contradicts the positive characteristic
version of the Theorem, which we have already proved. �

Note: we have completed the proof of the sharper form of the result on the Cohen-
Macaulay property for rings of invariants stated on p. 4 of the Lecture Notes of February
16 in all characteristics now, and, consequently, we have completed as well the proof of the
Theorem stated in the middle of p. 3 of the Lecture Notes of February 16.

Remarks. It might seem more natural to prove the Theorem stated in the mdidle of p. 3 of
the Lecture Notes of February 16 by preserving the Reynolds operator, i.e., that the ring
of invariants is a direct summand, while passing to characteristic p. It turns out that this
is not possible, as we shall see below. What we actually did was to preserve finitely many
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specific consequences of the existence of the Reynolds operator, namely the contractedness
of the ideals (F1, . . . , Fj)A from R, while passing to characteristic p, and this was sufficient
to get the proof to work.

Consider the action of G = SL(2, K) on C[X], where X =
(
xi,j

)
is a 2 × 3 matrix of

indeterminates that sends the entries of X to the corresponding entries of γX for all γ ∈ G.
We have already noted that the ring of invariants in this case is C[∆1, ∆2, ∆3], where ∆j

is the determinant of the submatrix of X obtained by deleting the j th column of X: see
the third Example on p. 3 of the Lecture Notes of January 31. In this case ∆1, ∆2, and
∆3 are algebraically independent: this is true even if we special the entries of the matrix
X so as to obtain (

1 1 (y − z)/x
0 x y

)
,

where x, y, and z are indeterminates. It is easy to “descend” the inclusion A = RG =
C[∆1, ∆2, ∆3] ⊆ C[X] to an inclusion of finitely generated Z-algebras: one can take
D = Z, and consider the inclusion Z[∆1, ∆2, ∆3] ⊆ Z[X]. However, this is not split after
we localize at one integer of Z− {0}, nor even if we localize at all positive prime integers
except a single prime p > 0. The Reynolds operator needs the presence of all prime
integers p 6= 0 in the denominators. Note that if the map were split after localizing at all
integers not divisible by p, we could then apply Z/pZ⊗Z and get a splitting of the map
(Z/pZ)[∆1, ∆2, ∆3] ⊆ (Z/pZ)[X]. But we shall see below that this map is not split.

At the same time, we want to note that in the Theorem on generic freeness, it is
important that the algebras Ti are nested, with maps T0 → T1 → T2 → · · · → Ts. The
result is false if one kills a sum of submodules over mutually incomparable subalgebras, or
even a sum of such subalgebras.

Both our proof that (Z/pZ)[∆1, ∆2, ∆3] ⊆ (Z/pZ)[X] does not split and our example
of the fallure of generic freeness when the Ti are incomparable are based on looking at the
same example.

Namely, we consider the module

H =
Z[X]∆1∆2∆3

Z[X]∆2∆3 + Z[X]∆1∆3 + Z[X]∆1∆2

where X is the same 2×3 matrix of indeterminates discussed in the action of SL(2, C) above
and D = T0 = Z. Note that the numerator and the three summands in the denominator
are all finitely generated Z-algebras. We shall see that Q ⊗Z H is a nonzero vector space
over the rational numbers Q, and that H is a divisible abelian group, i.e., that nH = H
for every nonzero integer n. It follows that if we localizate at any nonzero integer n ∈ Z,
Hn is nonzero, and is not free over Zn. If it were free over Zn, it could not be divisible by
p for any integer p that does not divide n, since it is simply a direct sum of copies of Zn.

It remains to prove the assertions that Q ⊗ H 6= 0, that pH = H for every nonzero
prime integer p > 0, and that the map (Z/pZ)[∆1, ∆2 ∆3] → (Z/pZ)[X] is non-split for
every prime integer p > 0.
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We first note that if Z1, Z2, Z3 are indeterminates and B is any base ring, then

H(B, Z) =
B[Z1, Z2, Z3]Z1Z2Z3

B[Z1, Z2, Z3]Z2Z3 + B[Z1, Z2, Z3]Z1Z3 + B[Z1, Z2, Z3]Z1Z2

is nonzero: in fact, the numerator is the free B-module spanned by all monomnials
Za1

1 Za2
2 Za3

3 where a1, a2, a3 ∈ Z, and the denominator is the free B-module spanned
by all such monomials in which one of the integers a1, a2, a3 is nonnegative. Hence, the
quotient may be identified with the free B-module spanned by all monomials Za1

1 Za2
2 Za3

3

such that a1, a2, a3 < 0. Since ∆1, ∆2, ∆3 are algebraically independent over C and,
hence, over Q, we have that H(Q, ∆1, ∆2, ∆3) = H(Q, ∆) is a nonzero vector space over
Q. We have a comutative diagram:

H(C, ∆) ι−−−−→ H(C, ∆)⊗C[∆] C[X]x x
H(Q, ∆) −−−−→ H(Q, ∆)⊗Q[∆1, ∆2, ∆3] Q[X]

.

The top row may be thought of as obtained from the bottom row by applying C⊗Q .

We next observe that because ι : C[∆1, ∆2, ∆3] ⊆ C[X] is split by the Reynolds op-
erator for the action of SL(2, C), and the top row is obtained by tensoring this inclusion
over C[∆1, ∆2, ∆3] with H(C, ∆), the top arrow is an injection. Since C is free and
therefore faithfully flat over Q, the arrow in the bottom row is also an injection. Thus,
H(Q, ∆)⊗Q[∆1, ∆2, ∆3] Q[X] is a nonzero vector space over Q, and this is the same as the
result of apply Q⊗Z to

H(Z, ∆)⊗Z[∆1, ∆2, ∆3] Z[X] =
Z[X]∆1∆2∆3

Z[X]∆2∆3 + Z[X]∆1∆3 + Z[X]∆1∆2

which is the module H described earlier.

Finally, we shall show that H = pH for every prime integer p > 0, and from this
we deduce that (Z/pZ)[∆1, ∆2, ∆3] → (Z/pZ)[X] is non-split for every prime integer
p > 0. Note that H/pH = (Z/pZ)⊗Z H. If (Z/pZ)[∆1, ∆2, ∆3] → (Z/pZ)[X] splits over
(Z/pZ)[∆1, ∆2, ∆3] then by applying ⊗Z/pZ H(Z/pZ,∆) we obtain in injection

H(Z/pZ,∆) → H/pH.

The lefthand term is not zero, and this will imply that H/pH 6= 0. Thus, by showing that
H/pH = 0, we also show that

(Z/pZ)[∆1, ∆2, ∆3] → (Z/pZ)[X]

does not split.

The final step involves some explicit use of local cohomology theory. We refer to to the
Lecture of December 8 from Math 711, Fall 2006, which contains a concise treatment of the
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material we need here as well as further references, but we give a brief description, including
one definition of the functor Ext. A detailed treatment of Ext is given in the Lecture Notes
from Math 615, Winter 2004. There is a discussion of homotopic maps of complexes in
the Lectures of February 2 and February 4: it is used to prove the independence of Ext
from the choice of projective resolution in the definition below. Ext itself is defined in the
Lecture of March 22 from the same set of Lecture Notes.

First recall that if M, N are modules over R, the modules Exti
R(M, N) are defined as

follows. Choose a free (or projective) resolution of M , i.e., an exact complex

· · · → Pi → · · · → P0 → M → 0

such that the Pi are free (or projective). This complex will frequently be infinite. Let P•
be the complex obtained by replacing M by 0, i.e.,

· · · → Pi → · · · → P0 → 0.

Apply the contravariant functor HomR( , N) to this complex to obtain:

0 → HomR(P0, N) → · · · → HomR(Pi, N) → · · · .

Then Exti
R(M, N) is the cohomology of the complex at the HomR(Pi, N) spot (this is still

the kernel of the outgoing map at that spot modulo the image of the incoming map: it is
called cohomology because the maps increase the indices).

There are other definitions: one may use an injective resolution of N instead, for exam-
ple, and there are formulations of the theory where neither projectives nor injectives are
used. Exti(M, N) is independent of the choice of the projective resolution up to canonical
(choice-free) isomorphism. If M is held fixed, Exti

R(M, N) is a covariant functor of N .
If N is held fixed, it is a contravariant functor of M . The functor Ext0R(M, N) may be
identified canonically with HomR(M, N). The elements of Ext1R(M, N) are in bijective
correspondence with isomorphism classes of short exact sequence 0 → N → W → M → 0:
the reason for the name “Ext” is that Ext1R(M, N) classifies such extensions.

There are two long exact sequences associated with Ext. If 0 → N1 → N2 → N3 → 0 is
a short exact sequence of R-modules, then there is a long exact sequence

0 → HomR(M, N1) → HomR(M, N2) → HomR(M, N3) → Ext1R(M, N1) → · · ·

→ Exti
R(M, N1) → Exti

R(M, N2) → Exti
R(M, N3) → Exti+1

R (M, N1) → · · · .

Similarly, if 0 → M1 → M2 → M3 → 0 is exact there is a long exact sequence

0 → HomR(M3, N) → HomR(M2, N) → HomR(M1, N) → Ext1R(M3, N) → · · ·

→ Exti
R(M3, N) → Exti

R(M2, N) → Exti
R(M1, N) → Exti+1

R (M3, N) → · · · .
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The module Exti
R(M, N) is killed both by AnnRM and AnnRN . When R is Noetherian

and M, N are finitely generated, one can calculate the modules Exti
R(M, N) using a free

resolution of M by finitely generated free R-modules, and it follows that all of the modules
Exti

R(M, N) are finitely generated R-modules in this case.

If R is Noetherian, I = (f1, . . . , fs) is an ideal of R, and M is any R-module, the i th
local cohomology module of M with support in I is defined as

lim
−→ t Exti(R/It, M)

where It runs through any sequence of ideals cofinal with the powers of I. In particular, we
may take It = It for all t, but, as we shall see below, other choices of I can be advantageous.
It follows that Hi

I(M) depends only on the the radical of I and not on I itself.

The main result that we are going to assume without proof here is that Hi
I(M) is also

the cohomology at the i th spot of the complex

(∗) 0 → M →
⊕

1≤j≤s

Mfi → · · · →
⊕

1≤j1<j2<···ji≤s

Mfj1fj2 ···fji
→ · · · → Mf1f2···fs → 0.

If we think of the i th term as a direct sum and the i + 1 st term as a direct product, the
maps are determined by specifying maps Mfj1 ···fji

→ Mfk1 ···fki+1
, where j1 < · · · < ji

and k1 < · · · < ki+1. The map is 0 unless, {j1, . . . , ji} is obtained from {k1, . . . , ki+1}
by omitting one term, sayt kt, and then the map is (−1)t−1θ where θ is the natural map
induced by localizing “further” at fkt

.

By the description of local cohomology in (∗) above, the module

H/pH =
(Z/pZ)[X]∆1∆2∆3

(Z/pZ)[X]∆2∆3 + (Z/pZ)[X]∆1∆3 + (Z/pZ)[X]∆1∆2

is precisely the local cohomology module H3
I

(
(Z/pZ)[X]

)
where I = (∆1, ∆2, ∆3)S, where

S = (Z/pZ)[X]. On the other hand, from the definition above this local cohomology
module is

lim
−→ t Ext3S(S/It, S),

where It is any sequence of ideals cofinal with the powers of I. In our case, we use It = I [pt].
The proof is completed by showing that for all t, there is a free resolution of R/It over
R of length 2. Hence, every Ext3S(S/It, S) vanishes. For I = I1 itself, we leave it as an
exercise to show that

0 −→ S2 β−→ S3 α−→ S −→ S/I −→ 0

is such a resolution, where α =
(
∆1 − ∆2 ∆3

)
and the matrix of β is the transpose of

X. The case of It follows at once by applying S ⊗S , where the map S → S is the t th
iteration F t of the Frobenius endomorphism, to this complex. Since S is faithfully flat
over itself via this map, the new complex is exact, and provides a free resolution of S/It

of length 2. �


