
Math 615: Lecture of March 5, 2007

We next want to prove that the algebraic torus GL(1, K)s, which we shall refer to
simply as a torus, is linearly reductive, as asserted earlier, over every algebraically closed
field K, regardless of characteristic. The notation Gm is also used for the multiplicative
group of K viewed as a linear algebraic group via its isomorphism with GL(1, K).

Until further notice, K denotes an algebraically closed field. Let G be any linear alge-
braic group over K. Let K[G] be its coordinate ring, whose elements may be thought of
as the regular maps of the closed algebraic set G to K. (This notation has some danger of
ambiguity, since K[G] is also used to denote the group ring of G over K, but we shall only
use this notation for the coordinate ring here.) The right action of G on itself by multi-
plication (i.e., γ acts so that η 7→ ηγ) induces a (left) action of G on the K-vector space
K[G]. Thus, if f ∈ K[G], γ(f) denotes the function whose value on η ∈ G is f(ηγ). Since
right multiplication by γ is a regular map of G → G, the composition with f : G → K is
also regular.

Discussion: regularity of the action of G on K[G]. We study the map

G×K[G] → K[G]

and prove that it gives an action in our sense. Let f ∈ K[G]. Let µ be the multiplication
map G×G → G. The function (η, γ) 7→ f(ηγ) is the composite f ◦ µ, and so is a regular
function on G×G. Therefore, it is an element of

K[G×G] ∼= K[G]⊗K K[G],

and consequently can be written in the form

k∑
i=1

gi ⊗ hi

where the gi, hi ∈ K[G]. This means that for every fixed γ,

(∗) γ(f) =
k∑

t=1

ht(γ)gt.

Hence, all of the functions γ(f) are in the K-span of the gi, and this is finite-dimensional.
It follows that K[G] is a union of finite-dimensional G-stable subspaces V . Let f1, . . . , fn

be a basis for one such V . For every fi in the basis we have a formula like (∗) of the form

(∗i) γ(fi) =
k∑

t=1

hit(γ)git.
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A priori, k may vary with i but we can work with the largest value of k that occurs. Hence,
for c1, . . . , cn ∈ Kn we have

(∗∗) γ(
n∑

i=1

cifi) =
k∑

t=1

n∑
i=1

cihit(γ)git.

Let Θ be a K-vector space retraction of the K-span of the git to V . Since Θ fixes the
element on the left hand side, which is in V , applying Θ to both sides yields:

(#) γ(
n∑

i=1

cifi) =
k∑

t=1

n∑
i=1

cihit(γ)Θ(git).

Here, each Θ(git) is a fixed linear combination of f1, . . . , fn, and although we do not carry
this out explicitly, the right hand side can now be rewritten as a linear combination of
f1, . . . , fn such that coefficients occurring are polynomials in the regular functions hit on
G and the coefficients c1, . . . , cn parametrizing V ∼= Kn. It follows at once that the action
of G on V is regular for every such V . �

We next note:

Theorem. Let G be a linear algebraic group over a field K, and let N be a fnite dimen-
sional G-module. Then N is isomorphic with a submodule of K[G]⊕h for some h.

Proof. Let θ : N → K be an arbitary K-linear map. We define a K-linear map

θ∨ : N → K[G]

which will turn out to be a map of G-modules as follows: if v ∈ N , let θ∨(v) denote the
function on G whose value on γ ∈ G is θ

(
γ(v)

)
. Since the map G×N → N that gives the

action of G on N is a regular map, for fixed v ∈ N the composite

G ∼= G× {v} ⊆ G×N → N

is a regular map from G → N whose composite with the linear functional θ : N → K is
evidently regular as well. Hence, θ∨(v) ∈ K[G]. This map is clearly linear in v, since θ
and the action of γ on N are K-linear. Moreover, for any η ∈ G and v ∈ N , θ∨

(
η(v)

)
=

η
(
θ∨(v)

)
: the value of either one on γ ∈ G is, from the appropriate definition, θ

(
γ(η(v))

)
.

Choose a basis θ1, . . . , θh for HomK(N, K). Then the map N → K[G]⊕h that sends
v 7→ θ∨1 (v)⊕ · · · ⊕ θ∨h (v) is a G-module injection of N into K[G]⊕h. To see this, note that
if v 6= 0, it is part of a basis, and there is a linear functional whose value on v is not 0.
It follows that for some i, θi(v) 6= 0. But then θ∨i (v) 6= 0, since its value on the identity
element of G is θi(v) 6= 0. �
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Lemma. If M is G-module and is a direct sum of irreducibles {Nλ}λ∈Λ, then every G-
submodule N of M is isomorphic to the direct sum of the irreducibles in a subfamily of
{Nλ}λ∈Λ, and N has a complement that is the (internal) direct sum of a subfamily of the
{Nλ}λ∈Λ.

Proof. Let N be a given submodule of M . We first construct a complement N ′ of the
specified form. By Zorn’s Lemma there is a maximal subfamily of {Nλ}λ∈Λ whose (direct)
sum N ′ is disjoint from N . We claim that M = N ⊕ N ′. We need only check that
M = N + N ′. If not, some irreducible Nλ0 in the family is not contained in N + N ′. But
then its intersection with N + N ′ must be 0, and we can enlarge the subfamily by using
Nλ0 as well.

By the same argument, N ′ has a complement N ′′ in M that is a direct sum of a
subfamily of {Nλ}λ∈Λ. Then since M = N ⊕N ′, N ∼= M/N ′, while since M = N ′′ ⊕N ′,
M/N ′ ∼= N ′′. Thus, N ∼= N ′′, which shows that N is isomorphic with a direct sum of a
subfamily of the irreducibles as required. �

Corollary of the Theorem. If G is a linear algebraic group over K and K[G] is a direct
sum of irreducible G-modules {Nλ}λ∈Λ, then G is linearly reductive, and every G-module
is isomorphic to a direct sum of irreducible G-modules in this family. In particular, up to
isomorphism, every irreducible G-module is in this family.

Proof. By the Theorem above, every finite-dimensional G-module N is a submodule of
K[G]⊕h for some h, and this module is evidently a direct sum of irreducibles from the
same family. The result now follows from the Lemma just above. �

We next want to apply this Corollary to the case where G = GL(1, K)s is a torus. Fix
an s-tuple of integers k1, . . . , ks ∈ Zs. One example of an action of G on a one-dimensional
vector space Kx is the action such that γ = (γ1, . . . , γs) sends

x 7→ γk1
1 · · · γks

s x

for all γ ∈ G. Because the vector space is one-dimensional, this G-module is clearly irre-
ducible. We can now prove that for this G, every G-module is a direct sum of irreducibles
of this type.

Theorem. Let K be a field and let G = GL(1, K)s be a torus. Then G is linearly
reductive, and every G-module is a direct sum of one-dimensional G-modules of the type
described just above.

Proof. K[G] is the tensor product of s copies of the coordinate ring of GL(1, K), and
may be identified with K[x1, x−1

1 , . . . , xs, x−1
s ]. The action of G on this ring is such that

γ = (γ1, . . . , γs) sends xi 7→ γixi, 1 ≤ i ≤ s. It follows at once that µ = xk1
1 · · ·xks

s , where
(k1, . . . , ks) ∈ Zs, is mapped to γk1

1 · · · γks
s µ for every γ = (γ1, . . . , γs) ∈ G, and so K[G]

is the direct sum of copies of G-modules as described just above, one for every monomial
µ. The result is now immediate from the Corollary of the Theorem. �
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Discussion: degree-preserving actions of a torus on a polynomial ring. We keep the as-
sumption that K is an algebraically field, although we shall occasionally be able to relax
it in the statements of some results: this will always be made explicit. The last statement
in the Theorem below is an example.

Let G = GL(1, K)s act by degree-preserving K-algebra automorphisms on the polyno-
mial ring R in n variables over K so that R is a G-module. Giving such an action is the
same as making the one forms [R]1 of R into a G-module: the action then extends uniquely
and automatically to R. Given such an action we may write [R]1 as a direct sum of one-
dimensional irreducible G-modules as above. Therefore, we may choose a basis x1, . . . , xn

for [R]1 over K so that for every j, Kxj is a G-stable submodule. It follows that for every
j we can choose integers k1,j , . . . , ks,j ∈ Z such that for all γ = (γ1, . . . , γs) ∈ G, γ sends

xj 7→ γ
k1,j

1 · · · γks,j
s xj .

Thus, the action of G on R = K[x1, . . . , xn] is completely determined by the s×n matrix(
ki.j

)
of integers. Every action comes from such a matrix, and for every such matrix there

is a corresponding action.

Now consider any monomial µ = xa1
1 · · ·xan

n of R. For all γ = (γ1, . . . , γs) ∈ G, γ sends

µ 7→
( s∏
i=1

(γki,1a1+···+ki,nan

i )
)
µ.

It is now easy to see that the ring of invariants is spanned over K by all monomials
xa1

1 · · ·xan
n such that the s homogeneous linear equations

n∑
j=1

ki,jaj = 0

are satisfied.

We have proved:

Theorem. A ring generated by monomials arises as the ring of invariants of an action
of a torus as above if and only if the ring is spanned over K by the monomials xα where
α runs through the solutions in Nn of some family of s homogenous linear equations over
Z in n unknowns. Consequently, any such ring is Cohen-Macaulay, whether the field is
algebraically closed or not. �

Of course, the Cohen-Macaulay property follows because of our result on rings of invari-
ants of linearly reductive linear algebraic groups acting on polynomial rings. If the field K
is not algebraically closed, we may use the fact that the Cohen-Macaulay property is not
affected when we tensor over K with its algebraic closure K: see problem 4(d) of Problem
Set #2 and its solution.
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Example: the ring defined by the vanishing of the 2 × 2 minors of a generic matrix. Let
G = GL(1, K) acting on K[x1, . . . , xr, y1, . . . , ys], where x1, . . . , xr, y1, . . . , ys are r + s
algebraically independent elements, so that if γ ∈ G, then xi 7→ γxi for 1 ≤ i ≤ r and
yi 7→ γ−1yi for 1 ≤ i ≤ s. Here, there is only one copy of the multiplicative group, and so
there is only one equation in the system:

xa1
1 · · ·xar

r yb1
1 · · · ybs

s

is invariant if and only if

a1 + · · ·+ ar − b1 − · · · − bs = 0.

That is, the ring of invariants is spanned over K by all monomials µ such that the total
degree of µ in the variables x1, . . . , xr, which is a1 + · · · ar, is equal to the total degre of
µ in the variables y1, . . . , ys, which is b1 + · · ·+ bs.

Each such monomial can written as product of terms xiyj , usually not uniquely, by
pairing each of the xi occurring in the monomial with one of the yj occurring. It follows
that

RG = K[xiyj : 1 ≤ i ≤ r, 1 ≤ j ≤ s].

Consider an r×s matrix of new indeterminates Z =
(
zi,j

)
. There is a K-algebra surjection

K[Z] � K[xiyj : 1 ≤ i ≤ r, 1 ≤ j ≤ s] = RG

that sends zi,j 7→ xiyj for all i and j. The ideal I2(Z) is easily checked to be in the
kernel, so that we have a surjection K[Z]/I2(Z) � RG. It is now easy to check that this
map is injective, given the result of problem 6. of Problem Set #3, namely, that I2(Z)
is prime. Assuming the result of problem 6, let F be the fraction field of the domain
D = K[Z]/I2(Z), and let zi,j be the image of zi,j . It is clear that z1,1 has too small a
degree to be in I2(Z), and so z1,1 6= 0. Since the 2× 2 minors of the image Z of Z vanish,
the matrix Z has rank 1 over F . It follows that the i th row of Z is zi,1/z1,1 times the
first row. Define a a K-algebra map K[x1, . . . , xr, y1, . . . , ys] → F by xi 7→ zi,1/z1,1 for
1 ≤ i ≤ r and and yj 7→ z1,j for 1 ≤ j ≤ s. Then the restriction to RG is a K-algebra map
RG → K[Z]/I2(Z) that sends xiyj 7→ zi,j for all i, j and so is an inverse for φ. �

We can now conclude:

Theorem. Let Z be an r×s matrix of indeterminates over any field K. Then K[Z]/I2(Z)
is a Cohen-Macaulay domain. �

We want to prove a somewhat more general result. Recall that a domain D is called
normal or integrally closed if every element of its fraction field that is integral over D is in
D.
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Theorem. Let x1, . . . , xn be indeterminates over the field K and let S be any finitely
generated normal subring of K[x1, 1/x1, . . . , xn, 1/xn] generated by monomials. Then S
is Cohen-Macaulay.

Recall that if M is a semigroup under multiplication with identity 1, disjoint from the
ring B, the semigroup ring B〈M〉 is the free B-module with basis M with multiplication
defined so that if b, b′ ∈ B and µ, µ′ ∈ M then (bµ)(b′µ′) = (bb′)(µµ′). The general rule
for multiplication is then forced by the distributive law. More precisely,∑

i

biµi

∑
j

b′jµ
′
j =

∑
ν

(
∑

µiµ′
j
=ν

bib
′
j)ν

where µ, µ′ ∈M. It is understood that there are only finitely many nonzero terms in each
summation on the left hand side, and this forces the same to be true in the summation on
the right hand side.

We will prove the Theorem by showing that each such ring can be obtained from a
monomial ring which has the Cohen-Macaulay property by virtue of our Theorem on rings
of invariants of tori by adjoining variables and their inverses.

We shall therefore want to characterize the semigroups of exponent vectors in Nn corre-
sponding to rings of invariants of tori. We already know that such a semigroup is the set
of solutions of a finite system of homogeneous linear equations with integer coefficients (we
could also say rational coefficients, since an equation can be replace by a nonzero integer
multiple to clear denominators). That is, such a semigroup is the intersection of a vector
subspace of Qn with Nn. It also follows that H is a such a semigroup if and only if it has
the following two properties:

(1) If α, α′ ∈ H and β = α− α′ ∈ Nn then β ∈ H.

(2) If β ∈ Nn and kβ ∈ H for some integer k > 0, then β ∈ H.

If H is the intersection of a Q-subspace of Qn with Nn, then it must be the intersection
of the subspace it spans with N. The abelian group that H spans is

H −H = {α− α′ : α, α′ ∈ H}.

Let Q+ = {u ∈ Q : u > 0}. The vector space that H spans is then

Q+(H −H) = {uβ : u ∈ Q+, β ∈ H −H}.

In fact, this vector space is also
∞⋃

m=1

1
m

(H −H)

where
1
m

(H −H) = { β

m
: β ∈ H −H}.

The fact that H is the intersection of a Q-vector subspace of Qn with Nn if and only if (1)
and (2) hold follows at once.


