
Math 615: Lecture of March 12, 2007

Tight closure for modules

We want to extend tight closure theory to modules. Suppose we are given N ⊆ M ,
finitely generated modules over a Noetherian ring R of prime characteristic p > 0. We can
define vpe

for v ∈ Rh as follows: if v = (f1, . . . , fh), then vpe

= (fpe

1 , . . . , fpe

h ). If G ⊆ Rh

we define Gpe

as the R-span of all the elements {vpe

: v ∈ G}. One gets the same module
if one takes only the R-span of the pe th powers of generators of G. This agrees with our
definition of I [pe] when I ⊆ R is an ideal. If G ⊆ Rh, we define G∗

Rh , the tight closure of
G in Rh as the set of elements v ∈ Rh such that for some c ∈ R◦, cvq ∈ G[q] for all q � 0,
where q is pe.

Given N ⊆ M where M is finitely generated over R, we define the tight closure N∗
M of

N in M as follows. Map a free module Rh � M , and let G be the inverse image of N in
Rh, so that we also have a surjection G � N . Let v be any element of Rh that maps to
u. Then u ∈ N∗ precisely if v ∈ G∗

Rh as defined above. This is independent of the choice
of v mapping to u. It is also independent of the choice of surjection Rh � M .

It is understood that the tight closure of an ideal is taken in R unless otherwise specified.

Note that:

(0) u ∈ N∗
M if and only if the image u of u in M/N is in 0∗M/N .

As in the ideal case:

(1) N∗
M is a submodule of M and N ⊆ N∗

M . If N ⊆ Q ⊆ M then N∗
M ⊆ Q∗

M .

(2) If N ⊆ M , then (N∗
M )∗M = N∗

M .

An example of tight closure

Let K be any field of characteristic p > 0 with p 6= 3. Let

R = K[X, Y, Z]/(X3 + Y 3 + Z3) = K[x, y, z].

This is a normal ring with an isolated singularity. It is Cohen-Macaulay. It is also a
standard graded K-algebra. (This ring is sometimes called a cubical cone. It is also the
homogeneous coordinate ring of an elliptic curve.)

We claim that z2 ∈ (x, y)∗ − (x, y) in R. In fact, if we kill I = (x, y)R, we have
R/I = K[Z]/(Z3), and the image of Z2 is not 0. Take c = z (the choices c = x and c = y
also work). We need to check that

z(z2q) ∈ (xq, yq)
1
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for all q � 0. Let ρ be the remainder when 2q + 1 is divided by 3, so that ρ = 0 or ρ = 2.
We can write 2q + 1 = 3k + ρ. Then

c(z2)q = z2q+1 = z3k+ρ = (z3)kzρ = (−1)k(x3 + y3)kzρ.

To conclude the proof that z2 ∈ (x, y)∗, it suffices to show that (x3 + y3)k ∈ (xq, yq). But
otherwise we have i + j = k with i ≥ 0 and j ≥ 0, and this implies that 3i ≤ q − 1 and
that 3j ≤ q − 1. Adding these inequalities gives 3k = 3i + 3j ≤ (q − 1) + (q − 1) = 2q − 2,
so that 2q + 1− ρ ≤ 2q − 2 which implies that ρ ≥ 3, a contradiction. �

This gives a non-trivial example where the tight closure of an ideal is larger than the
ideal.

Defining tight closure for Noetherian rings containing the rational numbers

We want to discuss very briefly how one extends the theory to all Noetherian rings
containing Q. For a detailed account see, [M. Hochster and C. Huneke, Tight closure in
equal characteristic zero, preprint] available at

http://www.math.lsa.umich.edu/∼hochster/msr.html

— the notion discussed here corresponds to ∗eq. There is also an exposition in [M. Hochster,
Tight closure in equal characteristic, big Cohen-Macaulay algebras, and solid closure, in
Commutative Algebra: Syzygies, Multiplicities and Birational Algebra, Contemp. Math.
159, Amer. Math. Soc., Providence, R. I., 1994, 173–196].

We first define a notion of tight closure in finitely generated Q-algebras. In fact, any
finitely generated Q-algebra can be obtained as the tensor product over Z of Q with a
finitely generated Z-algebra. If our original Q algebra is R = Q[X1, . . . , Xn]/(F1, . . . , Fm),
note that one can choose a single integer d divisible by all denominators in the polynomials
F1, . . . , Fm, and then

R = Q⊗Z Z[1/d][X1, . . . , Xn]/(F1, . . . , Fm).

We want to keep track of the behavior of this finitely generated Z-algebra as we localize
at finitely many nonzero integers: of course, this has the same effect as localizing Z at a
single nonzero integer. Therefore we shall think of our finitely generated Q-algebra R as
Q ⊗D RD, where D = Z[1/d] is the localization of Z at a single nonzero integer. But we
shall allow that integer d to change so that it has more factors: in effect, as we localize
further, we exclude finitely many more prime integers from consideration. By localizing at
one element of Z−{0} ∈ D we may assume that RD is D-free, by the Theorem on generic
freeness. If B is D-algebra, which typically will be either Q or κ = D/pD for some prime
integer p > 0 not invertible in D, we write RB for B ⊗D RB . Thus, R = RQ. Moreover, if
MD is an RD-module, we write MB for B ⊗D MD.

Given a finitely generated R-module M , we may think of it as the cokernel of a finite
matrix with entries in D. This matrix will have entries in RD if we localize D sufficiently,
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so that we have an RD-module MD such that Q ⊗D MD
∼= M . If D is large enough, we

can assume that a given element of M is in D. If N is a finitely generated submodule of
M , we may assume that D is large enough to contain a given finite set of generators of N
over R, and we consider the RD-submodule ND of MD generated by these elements. By
localizing D at one more nonzero integer, we may assume that all of the terms of

0 → ND → MD → MD/ND → 0

are D-free. It follows that

0 → NB → MB → MB/NB → 0

is exact for every D-algebra B. We then have that N ⊆ M arises from the inclusion
ND ⊆ MD by applying Q⊗D . Note that when M = R and N = I is an ideal of R, we
localize so that RD/ID is D-free.

Now suppose whether we want to test whether u ∈ M is in the tight closure of N in
M in the affine Q-algebra sense. We choose RD and ND ⊆ MD as above, and take D
sufficiently large that u ∈ MD. We then define u ∈ N∗

M if the image of 1 ⊗ u of u is in
N∗

κ ⊆ Mκ, where κ = D/pD = Z/pZ, for all but finitely many prime integers p > 0 that
are prime in D. This condition can be shown to be independent of the choice of D, RD,
and ND ⊆ MD. This turns out to give a very good notion of tight closure when the base
ring is a finitely generated Q-algebra.

Example. Consider R = Q[X, Y, Z]/(X3 + Y 3 + Z3) = Q[x, y, z]. Then in this ring we
have z2 ∈ (x, y)∗, just as we did in positive characterisitic p 6= 3. In fact, we can take
D = Z and RD = Z[X, Y, Z]/(X3 + Y 3 + Z3). We can let ID = (x, y)RD. For every
p 6= 3, with κ = Z/pZ, the image of z2 in Rκ = κ[X, Y, Z]/(X3 + Y 3 + Z3) is in the tight
closure, in the characteristic p > 0 sense, of Iκ = (x, y)κ.

This notion can be extended to arbitrary Noetherian rings containing Q as follows. Let
S be any such ring, let M be a finitely generated S-module and N ⊆ M a submodule.
Let u ∈ M . Then we define u ∈ N∗

M if for every map S → C, where C is a complete
local domain, there exists and affine Q-algebra R0, a finitely generated R0-module M0, a
submodule N0 ⊆ M0, an element u0 ∈ M0, and a map R0 → C such that:

(1) C ⊗R0 M0
∼= C ⊗S M .

(2) The image of C ⊗R0 N0 in C ⊗R0 M0
∼= C ⊗S M is the same as the image of C ⊗S N

in C ⊗S M .

(3) The image 1⊗u0 of u0 in C⊗R0 M0
∼= C⊗S M is the same as the 1⊗u of u in C⊗M .

(4) The element u0 is in the tight closure of N0 in M0 in the affine Q-algebra sense.

That, is roughly speaking, u is in the tight closure of N ⊆ M if for every base change
to a complete local domain, the new u, N , M also arise by base change from an instance
of tight closure over an affine Q-algebra.
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This is a highly technical, convoluted definition, and working with it presents substantial
technical difficulties. Nonetheless, with the help of some very deep results about the
behavior of complete local rings, including a form of the Artin Approximation Theorem,
one can show that this notion satisfies the conditions (1) — (5) discussed in the Lecture
Notes for March 9 for a “good” tight closure theory. For the colon-capturing property (4)
it suffices if the local ring is an excellent domain: we shall not define the property of being
excellent here, but all rings that are localizations of finitely generated algebras over either
a complete local ring (fields are included) or over Z are excellent.

We shall not pursue these ideas further in this course, but this should give the reader
some feeling for how one extends the theory to all Noetherian rings containing Q in a
manner that ultimately rests on reduction to characteristic p > 0.

Another use of tight closure:
contracted expansions from module-finite extension rings

Let R be a domain. Suppose that R ⊆ S is a module-finite extension. In general,
I ⊆ IS ⊆ R, but IS ∩R may be larger than I. The main case is where S is also a domain.
For S has a minimal prime p disjoint from the multiplicative system R−{0}, and R injects
into S = S/p, which is a domain module-finite over R. Moreover, if r ∈ R is in IS, then
the image of r in S/p is in IS.

Suppose that f ∈ R, g ∈ R−{0}, and f/g is integral over R but not in R, which means
that f /∈ gR. We may take S = R[f/g]. Then f ∈ gS ∩ R − gR, so that when R is not
normal even principal ideals fail to be contracted from module-finite extensions. But if R
is normal and contains Q, then every ideal is contracted from every module-finite extension
S. To see this, first note that it suffices to consider the case where S is a domain, by the
argument above. Let K and L be the respective fraction fields of R and S. Multiplication
by an element of L gives a map L → L which is K-linear. If we simply think of this map as
an endomorphism of the finite-dimensional K-vector space L, we may take its trace: i.e.,
pick a basis for L over K, and take the sum of the diagonal entries of the matrix of the
multiplication map with respect to this basis. This is independent of the choice of basis.

This trace map TrL/K : L → K is K-linear (hence, R-linear) and has value h on 1, where
h = [L : K]. When R is a normal Noetherian ring, it turns out that the values of this map
on S are in R. (One can see this as follows. First, R is the intersection of its localizations
RP at height one primes P . For if f, g ∈ R, g 6= 0, and f/g is in the fraction field of R but
not in R, then f /∈ gR. The associated primes of gR have height one, because R is normal.
Using the primary decomposition of gR, we see that f /∈ A for some ideal A primary to
an associated P of gR of height one, and since elements of R − P are not zerodivisors on
A, f /∈ ARP and so f /∈ gRP , i.e., f/g /∈ RP . If TrL/K has a value on S not in R, we
may preserve this while localizing at a height one prime P of R. But then we may replace
R, S by RP , SP and assume that R = RP is a Noetherian discrete valuation ring. Since
S is a torsion-free module over R, it is free, and has a free basis over R, say s1, . . . , sj ,
consisting of elements of S. This is also a basis for L over K, and can be used to calculate
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the trace of s. But now the matrix for multiplication by s has entries in R: for every si

we have

ssi =
h∑

j=1

rijsj

with the rij ∈ R. But then the trace is
∑h

i=1 rii and is in R after all. The condition that
R be Noetherian is not really needed: for example, in the general case, an integrally closed
domain can be shown to be a directed union of Noetherian integrally closed domains, from
which the general case can be deduced. There are several other lines of argument.)

Finally,
1
h

TrL/K : S → R splits R ↪→ S as a map of R-modules: by R-linearity, the fact
that 1 maps to itself implies that the same holds for every element of R. Since we have a
splitting, it follows that every ideal of R is contracted from S.

Although ideals are contracted from module finite-extensions of normal Noetherian do-
mains that contain Q, this is false in positive characteristic p.

Example. Let R = K[X, Y, Z]/(X3 +Y 3 +Z3) where K is a field of characteristic 2. Then
z2 /∈ (x, y)R, as noted earlier. But if we make a module-finite domain extension S of R
that contains x1/2, y1/2, and z1/2, then since z3 = x3 + y3 (we are in characteristic 2, so
that minus signs are not needed) we have z3/2 = x3/2 + y3/2 (since squaring commtutes
with addition and elements have at most one square root in domains of characteristic 2,
taking square roots also commutes with addition in domains of characteristic 2). But then

z2 = z1/2z3/2 = z1/2(xx1/2 + yy1/2) = x1/2z1/2x + y1/2z1/2y ∈ (x, y)S ∩R−R.

However, tight closure “captures” the contracted expansion to a module-finite extension,
which gives another proof that z2 ∈ (x, y)∗ in the Example just above.

Theorem. Let R be a Noetherian domain, and let S be any integral extension of R. Then
for every ideal I of R, IS ∩R ⊆ I∗.

Proof. Suppose that f ∈ R and

(∗) f =
h∑

i=1

fjsj

where the fj ∈ I and the sj ∈ S. We may replace S by R[s1, . . . , sh] ⊆ S, and so assume
that S is module-finite over R. Second, we may kill a minimal prime of S disjoint from
R−{0} and so assume that S is a module-finite domain extension of R. Choose a maximal
set of R-linearly independent elements of S, say u1, . . . , uk, so that Ru1 + · · · + Ruk is
R-torsion. It follows that some nonzero element r ∈ R, we have that

S ∼= rS ⊆ Ru1 + · · ·+ Ruk.



6

Thus, we have an embedding S ↪→ Rk. Suppose that 1 ∈ S has as its image in Rk an
element whose i th coordinate is nonzero, so that the composite map S ↪→ Rk πi−→ R is
nonzero on the element 1 ∈ S, where πi is the i th coordinate projection of Rk � R. This
gives an R-linear map θ : S → R such that θ(1) = c ∈ R is nonzero. Now take q th powers
of both sides of (∗), yielding

(∗∗) fq · 1 =
h∑

i=1

fq
j sq

j .

Since θ is R-linear and f, f1, . . . , fh ∈ R, this yields

fqθ(1) =
h∑

i=1

fq
j θ(sq

j),

and so cfq ∈ I [q] for all q. This implies that f ∈ I∗. �


