Math 615: Lecture of March 16, 2007

We next want to study weakly F-rings, i.e., Noetherian rings of prime characteristic
p > 0 such that every ideal is tightly closed. Until further notice, all given rings R are
assumed to be Noetherian, of prime characteristic p > 0.

Proposition. The tight closure of the (0) ideal in R is the ideal of all nilpotent elements.
Hence, if (0) = (0)*, the R is reduced. In particular, every weakly F-regular ring is reduced.

Proof. 1f u is nilpotent then 1-u% = 0 for all ¢ > 0. Conversely, if ¢ € R° and cu? = 0
for all ¢ > 0, then for every minimal prime p we have that cu? € p for some g. Since
¢ ¢ p, we have that u? € p and so u € p. But the intersection of the minimal primes is the
set of nilpotent elements of R, and so u is nilpotent. The remaining statements are now
obvious. [J

Proposition. Suppose that R = S x T is a product ring, with S, T # 0. Then for every
ideal I x J of S x T, where I C S and J CT are ideals, (I x J)5 = 1§ x JF.

Proof. The first point is that (S x T)° = (S°) x (T°). Hence if cs? € Il9 for all ¢ > 0 and
dt? € Jl for all ¢ > 0, we have that

(c, d)(s, )9 € I x Jld = (] x J)ld]

for all ¢ > 0. The converse is also immediate. [J

Corollary. A finite product Ry X --- X Ry, is weakly F-regular if and only if every factor
18 weakly F-regular. [

Theorem. If every principal ideal of R is tightly closed, then R is a product of normal
domains.

Proof. The fact that (0) = (0)* implies that R is reduced. We first show that R is a
product of domains. If there are two or more minimal primes, the minimal primes can be
partitioned into two nonempty sets. Call the intersection of one set I and the intersection
of the other set J. Then INJ =0, and I + J is not contained in any minimal prime p,
for otherwise, p would have to contain both a minimal prime of I and a minimal prime of
J, and would be equal to both of these. Hence we can choose f € [ and g € J such that
f + ¢ is not in any minimal prime of R, and so is a nonzerodivisor. Note that fg € I N J,
and so fg = 0. Now
(f+9)f1=F = f(f + )

for all ¢, so that f € (f + g)* = (f + g)R. Thus, we can choose r € R such that
f=r(f+g) =rf+rg, and the f —rf = rg. Since f € I and g € J, both sides must
vanish, and so f =rf and rg = 0. Now r(f +g) =rf = f, and

rP(f+g9) =r(rf+rg)=r(f+0)=rf=]
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so that
(f+9)(*=r)=0.

Since f + g is not a zerodivisor, we have that r? —r = 0. Since rf = f isnot 0 (or f +g¢
would be in the minimal primes containing g) r # 0. Since rg = 0, r # 1. Therefore, R
contains a non-trivial idempotent, and is a product of two rings. Both have the property
that principal ideals are tightly closed, because a principal ideal of S x T" is the product of
a principal ideal of S and a principal ideal of T, and we may apply the Proposition above.

We may apply this argument repeatedly and so write R as a finite product of rings
with the property that every principal ideal is tightly closed, and such that none of the
factors is a product. Each of the factors must have just one minimal prime, and so is a
domain. It remains to see that if principal ideals are tightly closed in a domain R, then
R is normal. Suppose that f, g € R, g # 0, and f/g is integral over R. Let S = R[f/¢],
which is module-finite over R. Then f = g(f/g) € ¢S, and so f € (gR)*. But (¢R)* = gR,
and so f € gR, i.e., f/g € R, as required. [

We next want to show that, under mild conditions on R, if R is weakly F-regular then
R is Cohen-Macaulay. Before giving the proof, we make some comments about Cohen-
Macaulay rings in general.

Cohen-Macaulay rings

In this section, we assume that given rings are Noetherian, but make no assumption
about the characteristic. In particular, given rings need not contain a field.

We have defined the notion of a Cohen-Macaulay ring in the case of a finitely generated
N-graded K-algebra R with Ry = K. We have also defined the notion of a Cohen-Macaulay
local ring, and define a Noetherian ring to be Cohen-Macaulay if all of its local rings are
Cohen-Macaulay. We first note:

Lemma. Let (R, m, K) be a local ring and let I be an ideal of height h in R. Then there
s a sequence of elements x1, ... ,xp in I that is part of a system of parameters for R.

Proof. If h = 0 we may take the empty sequence. If h > 1, then I is not contained in
the union of the minimal primes of R, or else we would have that I is contained in one
of them and has height 0. Choose z; € [ not in any minimal prime of R. Then x; is
part of a system of parameters. We use induction. Suppose that z1, ... ,x; € I have been
chosen so that they are part of a system of paramters with ¢ < h. The minimal primes of
(1, ... ,x;)R all have height < ¢ < h, and so I is not contained in any of them and also
not contained in their union. Choose z;4; € I not in any minimal prime of (z1, ... ,x;)R.
Then x1, ... ,z;41 is also part of a system of parameters. [J

Corollary. If (R, m) is Cohen-Macaulay and P is a prime ideal of R, the Rp is Cohen-
Macaulay.
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Proof. Suppose that h = height (P) = dim (Rp). Choose z1, ... ,x) € P part of a system
of parameters for R. Then x1, ...,z is a regular sequence in R, and, hence, also in Rp,
by flatness. [

Theorem. Let R be a Noetherian ring. The following conditions are equivalent:

(1) R is Cohen-Macaulay, i.e., Rp is Cohen-Macaulay for every prime ideal P.

(2) R, is Cohen-Macaulay for every mazximal ideal m.

(3) For every proper ideal I of R, depth; R = height ().

Proof. (1) = (2) is obvious, while (2) = (1) because each Rp is a localization of R,,
for some maximal ideal containing P. Now assume (2) and suppose that I has height

h. Choose a maximal regular sequence z1, ... ,x4 in I on R. Then R/(x1, ... ,xq)R has
depth O on I/(x1, ... ,zq)R, and this remains true after we localize at an associated prime
P of R/(x1, ... ,zq)R that contains I(x1, ... ,x4)R. Hence, z1, ... ,x4 is also a maximal

regular sequence in Rp, which shows that d = h, since Rp is Cohen-Macaulay of dimension

h. Thus, (2) = (3).

Finally, assume (3). Let P be any prime ideal of R of height h. Then P contains a
regular sequence of length height (P) = dim (Rp), and this sequence remains a regular
sequence when we localize at P. Hence, (3) = (1). O

Theorem. If R is Cohen-Macaulay, so is the polynomial ring in n variables over R.

Proof. By induction, we may assume that n = 1. Let M be a maximal ideal of R[X] lying
over m in R. We may replace R by R,, and so we may assume that (R, m, K) is local.
Then M, which is a maximal ideal of R[x] lying over m, corresponds to a maximal ideal
ideal of K[x]: each of these is generated by a monic irreducible polynomial f, which lifts
to a monic polynomial F'in R[x]. Thus, we may assume that M = mR[x] + FR[X]. Let
r1, ... ,xq be a system of parameters in R, which is also a regular sequence. We may kill
the ideal generated by these elements, which also form a regular sequence in R[X]|r(. We
are now in the case where R is an Artin local ring. It is clear that the height of M is
one. Because F' is monic, it is not a zerodivisor: a monic polynomial over any ring is not
a zerodivisor. This shows that the depth of M is one, as needed. [J

Theorem. If R is a finitely generated graded K-algebra with [R])o = K, then R is Cohen-
Macaulay in the graded sense if and only if R is Cohen-Macaulay.

Proof. Let m be the homogeneous maximal ideal. If R,, is Cohen-Macaulay, choose a
maximal regular sequence in m consisting of homogeneous elements (necessarily of positive
degree), say Fy, ..., F,. When we kill these elements, we know that in R/(Fy, ..., Fp)R,
the homogeneous elements of the ideal m/(Fy, ..., F},)R are all contained in the union
of the associated primes of R/(F1, ..., Fy)R. By the Proposition on homogeneous prime
avoidance from the bottom of p. 4 of the Lecture of January 26, m/(f1, ..., fn)R itself
is contained in one of these associated primes, and so m/(f1, ..., frR) is an associated
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prime. This is preserved when we localize at m/(f1, ..., fn)R, and so R,, has depth 0
once we Kill (f1, ..., fn)Rm. Therefore, fi, ..., fx is a maximal regular sequence in R,,,
and this implies that A = dim (R,,) = dim (R). Thus, R is Cohen-Macaulay in the graded
sense.

Now suppose that R is Cohen-Macaulay in the graded sense. Then R is a module-finite
extension of a polynomial ring A = K[X;, ..., X,], and the polynomial ring is Cohen-
Macaulay. Any maximal ideal q of R lies over a maximal ideal n of A. These have the
same height, since we have both the going up and going down theorems in this situation:
A is normal, and R is A-free and, hence, torsion-free over A. Since R is A-free, a regular
sequence in Ay is regular on R, which is free and, hence, faithfully flat over A, and will
remain regular on R, which is a localization of R,. [

We next observe:

Theorem. Let (R, m, K) be a local ring and M # 0 a finitely generated R-module of
depth s on m. Then every nonzero submodule N of M has dimension at least s.

Proof. We use induction on s. If s = 0 there is nothing to prove. Assume s > 0 and that
the result holds for smaller s. If M has a submodule N # 0 of dimension < s — 1, we may
choose N maximal with respect to this property. If N’ is any nonzero submodule of M of
dimension < s, then N’ C N. To see this, note that N & N’ has dimension < s, and maps
onto N + N’ C M, which therefore also has dimension < s. By the maximality of N, we
must have N + N’ = N. Since depth,, M > 1, we can choose = € m not a zerodivisor
on M, and, hence, also not a zerodivisor on N. We claim that z is not a zerodivisor on
M = M/N, for if u € M — N and xu € N, then Rzu C N has dimension < s. But this
module is isomorphic with Ru C M, since z is not a zerodivisor, and so dim (Ru) < s.
But then Ru C N. Consequently, multiplication by = induces an isomorphism of the exact
sequence 0 — N — M — M — 0 with the sequence 0 — 2N — zM — xM — 0, and so
this sequence is also exact. But we have a commutative diagram

0 —— N M M —— 0
0 —— zN M aM —— 0

where the vertical arrows are inclusions. By the nine lemma, or by an elementary diagram
chase, the sequence of cokernels 0 — N/xN — M/xM — M /xM — 0 is exact. Since z is
a nonzerodivisor on N and M, dim (N/xN) = dim (N)—1 < s—1, while depth,, M /xM =
s — 1. This contradicts the induction hypothesis. [

Corollary. If (R, m, K) is a Cohen-Macaulay local ring, then for every minimal prime
p of R, dim (R/p) = dim (R).

Proof. If p is minimal, then p € Ass(R) and so R/p — R. By the preceding Theorem,
dim (R/p) > depth,, R = dim (R), while the other inclusion is obvious. [



Thus, a Cohen-Macaulay local ring cannot exhibit the kind of behavior one observes
in R = K[z, y, 2]]/((z, y) N (z)): this ring has two minimal primes. One of them, py,
generated by the images of x and y, is such that R/p; has dimension 1. The other, po,
generated by the image of z, is such that R/ps has dimension 2.

A Noetherian ring is called catenary if for any two prime ideals P C @), any two saturated
chains of primes joining P to @) have the same length. If R is catenary, then so is R/I for
every ideal I, since primes containing I are in bijective correspondence with primes of R
containing I, and saturated chains of primes in R/I joining P/I to Q/I, where I C P C )
and P, ) are primes of R, correspond to saturated chains of primes of R joinig P to Q.
Similarly, any localization of a catenary ring is catenary. M. Nagata gave the first examples
of Noetherian rings that are not catenary: there is a local domain (R, m, K) of dimension
3, for example, containing saturated chains 0 C @ C m and 0 C P; C P>, C m, where all
inclusions are strict. See [M. Nagata, Local rings, Interscience, New York, 1962], Appendx
A1, pp. 204-205. Although @ has height one and dim (R) = 3, the dimension of R/Q is 1.
Nagata also showed that even when a Noetherian ring is catenary, the polynomial ring in
one variable over it need not be.

A Noetherian ring R is called universally catenary if every finitely generated R-algebra
is catenary. Cohen-Macaulay rings are universally catenary, as we show in the two results
below.

Theorem. A Cohen-Macaulay ring R is catenary, and for any two prime ideals P C Q) in
R, every saturated chain of prime ideals joining P to Q has length height (Q) — height (P).
Hence, every finitely generated algebra over a Cohen-Macaulay ring is catenary.

Proof. The issues are unaffected by localizing at ). Thus, we may assume that R is
local and that @) is the maximal ideal. There is part of a system of parameters of length
h = height (P) contained in P, call it x1, ... ,x, by the Lemma at the beginning of this
section. This sequence is a regular sequence on R and in so on Rp, which implies that
its image in Rp is system of parameters. We now replace R by R/(z1, ... ,zp). Both the
dimension and depth of R have decreased by h, so that R is still Cohen-Macaulay. ) and
P are replaced by their images, which have heights dim (R) — h and 0, and dim (R) — h =
dim (R/(x1, ... ,xn). We have therefore reduced to the case where R is local and P is a
minimal prime. We know that dim (R) = dim (R/P), and so at least one saturated chain
from P to @ has length height (Q) — height (P) = height (Q) — 0 = dim (R). To complete
the proof, it will suffice to show that all saturated chains from P to () have the same length,
and we may use induction on dim (R). Copnsider two such chains, and let their smallest
elements other than P be P; and P;. Choose an element z in P; not in any minimal prime,
and an element y of P; not in any minimal prime. Then zy is a nonzerodivisor in R, and
Py, P| are both minimal primes of zy. The ring R/(xy) is Cohen-Macaulay of dimension
dim (R) — 1. The result now follows from the induction hypothesis applied to R/(xy): the
images of the two saturated chains (omitting P from each) give saturated chains joining
Py /(zy) (respectively, P{/(zy)) to Q/(zy) in R/(zy). These have the same length, and,
hence, so did the original two chains. [



Corollary. Cohen-Macaulay rings are universally catenary, i.e., a finitely generated al-
gebra over a Cohen-Macaulay ring is catenary.

Proof. Such an algebra is a homomorphic image of a polynomial ring in finitely many
variables over a Cohen-Macaulay ring, which is again Cohen-Macaulay, and homomorphic
images of catenary rings are catenary. [J



