
Math 615: Lecture of March 16, 2007

We next want to study weakly F-rings, i.e., Noetherian rings of prime characteristic
p > 0 such that every ideal is tightly closed. Until further notice, all given rings R are
assumed to be Noetherian, of prime characteristic p > 0.

Proposition. The tight closure of the (0) ideal in R is the ideal of all nilpotent elements.
Hence, if (0) = (0)∗, the R is reduced. In particular, every weakly F-regular ring is reduced.

Proof. If u is nilpotent then 1 · uq = 0 for all q � 0. Conversely, if c ∈ R◦ and cuq = 0
for all q � 0, then for every minimal prime p we have that cuq ∈ p for some q. Since
c /∈ p, we have that uq ∈ p and so u ∈ p. But the intersection of the minimal primes is the
set of nilpotent elements of R, and so u is nilpotent. The remaining statements are now
obvious. �

Proposition. Suppose that R = S × T is a product ring, with S, T 6= 0. Then for every
ideal I × J of S × T , where I ⊆ S and J ⊆ T are ideals, (I × J)∗R = I∗S × J∗T .

Proof. The first point is that (S×T )◦ = (S◦)× (T ◦). Hence if csq ∈ I [q] for all q � 0 and
dtq ∈ J [q] for all q � 0, we have that

(c, d)(s, t)q ∈ I [q] × J [q] = (I × J)[q]

for all q � 0. The converse is also immediate. �

Corollary. A finite product R1 × · · · ×Rh is weakly F-regular if and only if every factor
is weakly F-regular. �

Theorem. If every principal ideal of R is tightly closed, then R is a product of normal
domains.

Proof. The fact that (0) = (0)∗ implies that R is reduced. We first show that R is a
product of domains. If there are two or more minimal primes, the minimal primes can be
partitioned into two nonempty sets. Call the intersection of one set I and the intersection
of the other set J . Then I ∩ J = 0, and I + J is not contained in any minimal prime p,
for otherwise, p would have to contain both a minimal prime of I and a minimal prime of
J , and would be equal to both of these. Hence we can choose f ∈ I and g ∈ J such that
f + g is not in any minimal prime of R, and so is a nonzerodivisor. Note that fg ∈ I ∩ J ,
and so fg = 0. Now

(f + g)fq = fq+1 = f(f + g)q

for all q, so that f ∈ (f + g)∗ = (f + g)R. Thus, we can choose r ∈ R such that
f = r(f + g) = rf + rg, and the f − rf = rg. Since f ∈ I and g ∈ J , both sides must
vanish, and so f = rf and rg = 0. Now r(f + g) = rf = f , and

r2(f + g) = r(rf + rg) = r(f + 0) = rf = f,
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so that
(f + g)(r2 − r) = 0.

Since f + g is not a zerodivisor, we have that r2 − r = 0. Since rf = f is not 0 (or f + g
would be in the minimal primes containing g) r 6= 0. Since rg = 0, r 6= 1. Therefore, R
contains a non-trivial idempotent, and is a product of two rings. Both have the property
that principal ideals are tightly closed, because a principal ideal of S×T is the product of
a principal ideal of S and a principal ideal of T , and we may apply the Proposition above.

We may apply this argument repeatedly and so write R as a finite product of rings
with the property that every principal ideal is tightly closed, and such that none of the
factors is a product. Each of the factors must have just one minimal prime, and so is a
domain. It remains to see that if principal ideals are tightly closed in a domain R, then
R is normal. Suppose that f, g ∈ R, g 6= 0, and f/g is integral over R. Let S = R[f/g],
which is module-finite over R. Then f = g(f/g) ∈ gS, and so f ∈ (gR)∗. But (gR)∗ = gR,
and so f ∈ gR, i.e., f/g ∈ R, as required. �

We next want to show that, under mild conditions on R, if R is weakly F-regular then
R is Cohen-Macaulay. Before giving the proof, we make some comments about Cohen-
Macaulay rings in general.

Cohen-Macaulay rings

In this section, we assume that given rings are Noetherian, but make no assumption
about the characteristic. In particular, given rings need not contain a field.

We have defined the notion of a Cohen-Macaulay ring in the case of a finitely generated
N-graded K-algebra R with R0 = K. We have also defined the notion of a Cohen-Macaulay
local ring, and define a Noetherian ring to be Cohen-Macaulay if all of its local rings are
Cohen-Macaulay. We first note:

Lemma. Let (R, m, K) be a local ring and let I be an ideal of height h in R. Then there
is a sequence of elements x1, . . . , xh in I that is part of a system of parameters for R.

Proof. If h = 0 we may take the empty sequence. If h ≥ 1, then I is not contained in
the union of the minimal primes of R, or else we would have that I is contained in one
of them and has height 0. Choose x1 ∈ I not in any minimal prime of R. Then x1 is
part of a system of parameters. We use induction. Suppose that x1, . . . , xi ∈ I have been
chosen so that they are part of a system of paramters with i < h. The minimal primes of
(x1, . . . , xi)R all have height ≤ i < h, and so I is not contained in any of them and also
not contained in their union. Choose xi+1 ∈ I not in any minimal prime of (x1, . . . , xi)R.
Then x1, . . . , xi+1 is also part of a system of parameters. �

Corollary. If (R, m) is Cohen-Macaulay and P is a prime ideal of R, the RP is Cohen-
Macaulay.
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Proof. Suppose that h = height (P ) = dim (RP ). Choose x1, . . . , xh ∈ P part of a system
of parameters for R. Then x1, . . . , xh is a regular sequence in R, and, hence, also in RP ,
by flatness. �

Theorem. Let R be a Noetherian ring. The following conditions are equivalent:

(1) R is Cohen-Macaulay, i.e., RP is Cohen-Macaulay for every prime ideal P .

(2) Rm is Cohen-Macaulay for every maximal ideal m.

(3) For every proper ideal I of R, depthIR = height (I).

Proof. (1) ⇒ (2) is obvious, while (2) ⇒ (1) because each RP is a localization of Rm

for some maximal ideal containing P . Now assume (2) and suppose that I has height
h. Choose a maximal regular sequence x1, . . . , xd in I on R. Then R/(x1, . . . , xd)R has
depth 0 on I/(x1, . . . , xd)R, and this remains true after we localize at an associated prime
P of R/(x1, . . . , xd)R that contains I(x1, . . . , xd)R. Hence, x1, . . . , xd is also a maximal
regular sequence in RP , which shows that d = h, since RP is Cohen-Macaulay of dimension
h. Thus, (2) ⇒ (3).

Finally, assume (3). Let P be any prime ideal of R of height h. Then P contains a
regular sequence of length height (P ) = dim (RP ), and this sequence remains a regular
sequence when we localize at P . Hence, (3) ⇒ (1). �

Theorem. If R is Cohen-Macaulay, so is the polynomial ring in n variables over R.

Proof. By induction, we may assume that n = 1. Let M be a maximal ideal of R[X] lying
over m in R. We may replace R by Rm and so we may assume that (R, m, K) is local.
Then M, which is a maximal ideal of R[x] lying over m, corresponds to a maximal ideal
ideal of K[x]: each of these is generated by a monic irreducible polynomial f , which lifts
to a monic polynomial F in R[x]. Thus, we may assume that M = mR[x] + FR[X]. Let
x1, . . . , xd be a system of parameters in R, which is also a regular sequence. We may kill
the ideal generated by these elements, which also form a regular sequence in R[X]M. We
are now in the case where R is an Artin local ring. It is clear that the height of M is
one. Because F is monic, it is not a zerodivisor: a monic polynomial over any ring is not
a zerodivisor. This shows that the depth of M is one, as needed. �

Theorem. If R is a finitely generated graded K-algebra with [R]0 = K, then R is Cohen-
Macaulay in the graded sense if and only if R is Cohen-Macaulay.

Proof. Let m be the homogeneous maximal ideal. If Rm is Cohen-Macaulay, choose a
maximal regular sequence in m consisting of homogeneous elements (necessarily of positive
degree), say F1, . . . , Fh. When we kill these elements, we know that in R/(F1, . . . , Fh)R,
the homogeneous elements of the ideal m/(F1, . . . , Fh)R are all contained in the union
of the associated primes of R/(F1, . . . , Fh)R. By the Proposition on homogeneous prime
avoidance from the bottom of p. 4 of the Lecture of January 26, m/(f1, . . . , fh)R itself
is contained in one of these associated primes, and so m/(f1, . . . , fhR) is an associated
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prime. This is preserved when we localize at m/(f1, . . . , fh)R, and so Rm has depth 0
once we kill (f1, . . . , fh)Rm. Therefore, f1, . . . , fh is a maximal regular sequence in Rm,
and this implies that h = dim (Rm) = dim (R). Thus, R is Cohen-Macaulay in the graded
sense.

Now suppose that R is Cohen-Macaulay in the graded sense. Then R is a module-finite
extension of a polynomial ring A = K[X1, . . . , Xn], and the polynomial ring is Cohen-
Macaulay. Any maximal ideal q of R lies over a maximal ideal n of A. These have the
same height, since we have both the going up and going down theorems in this situation:
A is normal, and R is A-free and, hence, torsion-free over A. Since R is A-free, a regular
sequence in An is regular on Rn, which is free and, hence, faithfully flat over A, and will
remain regular on Rq, which is a localization of Rn. �

We next observe:

Theorem. Let (R, m, K) be a local ring and M 6= 0 a finitely generated R-module of
depth s on m. Then every nonzero submodule N of M has dimension at least s.

Proof. We use induction on s. If s = 0 there is nothing to prove. Assume s > 0 and that
the result holds for smaller s. If M has a submodule N 6= 0 of dimension ≤ s− 1, we may
choose N maximal with respect to this property. If N ′ is any nonzero submodule of M of
dimension < s, then N ′ ⊆ N . To see this, note that N ⊕N ′ has dimension < s, and maps
onto N + N ′ ⊆ M , which therefore also has dimension < s. By the maximality of N , we
must have N + N ′ = N . Since depthmM ≥ 1, we can choose x ∈ m not a zerodivisor
on M , and, hence, also not a zerodivisor on N . We claim that x is not a zerodivisor on
M = M/N , for if u ∈ M − N and xu ∈ N , then Rxu ⊆ N has dimension < s. But this
module is isomorphic with Ru ⊆ M , since x is not a zerodivisor, and so dim (Ru) < s.
But then Ru ⊆ N . Consequently, multiplication by x induces an isomorphism of the exact
sequence 0 → N → M → M → 0 with the sequence 0 → xN → xM → xM → 0, and so
this sequence is also exact. But we have a commutative diagram

0 −−−−→ N −−−−→ M −−−−→ M −−−−→ 0x x x
0 −−−−→ xN −−−−→ xM −−−−→ xM −−−−→ 0

where the vertical arrows are inclusions. By the nine lemma, or by an elementary diagram
chase, the sequence of cokernels 0→ N/xN →M/xM →M/xM → 0 is exact. Since x is
a nonzerodivisor on N and M , dim (N/xN) = dim (N)−1 < s−1, while depthmM/xM =
s− 1. This contradicts the induction hypothesis. �

Corollary. If (R, m, K) is a Cohen-Macaulay local ring, then for every minimal prime
p of R, dim (R/p) = dim (R).

Proof. If p is minimal, then p ∈ Ass (R) and so R/p ↪→ R. By the preceding Theorem,
dim (R/p) ≥ depthmR = dim (R), while the other inclusion is obvious. �
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Thus, a Cohen-Macaulay local ring cannot exhibit the kind of behavior one observes
in R = K[[x, y, z]]/

(
(x, y) ∩ (z)

)
: this ring has two minimal primes. One of them, p1,

generated by the images of x and y, is such that R/p1 has dimension 1. The other, p2,
generated by the image of z, is such that R/p2 has dimension 2.

A Noetherian ring is called catenary if for any two prime ideals P ⊆ Q, any two saturated
chains of primes joining P to Q have the same length. If R is catenary, then so is R/I for
every ideal I, since primes containing I are in bijective correspondence with primes of R
containing I, and saturated chains of primes in R/I joining P/I to Q/I, where I ⊆ P ⊆ Q
and P , Q are primes of R, correspond to saturated chains of primes of R joinig P to Q.
Similarly, any localization of a catenary ring is catenary. M. Nagata gave the first examples
of Noetherian rings that are not catenary: there is a local domain (R, m, K) of dimension
3, for example, containing saturated chains 0 ⊂ Q ⊂ m and 0 ⊂ P1 ⊂ P2 ⊂ m, where all
inclusions are strict. See [M. Nagata, Local rings, Interscience, New York, 1962], Appendx
A1, pp. 204–205. Although Q has height one and dim (R) = 3, the dimension of R/Q is 1.
Nagata also showed that even when a Noetherian ring is catenary, the polynomial ring in
one variable over it need not be.

A Noetherian ring R is called universally catenary if every finitely generated R-algebra
is catenary. Cohen-Macaulay rings are universally catenary, as we show in the two results
below.

Theorem. A Cohen-Macaulay ring R is catenary, and for any two prime ideals P ⊆ Q in
R, every saturated chain of prime ideals joining P to Q has length height (Q)−height (P ).
Hence, every finitely generated algebra over a Cohen-Macaulay ring is catenary.

Proof. The issues are unaffected by localizing at Q. Thus, we may assume that R is
local and that Q is the maximal ideal. There is part of a system of parameters of length
h = height (P ) contained in P , call it x1, . . . , xh, by the Lemma at the beginning of this
section. This sequence is a regular sequence on R and in so on RP , which implies that
its image in RP is system of parameters. We now replace R by R/(x1, . . . , xh). Both the
dimension and depth of R have decreased by h, so that R is still Cohen-Macaulay. Q and
P are replaced by their images, which have heights dim (R)− h and 0, and dim (R)− h =
dim (R/(x1, . . . , xh). We have therefore reduced to the case where R is local and P is a
minimal prime. We know that dim (R) = dim (R/P ), and so at least one saturated chain
from P to Q has length height (Q)− height (P ) = height (Q)− 0 = dim (R). To complete
the proof, it will suffice to show that all saturated chains from P to Q have the same length,
and we may use induction on dim (R). Copnsider two such chains, and let their smallest
elements other than P be P1 and P ′

1. Choose an element x in P1 not in any minimal prime,
and an element y of P ′

1 not in any minimal prime. Then xy is a nonzerodivisor in R, and
P1, P ′

1 are both minimal primes of xy. The ring R/(xy) is Cohen-Macaulay of dimension
dim (R)− 1. The result now follows from the induction hypothesis applied to R/(xy): the
images of the two saturated chains (omitting P from each) give saturated chains joining
P1/(xy) (respectively, P ′

1/(xy)) to Q/(xy) in R/(xy). These have the same length, and,
hence, so did the original two chains. �
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Corollary. Cohen-Macaulay rings are universally catenary, i.e., a finitely generated al-
gebra over a Cohen-Macaulay ring is catenary.

Proof. Such an algebra is a homomorphic image of a polynomial ring in finitely many
variables over a Cohen-Macaulay ring, which is again Cohen-Macaulay, and homomorphic
images of catenary rings are catenary. �


