Math 615: Lecture of March 16, 2007

We next want to study weakly F-rings, i.e., Noetherian rings of prime characteristic p > 0 such that every ideal is tightly closed. Until further notice, all given rings R are assumed to be Noetherian, of prime characteristic p > 0.

Proposition. The tight closure of the (0) ideal in R is the ideal of all nilpotent elements. Hence, if $(0) = (0)^*$, the R is reduced. In particular, every weakly F-regular ring is reduced.

Proof. If u is nilpotent then $1 \cdot u^q = 0$ for all $q \gg 0$. Conversely, if $c \in R^\circ$ and $cu^q = 0$ for all $q \gg 0$, then for every minimal prime \mathfrak{p} we have that $cu^q \in \mathfrak{p}$ for some q. Since $c \notin \mathfrak{p}$, we have that $u^q \in \mathfrak{p}$ and so $u \in \mathfrak{p}$. But the intersection of the minimal primes is the set of nilpotent elements of R, and so u is nilpotent. The remaining statements are now obvious. \Box

Proposition. Suppose that $R = S \times T$ is a product ring, with $S, T \neq 0$. Then for every ideal $I \times J$ of $S \times T$, where $I \subseteq S$ and $J \subseteq T$ are ideals, $(I \times J)^*_R = I^*_S \times J^*_T$.

Proof. The first point is that $(S \times T)^{\circ} = (S^{\circ}) \times (T^{\circ})$. Hence if $cs^q \in I^{[q]}$ for all $q \gg 0$ and $dt^q \in J^{[q]}$ for all $q \gg 0$, we have that

$$(c, d)(s, t)^q \in I^{[q]} \times J^{[q]} = (I \times J)^{[q]}$$

for all $q \gg 0$. The converse is also immediate. \Box

Corollary. A finite product $R_1 \times \cdots \times R_h$ is weakly F-regular if and only if every factor is weakly F-regular. \Box

Theorem. If every principal ideal of R is tightly closed, then R is a product of normal domains.

Proof. The fact that $(0) = (0)^*$ implies that R is reduced. We first show that R is a product of domains. If there are two or more minimal primes, the minimal primes can be partitioned into two nonempty sets. Call the intersection of one set I and the intersection of the other set J. Then $I \cap J = 0$, and I + J is not contained in any minimal prime \mathfrak{p} , for otherwise, \mathfrak{p} would have to contain both a minimal prime of I and a minimal prime of J, and would be equal to both of these. Hence we can choose $f \in I$ and $g \in J$ such that f + g is not in any minimal prime of R, and so is a nonzerodivisor. Note that $fg \in I \cap J$, and so fg = 0. Now

$$(f+g)f^q = f^{q+1} = f(f+g)^q$$

for all q, so that $f \in (f+g)^* = (f+g)R$. Thus, we can choose $r \in R$ such that f = r(f+g) = rf + rg, and the f - rf = rg. Since $f \in I$ and $g \in J$, both sides must vanish, and so f = rf and rg = 0. Now r(f+g) = rf = f, and

$$r^{2}(f+g) = r(rf+rg) = r(f+0) = rf = f,$$

1

so that

 $\mathbf{2}$

$$(f+g)(r^2-r) = 0.$$

Since f + g is not a zerodivisor, we have that $r^2 - r = 0$. Since rf = f is not 0 (or f + g would be in the minimal primes containing g) $r \neq 0$. Since rg = 0, $r \neq 1$. Therefore, R contains a non-trivial idempotent, and is a product of two rings. Both have the property that principal ideals are tightly closed, because a principal ideal of $S \times T$ is the product of a principal ideal of S and a principal ideal of T, and we may apply the Proposition above.

We may apply this argument repeatedly and so write R as a finite product of rings with the property that every principal ideal is tightly closed, and such that none of the factors is a product. Each of the factors must have just one minimal prime, and so is a domain. It remains to see that if principal ideals are tightly closed in a domain R, then R is normal. Suppose that $f, g \in R, g \neq 0$, and f/g is integral over R. Let S = R[f/g], which is module-finite over R. Then $f = g(f/g) \in gS$, and so $f \in (gR)^*$. But $(gR)^* = gR$, and so $f \in gR$, i.e., $f/g \in R$, as required. \Box

We next want to show that, under mild conditions on R, if R is weakly F-regular then R is Cohen-Macaulay. Before giving the proof, we make some comments about Cohen-Macaulay rings in general.

Cohen-Macaulay rings

In this section, we assume that given rings are Noetherian, but make no assumption about the characteristic. In particular, given rings need not contain a field.

We have defined the notion of a Cohen-Macaulay ring in the case of a finitely generated \mathbb{N} -graded K-algebra R with $R_0 = K$. We have also defined the notion of a Cohen-Macaulay local ring, and define a Noetherian ring to be Cohen-Macaulay if all of its local rings are Cohen-Macaulay. We first note:

Lemma. Let (R, m, K) be a local ring and let I be an ideal of height h in R. Then there is a sequence of elements x_1, \ldots, x_h in I that is part of a system of parameters for R.

Proof. If h = 0 we may take the empty sequence. If $h \ge 1$, then I is not contained in the union of the minimal primes of R, or else we would have that I is contained in one of them and has height 0. Choose $x_1 \in I$ not in any minimal prime of R. Then x_1 is part of a system of parameters. We use induction. Suppose that $x_1, \ldots, x_i \in I$ have been chosen so that they are part of a system of parameters with i < h. The minimal primes of $(x_1, \ldots, x_i)R$ all have height $\leq i < h$, and so I is not contained in any of them and also not contained in their union. Choose $x_{i+1} \in I$ not in any minimal prime of $(x_1, \ldots, x_i)R$. Then x_1, \ldots, x_{i+1} is also part of a system of parameters. \Box

Corollary. If (R, m) is Cohen-Macaulay and P is a prime ideal of R, the R_P is Cohen-Macaulay.

Proof. Suppose that $h = \text{height}(P) = \dim(R_P)$. Choose $x_1, \ldots, x_h \in P$ part of a system of parameters for R. Then x_1, \ldots, x_h is a regular sequence in R, and, hence, also in R_P , by flatness. \Box

Theorem. Let R be a Noetherian ring. The following conditions are equivalent:

- (1) R is Cohen-Macaulay, i.e., R_P is Cohen-Macaulay for every prime ideal P.
- (2) R_m is Cohen-Macaulay for every maximal ideal m.
- (3) For every proper ideal I of R, depth_IR = height (I).

Proof. (1) \Rightarrow (2) is obvious, while (2) \Rightarrow (1) because each R_P is a localization of R_m for some maximal ideal containing P. Now assume (2) and suppose that I has height h. Choose a maximal regular sequence x_1, \ldots, x_d in I on R. Then $R/(x_1, \ldots, x_d)R$ has depth 0 on $I/(x_1, \ldots, x_d)R$, and this remains true after we localize at an associated prime P of $R/(x_1, \ldots, x_d)R$ that contains $I(x_1, \ldots, x_d)R$. Hence, x_1, \ldots, x_d is also a maximal regular sequence in R_P , which shows that d = h, since R_P is Cohen-Macaulay of dimension h. Thus, (2) \Rightarrow (3).

Finally, assume (3). Let P be any prime ideal of R of height h. Then P contains a regular sequence of length height $(P) = \dim(R_P)$, and this sequence remains a regular sequence when we localize at P. Hence, $(3) \Rightarrow (1)$. \Box

Theorem. If R is Cohen-Macaulay, so is the polynomial ring in n variables over R.

Proof. By induction, we may assume that n = 1. Let \mathcal{M} be a maximal ideal of R[X] lying over m in R. We may replace R by R_m and so we may assume that (R, m, K) is local. Then \mathcal{M} , which is a maximal ideal of R[x] lying over m, corresponds to a maximal ideal ideal of K[x]: each of these is generated by a monic irreducible polynomial f, which lifts to a monic polynomial F in R[x]. Thus, we may assume that $\mathcal{M} = mR[x] + FR[X]$. Let x_1, \ldots, x_d be a system of parameters in R, which is also a regular sequence. We may kill the ideal generated by these elements, which also form a regular sequence in $R[X]_{\mathcal{M}}$. We are now in the case where R is an Artin local ring. It is clear that the height of \mathcal{M} is one. Because F is monic, it is not a zerodivisor: a monic polynomial over any ring is not a zerodivisor. This shows that the depth of \mathcal{M} is one, as needed. \Box

Theorem. If R is a finitely generated graded K-algebra with $[R]_0 = K$, then R is Cohen-Macaulay in the graded sense if and only if R is Cohen-Macaulay.

Proof. Let m be the homogeneous maximal ideal. If R_m is Cohen-Macaulay, choose a maximal regular sequence in m consisting of homogeneous elements (necessarily of positive degree), say F_1, \ldots, F_h . When we kill these elements, we know that in $R/(F_1, \ldots, F_h)R$, the homogeneous elements of the ideal $m/(F_1, \ldots, F_h)R$ are all contained in the union of the associated primes of $R/(F_1, \ldots, F_h)R$. By the Proposition on homogeneous prime avoidance from the bottom of p. 4 of the Lecture of January 26, $m/(f_1, \ldots, f_h)R$ itself is contained in one of these associated primes, and so $m/(f_1, \ldots, f_hR)$ is an associated

prime. This is preserved when we localize at $m/(f_1, \ldots, f_h)R$, and so R_m has depth 0 once we kill $(f_1, \ldots, f_h)R_m$. Therefore, f_1, \ldots, f_h is a maximal regular sequence in R_m , and this implies that $h = \dim(R_m) = \dim(R)$. Thus, R is Cohen-Macaulay in the graded sense.

Now suppose that R is Cohen-Macaulay in the graded sense. Then R is a module-finite extension of a polynomial ring $A = K[X_1, \ldots, X_n]$, and the polynomial ring is Cohen-Macaulay. Any maximal ideal \mathfrak{q} of R lies over a maximal ideal \mathfrak{n} of A. These have the same height, since we have both the going up and going down theorems in this situation: A is normal, and R is A-free and, hence, torsion-free over A. Since R is A-free, a regular sequence in A_n is regular on R_n , which is free and, hence, faithfully flat over A, and will remain regular on $R_{\mathfrak{q}}$, which is a localization of R_n . \Box

We next observe:

Theorem. Let (R, m, K) be a local ring and $M \neq 0$ a finitely generated R-module of depth s on m. Then every nonzero submodule N of M has dimension at least s.

Proof. We use induction on s. If s = 0 there is nothing to prove. Assume s > 0 and that the result holds for smaller s. If M has a submodule $N \neq 0$ of dimension $\leq s - 1$, we may choose N maximal with respect to this property. If N' is any nonzero submodule of M of dimension < s, then $N' \subseteq N$. To see this, note that $N \oplus N'$ has dimension < s, and maps onto $N + N' \subseteq M$, which therefore also has dimension < s. By the maximality of N, we must have N + N' = N. Since depth_m $M \geq 1$, we can choose $x \in m$ not a zerodivisor on M, and, hence, also not a zerodivisor on N. We claim that x is not a zerodivisor on $\overline{M} = M/N$, for if $u \in M - N$ and $xu \in N$, then $Rxu \subseteq N$ has dimension < s. But this module is isomorphic with $Ru \subseteq M$, since x is not a zerodivisor, and so dim (Ru) < s. But then $Ru \subseteq N$. Consequently, multiplication by x induces an isomorphism of the exact sequence $0 \to N \to M \to \overline{M} \to 0$ with the sequence $0 \to xN \to xM \to x\overline{M} \to 0$, and so this sequence is also exact. But we have a commutative diagram

where the vertical arrows are inclusions. By the nine lemma, or by an elementary diagram chase, the sequence of cokernels $0 \to N/xN \to M/xM \to \overline{M}/x\overline{M} \to 0$ is exact. Since x is a nonzerodivisor on N and M, dim $(N/xN) = \dim(N) - 1 < s - 1$, while depth_mM/xM = s - 1. This contradicts the induction hypothesis. \Box

Corollary. If (R, m, K) is a Cohen-Macaulay local ring, then for every minimal prime \mathfrak{p} of R, dim $(R/\mathfrak{p}) = \dim(R)$.

Proof. If \mathfrak{p} is minimal, then $\mathfrak{p} \in \operatorname{Ass}(R)$ and so $R/\mathfrak{p} \hookrightarrow R$. By the preceding Theorem, $\dim(R/\mathfrak{p}) \ge \operatorname{depth}_m R = \dim(R)$, while the other inclusion is obvious. \Box

Thus, a Cohen-Macaulay local ring cannot exhibit the kind of behavior one observes in $R = K[[x, y, z]]/((x, y) \cap (z))$: this ring has two minimal primes. One of them, \mathfrak{p}_1 , generated by the images of x and y, is such that R/\mathfrak{p}_1 has dimension 1. The other, \mathfrak{p}_2 , generated by the image of z, is such that R/\mathfrak{p}_2 has dimension 2.

A Noetherian ring is called *catenary* if for any two prime ideals $P \subseteq Q$, any two saturated chains of primes joining P to Q have the same length. If R is catenary, then so is R/I for every ideal I, since primes containing I are in bijective correspondence with primes of Rcontaining I, and saturated chains of primes in R/I joining P/I to Q/I, where $I \subseteq P \subseteq Q$ and P, Q are primes of R, correspond to saturated chains of primes of R joining P to Q. Similarly, any localization of a catenary ring is catenary. M. Nagata gave the first examples of Noetherian rings that are not catenary: there is a local domain (R, m, K) of dimension 3, for example, containing saturated chains $0 \subset Q \subset m$ and $0 \subset P_1 \subset P_2 \subset m$, where all inclusions are strict. See [M. Nagata, *Local rings*, Interscience, New York, 1962], Appendx A1, pp. 204–205. Although Q has height one and dim (R) = 3, the dimension of R/Q is 1. Nagata also showed that even when a Noetherian ring is catenary, the polynomial ring in one variable over it need not be.

A Noetherian ring R is called *universally catenary* if every finitely generated R-algebra is catenary. Cohen-Macaulay rings are universally catenary, as we show in the two results below.

Theorem. A Cohen-Macaulay ring R is catenary, and for any two prime ideals $P \subseteq Q$ in R, every saturated chain of prime ideals joining P to Q has length height (Q) – height (P). Hence, every finitely generated algebra over a Cohen-Macaulay ring is catenary.

Proof. The issues are unaffected by localizing at Q. Thus, we may assume that R is local and that Q is the maximal ideal. There is part of a system of parameters of length h = height(P) contained in P, call it x_1, \ldots, x_h , by the Lemma at the beginning of this section. This sequence is a regular sequence on R and in so on R_P , which implies that its image in R_P is system of parameters. We now replace R by $R/(x_1, \ldots, x_h)$. Both the dimension and depth of R have decreased by h, so that R is still Cohen-Macaulay. Q and P are replaced by their images, which have heights dim (R) - h and 0, and dim (R) - h = $\dim (R/(x_1,\ldots,x_h))$. We have therefore reduced to the case where R is local and P is a minimal prime. We know that $\dim(R) = \dim(R/P)$, and so at least one saturated chain from P to Q has length height (Q) – height (P) = height $(Q) - 0 = \dim(R)$. To complete the proof, it will suffice to show that all saturated chains from P to Q have the same length, and we may use induction on $\dim(R)$. Copnsider two such chains, and let their smallest elements other than P be P_1 and P'_1 . Choose an element x in P_1 not in any minimal prime, and an element y of P'_1 not in any minimal prime. Then xy is a nonzerodivisor in R, and P_1, P'_1 are both minimal primes of xy. The ring R/(xy) is Cohen-Macaulay of dimension $\dim(R) - 1$. The result now follows from the induction hypothesis applied to R/(xy): the images of the two saturated chains (omitting P from each) give saturated chains joining $P_1/(xy)$ (respectively, $P'_1/(xy)$) to Q/(xy) in R/(xy). These have the same length, and, hence, so did the original two chains. \Box

Corollary. Cohen-Macaulay rings are universally catenary, i.e., a finitely generated algebra over a Cohen-Macaulay ring is catenary.

Proof. Such an algebra is a homomorphic image of a polynomial ring in finitely many variables over a Cohen-Macaulay ring, which is again Cohen-Macaulay, and homomorphic images of catenary rings are catenary. \Box

6