Math 615: Lecture of March 19, 2007

Colon-capturing in homomorphic images of Cohen-Macaulay rings

We will need the following two preliminary results:
Lemma (prime avoidance for cosets). Let S be any commutative ring, $x \in S, I \subseteq S$ an ideal and P_{1}, \ldots, P_{k} prime ideals of S. Suppose that the coset $x+I$ is contained in $\bigcup_{i=1}^{k} P_{i}$. Then there exists j such that $S x+I \subseteq P_{j}$.

Proof. If $k=1$ the result is clear. Choose $k \geq 2$ minimum giving a counterexample. Then no two P_{i} are comparable, and $x+I$ is not contained in the union of any $k-1$ of the P_{i}. Now $x=x+0 \in x+I$, and so x is in at least one of the P_{j} : say $x \in P_{k}$. If $I \subseteq P_{k}$, then $S x+I \subseteq P_{k}$ and we are done. If not, choose $i_{0} \in I-P_{k}$. We can also choose $i \in I$ such that $x+i \notin \bigcup_{j=1}^{k-1} P_{i}$. Choose $u_{j} \in P_{j}-P_{k}$ for $j<k$, and let u be the product of the u_{j}. Then $u i_{0} \in I-P_{k}$, but is in P_{j} for $j<k$. It follows that $x+\left(i+u i_{0}\right) \in x+I$, but is not in any $P_{j}, 1 \leq j \leq k$, a contradiction.

Lemma. Let S be a Cohen-Macaulay local ring, let P be a prime ideal of S of height h, and let x_{1}, \ldots, x_{i+1} be part of a system of parameters of $R=S / P$. Let $y_{1}, \ldots, y_{h} \in P$ be part of a system of parameters for S (we have such a sequence by the first Lemma of the preceding section on Cohen-Macaulay rings). Then there exist elements $\widetilde{x}_{1}, \ldots, \widetilde{x}_{i+1}$ of S such that \widetilde{x}_{j} maps to x_{j} modulo $P, 1 \leq j \leq i+1$, and $y_{1}, \ldots, y_{h}, \widetilde{x}_{1}, \ldots, \widetilde{x}_{i+1}$ is part of a system of parameters for S.

Proof. We construct the \widetilde{x}_{j} recursively. Suppose that the \widetilde{x}_{j} for $j<k+1 \leq i+1$ have been chosen so that $y_{1}, \ldots, y_{h}, \widetilde{x}_{1}, \ldots, \widetilde{x}_{k}$ is part of a system of parameters for S. Here, k is allowed to be 0 (i.e., we may be choosing \widetilde{x}_{1}). We want to choose an element of $x_{k+1}+P$ that is not in any minimal prime of $y_{1}, \ldots, y_{h}, \widetilde{x}_{1}, \ldots, \widetilde{x}_{k}$, and these all have height at most $h+k$. By the Lemma on prime avoidance for cosets, if $\widetilde{x}_{k+1}+P$ is contained in the union, then $S x_{k+1}+P$ is contained in one of them, say Q. Working modulo P we have that Q / P is a minimal prime x_{1}, \ldots, x_{k+1} of height at most $h+k-h=k$. This is a contradiction, since x_{1}, \ldots, x_{k+1} is part of a system of parameters in S / P, and so any minimal prime must have height at least $k+1$.

Theorem (colon-capturing). Let (R, m, K) be a local domain of prime characteristic $p>0$, and suppose that R is a homomorphic image of a Cohen-Macaulay ring of characteristic p. Let x_{1}, \ldots, x_{i+1} by part of a system of parameters in R. Then

$$
\left(x_{1}, \ldots, x_{i}\right):_{R} x_{i+1} \subseteq\left(x_{1}, \ldots, x_{i}\right)^{*}
$$

Proof. Suppose that $R=S / P$, where S is Cohen-Macaulay of characteristic p, and let Q be the inverse image of m in S. Then R is also a homomorphic image of S_{Q}, since $S_{Q} / P S_{Q} \cong$ $(S / P)_{Q}=R_{Q}=R_{m}=R$. Hence, we may assume that S is local. Choose y_{1}, \ldots, y_{h} and $\widetilde{x}_{1}, \ldots, \widetilde{x}_{i+1}$ as in the preceding Lemma. Since P is a minimal prime of $\left(y_{1}, \ldots, y_{h}\right)$ in S, we can choose $\widetilde{c} \in S-P$ and an integer $N>0$ such that $\widetilde{c} P^{N} \in\left(y_{1}, \ldots, y_{h}\right) S$. Let $c \neq 0$ be the image of \widetilde{c} in R. Suppose that $f x_{i+1}=f_{1} x_{1}+\cdots+f_{i} x_{i}$ in R. Then we can choose elements \widetilde{f} and $\widetilde{f}_{1}, \ldots, \widetilde{f}_{i}$ in S that lift f and f_{1}, \ldots, f_{i} respectively to S. This yields an equation

$$
\widetilde{f} \widetilde{x}_{i+1}=\widetilde{f}_{1} \widetilde{x}_{1}+\cdots+\widetilde{f}_{i} \widetilde{x}_{i}+\Delta
$$

in S, where $\Delta \in P$. Then for all $p^{e}=q \geq N$ we have

$$
\widetilde{f}^{q} \widetilde{x}_{i+1}^{q}=\widetilde{f}_{1}^{q} \widetilde{x}_{1}^{q}+\cdots+\widetilde{f}_{i}^{q} \widetilde{x}_{i}^{q}+\Delta^{q}
$$

We may multiply both sides by \widetilde{c}, and use the fact that $\widetilde{c} \Delta^{q} \in c P^{N} \subseteq\left(y_{1}, \ldots, y_{h}\right)$ to conclude that

$$
(*) \quad \widetilde{c} \tilde{f}^{q} \widetilde{x}_{i+1}^{q} \in\left(\widetilde{x}_{1}^{q}, \ldots, \widetilde{x}_{i}^{q}, y_{1}, \ldots, y_{h}\right) S
$$

But $y_{1}, \ldots, y_{h}, \widetilde{x}_{1}^{q}, \ldots, \widetilde{x}_{i+1}^{q}$ is a permutable regular sequence in S, and so $(*)$ implies that

$$
\widetilde{c} \widetilde{f}^{q} \in\left(\widetilde{x}_{1}^{q}, \ldots, \widetilde{x}_{i}^{q}, y_{1}, \ldots, y_{h}\right) S
$$

When we consider this modulo P, We have that $\left(y_{1}, \ldots, y_{h}\right)$ is killed, and so

$$
c f^{q} \in\left(x_{1}^{q}, \ldots, x_{i}^{q}\right)
$$

for all $q \geq N$, and this gives the desired conclusion.

Weak F-regularity: localization at maximal ideals and the Cohen-Macaulay property

We next want to prove that the property of being weakly F-regular is local on the maximal ideals of R. From this we will deduce that a weakly F-regular ring that is a homomorphic image of a Cohen-Macaulay ring is Cohen-Macaulay. We need two preliminary results.

Lemma. Let R be any Noetherian ring, let M be a finitely generated R-module and $N \subseteq$ M a submodule. Then N is the intersection of a (usually infinite) family of submodules Q of M such that every M / Q is killed by a power of a maximal ideal of R.

In particular, every ideal I of R is an intersection of ideals that are primary to a maximal ideal of R.

Proof. Let $u \in M-N$. Consider the family of submodules $M_{1} \subseteq M$ such that $N \subseteq M$ and $u \notin M_{1}$. This family is nonempty, since it contains N. Therefore it has a maximal
element Q. It will suffice to show that M / Q is killed by a power of a maximal ideal of R. Note that every nonzero submodule of M / Q contains the image of u, or else its inverse image in M will strictly contain Q but will not contain u.

We may replace M by M / Q and u by its image in M / Q. It therefore suffices to show that if $u \neq 0$ is in every nonzero submodule of M, then M is killed by a power of a maximal ideal, which is equivalent to the assertion that $\operatorname{Ass}(M)$ consists of a single maximal ideal. Let $P \in \operatorname{Ass}(M)$ and suppose that $P=\operatorname{Ann}_{R} v$, where $v \neq 0$ is in M. Then $R v \cong R / P$, and every nonzero element has annihilator P. But $u \in R v$, and so $P=\mathrm{Ann}_{R} u$. It follows that every associated prime of M is the same as $\mathrm{Ann}_{R} u$, and so there is only one associated prime. It remains to show that P is maximal. Suppose not, and consider $R / P \hookrightarrow M$. It will suffice to show that there is no element in all the nonzero ideals of R / P. Thus, it suffices to show that if $S=R / P$ is a Noetherian domain of dimension at least one, there is no nonzero element in all the nonzero ideals. This is true, in fact, even if we localize at a nonzero prime ideal m of S, for in S_{m}, there is no element in all of the ideals $m^{n} S_{m}$.

Proposition. Let R be a Noetherian ring of prime characteristic $p>0$, and let \mathfrak{A} be an ideal of R.
(a) If $\theta: R \rightarrow S$ is such that S is flat Noetherian R-algebra and, in particular, if S is a localization of R, then $\theta\left(\mathfrak{A}_{R}^{*}\right) \subseteq(\mathfrak{A} S)_{S}^{*}$.
(b) Let m be a maximal ideal of R and suppose that \mathfrak{A} is an m-primary ideal. Let $f \in R$. Then $f \in \mathfrak{A}_{R}^{*}$ if and only if $f / 1 \in\left(\mathfrak{A} R_{m}\right)_{R_{m}}^{*}$.
(c) Under the hypotheses of part (b), \mathfrak{A} is tightly closed in R if and only if $\mathfrak{A} R_{m}$ is tightly closed in R_{m}.

Proof. (a) Let $f \in \mathfrak{A}_{R}^{*}$. The equation $c f^{q} \in \mathfrak{A}^{[q]}$ implies $\theta(c) \theta(f)^{q} \in(\mathfrak{A} S)^{[q]}$, and so we need only see that if $c \in R^{\circ}$ then $c \in S^{\circ}$. Suppose, to the contrary, that c is in a minimal prime \mathfrak{q} of S. It suffices to see that the contraction \mathfrak{p} of \mathfrak{q} to R is minimal. But $R_{\mathfrak{p}} \rightarrow S_{\mathfrak{q}}$ is still faithfully flat, and the maximal ideal of $S_{\mathfrak{q}}$ is nilpotent, which implies that $\mathfrak{p} R_{\mathfrak{p}}$ is nilpotent, and so \mathfrak{p} is minimal.

For part (b), we see from (a) that if $f \in \mathfrak{A}^{*}$ then $f \in\left(\mathfrak{A} R_{m}\right)^{*}$. We need to prove the converse. Suppose that $c_{1} \in R_{m}^{\circ}$ has the property that $c f_{1}^{q} \in \mathfrak{A}^{[q]} R_{m}=\left(\mathfrak{A} R_{m}\right)^{[q]}$ for all $q \gg 0$. Then c_{1} has the form c / w where $c \in R$ and $w \in R-m$. We may replace c_{1} by $w c_{1}$, since w is a unit, and therefore assume that $c_{1}=c / 1$ is the image of $c \in R$. We next want to replace c by an element with the same image in R_{m} that is not in any minimal prime of R. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{k}$ be the minimal primes of R that are contained in m, so that the ideals $\mathfrak{p}_{j} R_{m}$ for $1 \leq j \leq k$ are all of the minimal primes of R_{m}. It follows that the image of $\mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{k}$ is nilpotent in R_{m}, and so we can choose an integer $N>0$ such that $I=\left(\mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{k}\right)^{N}$ has image 0 in R_{m}. If $c+I$ is contained in the union of the minimal primes of R, then by the coset form of prime avoidance, it follows that $c R+I \subseteq \mathfrak{p}$ for some minimal prime \mathfrak{p} of R. Since $I \subseteq \mathfrak{p}$, we have that $\mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{k} \subseteq \mathfrak{p}$, and it follows that $\mathfrak{p}_{j}=\mathfrak{p}$ for some j, where $1 \leq j \leq k$. But then $c \in \mathfrak{p}_{j}$, a contradiction, since $c / 1$ is not in any minimal prime of R°. Hence, we can choose $f \in I$ such that $c+f \in R^{\circ}$, and $c+f$
also maps to $c / 1$ in R. We change notation and assume $c \in R^{\circ}$. Then $c f^{q} / 1 \in \mathfrak{A}^{[q]} R_{m}$ for all $q \gg 0$. Since $\mathfrak{A}^{[q]}$ is primary to m, the ring $R / \mathfrak{A}^{[q]}$ has only one maximal ideal, $m / \mathfrak{A}^{[q]}$, and is already local. Hence,

$$
R / \mathfrak{A}^{[q]} \cong\left(R / f A^{[q]}\right)_{m}=R_{m} / \mathfrak{A}^{[q]} R_{m}
$$

It follows that $c f^{q} \in \mathfrak{A}^{[q]}$ for all $q \gg 0$, and so $f \in \mathfrak{A}_{R}^{*}$, as required.
Part (c) is immediate from part (b) and the observation above that $R_{m} / \mathfrak{A} R_{m}=R / \mathfrak{A}$, so that any element of $R_{m} / \mathfrak{A} R_{m}$ is represented by an element of R.

Remark. Part (a) holds for any map $R \rightarrow S$ of Noetherian rings of prime characteristic $p>0$ such that R° maps into S°. We have already seen another example, namely when $R \hookrightarrow S$ are domains.

Theorem. The following conditions on R are equivalent.
(1) R is weakly F-regular.
(2) Every ideal of R primary to a maximal ideal of R is tightly closed.
(3) For every maximal ideal m of R, R_{m} is weakly F-regular.

Proof. Statements (2) and (3) are equivalent by part (c) of the preceding Proposition, and $(1) \Rightarrow(2)$ is clear. Assume (2), and let I be any ideal of R. We need only show that I is tightly closed. If not, let $f \in I^{*}-I$. Since I is the intersection of the ideals containing I that are primary to maximal ideals, there is an ideal \mathfrak{A} of R primary to a maximal ideal m such that $I \subseteq \mathfrak{A}$ and $f \notin \mathfrak{A}$. Since \mathfrak{A} is tightly closed and $I \subseteq \mathfrak{A}$, we have $I^{*} \subseteq \mathfrak{A}$, and so $f \in \mathfrak{A}$, a contradiction.

