
Math 615: Lecture of March 21, 2007

We shall no longer be assuming that all rings have prime characteristic p > 0. Our
objective is to prove some basic results about the structure of complete local rings. We
shall begin by studying complete local rings that contain a field. Here are three major
results that we are aiming to prove:

Theorem. Let (R, m, K) be a complete local ring that contains a field.

(a) If R is regular, then R ∼= K[[x1, . . . , xd]], a formal power series ring in n variables
over K, where d = dim (R).

(b) R is a homomorphic image of a formal power series ring K[[x1, . . . , xn]] over a field
K.

(c) R is a module-finite extension ring of a formal power series ring K[[x1, . . . , xd]],
where d = dim (R).

Note that part (c) is an analogue, for complete local rings, of the Noether normalization
theorem.

We shall later analyze the situation where R does not contain a field in detail. But this
is more difficult, and we begin with the field case.

By a coefficient field for a local ring (R, m) we mean a subring K ⊆ R such that the
composite map

K ↪→ R � R/m

is an isomorphism. This implies that K is a field, since it is isomorphic with R/m. One
may think of K as an isomorphic “copy” of the residue class field that is contained in R.
The most difficult part in proving the structure theorems stated above is establishing:

Theorem. A complete local ring that contains a field contains a coefficient field.

Proving the preceding two Theorems will take a while. Note that if a local ring R has
characteristic 0, which means that it contains Z, the hypothesis that it contains a field
is equvalent to the statement that it contains Q. But Q will typically be much smaller
than the residue field of R. The hypothesis that R has prime characteristic p > 0 already
implies that R contains a field: R will contain the field Z/pZ.

Example. Let p > 0 be a prime integer, let P denote the prime ideal pZ in Z, and let Zp

denote the completion of the Noetherian discrete valuation ring ZP at its maximal ideal.
The ring Zp is called the ring of p-adic integers. Both ZP and the Zp are examples of
local rings that do not contain a field. The ring Zp may also be obtained by completing
Z with respect to pZ without localizing first. The maximal ideal of Zp is generated by p:
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every nonzero element is a power of p times a unit. Every elenent of Zp can be represented
uniquely as a formal series

a0 + a1p + a2p
2 + a3p

3 + · · ·+ anpn + · · ·

such that every ai is an integer between 0 and p − 1 inclusive. If the coefficients are
eventually all zero, we have the base p representation of an element of N. Note, for
example, that in Z2, we have

−1 = 1 + 2 + 4 + 8 + · · ·+ 2n + · · ·

Example. Local rings that contain a field but do not have a coefficient field are abundant.
Here is a simple example of a local ring that contains a field but does not have a coefficient
field. Let V be the localization of the polynomial ring R[t] in one variable over the real
numbers R at the prime ideal P = (t2 + 1), and let m = PV . Note that V is a Noetherian
discrete valuation ring. Then V/PV is the field of R[t]/(t2 + 1) ∼= C, which is C. But
S ⊆ R(t) does not contain any element whose square is −1: the square of a non-constant
rational function is non-constant, and the square of a real scalar cannot be −1.

The completion of V̂ of V is also a DVR with residue class field C, and so it must contain
a square root of −1. The reader may want to attempt to find an explicit power series in
t2 + 1 that represents a square root of −1. Note that the structure theorems imply that
there is an isomorphism C[[z]] ∼= V̂ , and one can show that there is such an isomorphism
sending z 7→ t2 + 1.

In characteristic 0 we shall show that any subring of the complete local ring R that is
maximal with respect to the property of being a field is a coefficient field. The proof will
depend on Hensel’s Lemma. In characteristic p > 0, there may be maximal fields within
the complete local ring R that are not coefficient fields. The proof we give will be quite
different, and will not make any use of Hensel’s Lemma at all.

We begin our analysis of the structure of complete local rings by proving Hensel’s lemma.

Theorem (Hensel’s Lemma). Let (R, m, K) be a complete local ring (or a completed
and m-adically separated quasilocal ring) and let f be a monic polynomial of degree d
in R[x]. Suppose that indicates images in K[x] under the the ring homomorphism
R[x] � K[x] induced by R � K. If f = GH where G, H ∈ K[x] are monic of de-
grees s and t, respectively, and G, H are relatively prime in K[x], then there are unique
monic polynomials g, h ∈ R[x] such that f = gh and g = g while h = h.

Before giving the proof, we want to provide some examples that illustrate how powerful
Hensel’s Lemma is, as well as an instance where it cannot be applied.

Example 1. Let R = Q[[z1, z2, z3]]. Suppose that we want find a power series which is a
square root of 1 + z1z

11
2 z3 + z7

1 + z5
2z3

3 . That is, we want to solve the equation

(∗) x2 − (1 + z1z
11
2 z3 + z7

1 + z5
2z3

3) = 0
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in the formal power series ring Q[[z1, z2, z3]]. This is equivalent to factoring the left hand
side of (∗) in the form (x − g)(x − h) for elements g, h ∈ Q[[z1, z2, z3]]. Hensel’s Lemma
enables us to solve this problem by solving it modulo (z1, z2, z3). Modulo the maximal
ideal, the equation becomes x2 − 1 = 0, and the left hand side factors (x − 1)(x + 1).
Moreover, x − 1 and x + 1 are relatively prime over Q[x]. We can therefore lift this
factorization. This provides two square roots of 1 + z1z

11
2 z3 + z7

1 + z5
2z3

3 . These can also
be found using Newton’s binomial theorem: let u = z1z

11
2 z3 + z7

1 + z5
2z3

3 . Then

(1 + u)1/2 = 1 +
1
2
u +

1
2 ( 1

2 − 1)
2!

u2 +
1
2 ( 1

2 − 1)( 1
2 − 2)

3!
u3 + · · ·

and one may substitute the expression z1z
11
2 z3 + z7

1 + z5
2z3

3 for u. Both methods may be
used to show that if n is invertible in K = R/m and u ∈ m, then 1 + u has an n th root in
the complete local ring R. But Hensel’s Lemma is much more general, as the next example
shows.

Example 2. Let R = K[[z1, z2, z3]]. We shall consider the cases where K = Q and K = C.
Suppose that we want to solve the eqation

(#) x3 + (z17
1 − z2z

5
3)x2 + (z1z2z

8
3)x− 1 + z7

2 + z9
3 = 0

over R. When the equation is considered modulo the maximal ideal of R, it becomes

x3 − 1 = 0 and has the three roots 1, ω, ω where ω =
−1 +

√
−3

2
is a primitive cube root

of unity, and ω is the conjugate root
−1 +

√
−3

2
(we also have ω = 1/ω = ω2). Hensel’s

Lemma applied over C yields unique roots of the equation (#) with constant terms 1, ω,
and ω, respectively. If we apply Hensel’s Lemma over Q, we still have the factorization

x3 − 1 = (x− 1)(x2 + x + 1)

and the factors are relatively prime over Q[x]. This factorization can therefore be lifted,
and this shows that there is a unique root of the equation with constant term 1. This is,
of course, the same root with constant term 1 that we found over C[[z1, z2, z3]], but we
have gained the information that the coefficients are rational numbers.

Example 3. Consider the equation x2 + 1 = 0 in Z13. Modulo the maximal ideal, we find
that there are two roots in Z/13Z, represented by 5 and −5 = 8. It follows that −1 has
two square roots in Z13. Similarly, the reader may verify that 3 has a cube root in Z61

that is congruent to 5 modulo the maximal ideal of Z61.

Example 4. Let R = C[[z1, z2]] and consider the equation x2 − z2
1 − z3

2 = 0. Modulo the
maximal ideal, this becomes x2 = 0. Of course, x2 factors as x · x, but the factors are not
relatively prime. Therefore, Hensel’s Lemma does not apply. In fact, z2

1 +z3
2 has no square

root in the formal power series ring. Similarly, Hensel’s Lemma does not give information
about solving x2 − z1 = 0, which also has no solution.
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Proof of Hensel’s Lemma. Let Fn denote the image of f in (R/mn)[x]. We recursively
construct monic polynomials Gn ∈ (R/mn)[x], Hn ∈ (R/mn)[x] such that Fn = GnHn for
all n ≥ 1, where Gn and Hn reduce to G and H, respectively, mod m, and show that Fn

and Gn are unique. Note that it will follow that for all n, Gn has the same degree as G,
namely s, and Hn has the same degree as H, namely t, where s + t = d. The uniqueness
implies that mod mn−1, Gn, Hn become Gn−1, Hn−1, respectively. This yields that the
sequence of coefficients of xi in the Gn is an element of lim

←− n (R/mn) = R, since R is

complete. Using the coefficients determined in this way, we get a polynomial g in R[x],
monic of degree s. Similarly, we get a polynomial h ∈ R[x], monic of degree t. It is clear
that g = G and h = H, and that f = gh, since this holds mod mn for all n: thus, every
coefficient of f − gh is in

⋂
n mn = (0).

It remains to carry through the recursion, and we have G1 = G and H1 = H from
the hypothesis of the theorem. Now assume that Gn and Hn have been constructed and
shown unique for a certain n ≥ 1. We must construct Gn+1 and Hn+1 and show that
they are unique as well. It will be convenient to work mod mn+1 in the rest of the
argument: replace R by R/mn+1. Construct G∗, H∗ in R[x] by lifting each coefficient of
Gn and Hn respectively, but such that the two leading coefficients occur in degrees s and
t respectively and are both 1. Then, mod mn, F ≡ G∗H∗, i.e., ∆ = F −G∗H∗ ∈ mnR[x].
We want to show that there are unique choices of δ ∈ mnR[x] of degree at most s− 1 and
ε ∈ mnR[x] of degree at most t − 1 such that F − (G∗ + δ)(H∗ + ε) = 0, i.e., such that
∆ = εG∗ + δH∗ + δε. Since δ, ε ∈ mnR[x] and n ≥ 1, their product is in m2nR[x] = 0,
because 2n ≥ n + 1. Thus, our problem is to find such ε and δ with ∆ = εG∗ + δH∗.
Now, G and H generate the unit ideal in K[x], and R[x]red = K[x]. It follows that G∗

and H∗ generate the unit ideal in R[x], and so we can write 1 = αG∗ + βH∗. Multiplying
by ∆, we get ∆ = ∆αG∗ + ∆βH∗. Then ∆α and ∆β are in mnR[x], since ∆ is, but do
not yet satisfy our degree requirements. Since H∗ is monic, we can divide ∆α by H∗ to
get a quotient γ and remainder ε, i.e., ∆α = γH∗ + ε, where the degree of ε is ≤ t− 1. If
we consider this mod mn, we have 0 ≡ γHn + ε, from which it follows that γ, ε ∈ mnR[x].
Then ∆ = εG∗ + δH∗ where δ = γG∗ + ∆β. Since ∆ and εG∗ both have degree < n, so
does δH∗, which implies that the degree of δ is ≤ s− 1.

Finally, suppose that we also have ∆ = ε′G∗ + δ′H∗ where ε′ has degree ≤ t− 1 and δ′

has degree ≤ s− 1. Subtracting, we get an equation 0 = µG∗ + νH∗ where the degree of
µ = ε− ε′ is ≤ t− 1 and the degree of ν = δ − δ′ is ≤ s− 1. Since G∗ is a unit considered
mod H∗, it follows that µ ∈ (H∗), i.e., that H∗ divides µ. But H∗ is monic, and so this
cannot happen unless µ = 0: the degree of µ is too small. Similarly, ν = 0. �

We can now deduce:

Theorem. Let (R, m, K) be a complete local ring that contains a field of characteristic
0. Then R has a coefficient field. In fact, R will contain a maximal subfield, and any such
subfield is a coefficient field.

Proof. Let S be the set of all subrings of R that happen to be fields. By hypothesis, this
set is nonempty. Given a chain of elements of S, the union is again a subring of R that is
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a field. By Zorn’s lemma, S will have a maximal element K0. To complete the proof of
the theorem, we shall show that K0 maps isomorphically onto K. Obviously, we have a
map K0 ⊆ R � R/m = K, and so we have a map K0 → K. This map is automatically
injective: call the image K ′0. To complete the proof, it suffices to show that it is surjective.

If not, let θ be an element of K not in the image of K0. We consider two cases: the first
is that θ is transcendental over K ′0. Let t denote an element of R that maps to θ. Then
K0[t] is a polynomial subring of R, and every nonzero element is a unit: if some element
were in m, then working mod m we would get an equation of algebraic dependence for θ
over K ′0 in K. By the universal mapping property of localization, the inclusion K0[t] ⊆ R
extends to a map K0(t) ⊆ R, which is necessarily an inclusion. This yields a subfield of R
larger than K0, a contradiction.

We now consider the case where θ is algebraic over the image of K0. Consider the
minimal polynomial of θ over K ′0, and let f be the corresponding polynomial with coeffi-
cients in K0[x] ⊆ R[x]. Modulo m, this polynomial factors as (x − θ)H(x), where these
are relatively prime because θ is separable over K ′0: this is the only place in the argument
where we use that the field has characteristic 0. The factorization lifts uniquely: we have
f = (x− t)h(x) where t ∈ R is such that t ≡ θ mod m. That is, f(t) = 0. We claim that
the map K0[t] ⊆ R � R/m, whose image is K ′0[θ], gives an isomorphism of K0[t] with
K ′0[θ]: we only need to show injectivity. But if P (x) ∈ K0[x] is a polynomial such that
P (t) maps to 0, then f divides P (x), which implies that P (t) = 0. Since K0[t] ∼= K ′0[θ]
(both are ∼= K0[t]/

(
f(t)

)
), K0[t] is a field contained in R that is strictly larger than K0,

a contradiction. �

Remark. If R is a complete local domain of positive prime characteristic p > 0, the same
argument shows that R contains a maximal subfield K0, and that K is algebraic and purely
inseparable over the image of K0.


