
Math 615: Lecture of March 23, 2007

Remark. It is worth noting that Cauchy sequences in an I-adic topology are much easier to
study, in some ways, than Cauchy sequences of, say, real numbers. In an I-adic topology,
for {rn}n to be a Cauchy sequence it suffices that rn − rn+1 → 0 as n →∞, i.e., that for
any specified N ∈ N, the differences rn − rn+1 are eventually in IN . The reason is that if
this is true for all n ≥ n0, we also have that

rn′ − rn = rn′ − rn′−1 + · · ·+ rn+1 − rn ∈ In

for all n′ ≥ n ≥ n0. In consequence, a necessary and sufficient condition for an infinite
series

∑∞
n=0 rn to converge in the I-adic topology is that rn → 0 as n → ∞, which, of

course, is false over R: the series
∑∞

n=1 1/n does not converge, and the corresponding
sequence of partial sums {rn}n does not converge, even though rn+1− rn = 1/(n+1) → 0
as n →∞.

Our next result on coefficient fields uses a completely different argument:

Theorem. Let (R, m, K) be a complete local ring of positive prime characteristic p. Sup-
pose that K is perfect. Let Rpn

= {rpn

: r ∈ R} for every n ∈ N. Then K0 =
⋂∞

n=0 Rpn

is
a coefficient field for R, and it is the only coefficient field for R.

Proof. Consider any coefficient field L for R, assuming for the moment that one exists.
Then L ∼= K, and so L is perfect. Then

L = Lp = · · · = Lpn

= · · · ,

and so for all n,
L ⊆ Lpn

⊆ Rpn

.

Therefore, L ⊆ K0. If we know that K0 is a field, it follows that L = K0, proving
uniqueness.

It therefore suffices to show that K0 is a coefficient field for K. We first observe that
K0 meets m only in 0. For if u ∈ K0 ∩m, then u is a pn th power for all n. But if u = vpn

then v ∈ m, so u ∈
⋂

n mpn

= (0).

Thus, every element of K0 − {0} is a unit of R. Now if u = vpn

and u is a unit of R,
then 1/u = (1/v)pn

. Therefore, the inverse of every nonzero element of K0 is in K0. Since
K0 is clearly a ring, it is a subfield of R.

Finally, we want to show that given θ ∈ K some element of K0 maps to θ. Let rn denote
an element of R that maps to θ1/pn ∈ K. Then rpn

n maps to θ. We claim that {rpn

n }n is a
1



2

Cauchy sequence in R, and so has a limit r. To see this, note that rn and rp
n+1 both map

to θ1/pn

in K, and so rn − rp
n+1 is in m. Taking pn powers, we find that

rpn

n − rpn+1

n+1 ∈ mpn

.

Therefore, the sequence is Cauchy, and has a limit r ∈ R. It is clear that r maps to θ.
Therefore, it suffices to show that r ∈ Rpk

for every k. But

rk, rp
k+1, . . . , rph

k+h . . .

is a sequence of the same sort for the element θ1/pk

, and so is Cauchy and has a limit sk

in R. But spk

k = r and so r ∈ Rpk

for all k. �

Before pursuing the issue of the existence of coefficient fields further, we show that the
existence of a coefficient field implies that the complete local ring is a homomorphic image
of a power series ring in finitely many variables over a field, and is also a module-finite
extension of such a ring.

We first prove the following result, which bears some resemblance to Nakayama’s Lemma,
but is rather different, since M is not assumed to be finitely generated.

Proposition. Let R be separated and complete in the I-adic topology, where I is a finitely
generated ideal of R, and let M be an I-adically separated R-module. Let u1, . . . , uh ∈ M
have images that span M/IM over R/I. Then u1, . . . , uh span M over R.

Proof. Since M = Ru1 + · · ·+ Ruh + IM , we find that for all n,

(∗) InM = Inu1 + · · ·+ Inuh + In+1M.

Let u ∈ M be given. Then u can be written in the form r01u1 + · · · + r0huh + ∆1 where
∆1 ∈ IM . Therefore ∆1 = r11u1 + · · · r1huh + ∆2 where the r1j ∈ IM and ∆2 ∈ I2M .
Then

u = (r01 + r11)u1 + · · ·+ (r0n + r1h)uh + ∆2,

where ∆2 ∈ I2M . By a straightforward induction on n we obtain, for every n, that

u = (r01 + r11 + · · ·+ rn1)u1 + · · ·+ (r0h + r1h + · · ·+ rnh)un + ∆n+1

where every rjk ∈ Ij for 1 ≤ k ≤ h and all j ≥ 0 and ∆n+1 ∈ In+1M . In the recursive
step, the formula (∗) is applied to the element ∆n+1 ∈ In+1M .

For every k,
∑∞

j=0 rjk represents an element sk of the complete ring R. We claim that

u = s1u1 + · · ·+ shuh.
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The point is that if we subtract

σn = (r01 + r11 + · · ·+ rn1)u1 + · · ·+ (r0h + r1h + · · ·+ rnh)uh

from u we get ∆n+1 ∈ In+1M , and if we subtract σn from

s1u1 + · · ·+ shuh

we also get an element of In+1M , which we shall justify in greater detail below. Therefore,

u− (s1u1 + · · ·+ shuh) ∈
⋂
n

In+1M = 0,

since M is I-adically separated.

It remains to see why s1u1 + · · · + shuh − σn is in In+1M . This difference can be
rewritten as s′1u1 + · · ·+ s′huh where s′k = rn+1,k + rn+2,k + · · · . Hence, we simply need to
justify the assertion that assertion that if rjk ∈ Ij for j ≥ n + 1 then

rn+1,k + rn+2,k + · · ·+ rn+t,k + · · · ∈ In+1,

which needs a short argument. Since I is finitely generated, we know that In+1 is finitely
generated by the monomials of degree n + 1 in the generators of I, say, g1, . . . , gd. Then

rn+1+t,k =
d∑

ν=1

qtνgν with every qtν ∈ It and
∞∑

t=0

rn+1+t,k =
d∑

ν=1

(
∞∑

t=0

qtν)gν . �

We also note:

Proposition. Let f : R → S be a ring homomorphism. Suppose that S is J-adically
complete and separated for an ideal J ⊆ S and that I ⊆ R maps into J . Then there is a
unique induced homomorphism R̂I → S that is continuous (i.e., preserves limits of Cauchy
sequences in the appropriate ideal-adic topology).

Proof. R̂I is the ring of I-adic Cauchy sequences mod the ideal of sequences that converge
to 0. The continuity condition forces the element represented by {rn}n to map to

lim
n→∞

f(rn)

(Cauchy sequences map to Cauchy sequences: if rm − rn ∈ IN , then f(rm)− f(rn) ∈ JN ,
since f(I) ⊆ J .) It is trivial to check that this is a ring homomorphism that kills the ideal
of Cauchy sequences that converge to 0, which gives the required map R̂I → S. �

A homomorphism of quasilocal rings h : (A, µ, κ) → (R, m, K) is called a local ho-
momorphism if h(µ) ⊆ m. If A is a local domain, not a field, the inclusion of A in its
fraction field is not local. If A is a local domain, any quotient map arising from killing
a proper ideal is local. A local homomorphism induces a homomorphism of residue class
fields κ = A/µ → R/m = K.
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Proposition. Let A be a Noetherian ring that is complete and separated with respect to
an ideal µ, which may be 0, let (R, m,K) be a complete local ring, and let h : A → R be a
homomorphism, so that R is an A-algebra and µ maps into m. Thus, if (A, µ) is local, we
are requiring that A → R be local. Suppose that f1, . . . , fn ∈ m together with µR generate
an m-primary ideal. Then:

(a) There is a unique continuous homomorphism h : A[[X1, . . . , Xn]] → R extending the
A-algebra map A[X1, . . . , Xn] taking Xi to fi for all i.

(b) If K is module-finite over the image of A, then R is module-finite over the image of
A[[X1, . . . , Xn]] under the map discussed in part (a).

(c) If the composite map A → R � K is surjective, and µR + (f1, . . . , fn)R = m, then
the map h described in (a) is surjective.

Proof. (a) This is immediate from the preceding Proposition, since (X1, . . . , Xn) maps
into m.

(b) A[[X1, . . . , Xn]] is complete and separated with respect to the the A-adic topology,
where A = (µ, X1, . . . , Xn)A[[X1, . . . , Xn]]. Given a Cauchy sequence of power series
{fk}k, it is easy to see that the sequence of coefficients of a fixed monomial Xν1

1 · · ·Xνn
n =

Xν is a Cauchy sequence in A in the µ-adic topology, and so has a limit aν ∈ A. The only
possible limit for the Cauchy sequence {fk}k is the power series∑

ν∈Nn

aνXν ,

and it is easy to verify that this is the limit.

The expansion of the ideal A of A[[X1, . . . , Xn]] to R is µR + (f1, . . . , fn)R, which
contains a power of m, say mN . Thus, R/MR is a quotient of R/mN and has finite
length: the latter has a filtration whose factors are the finite-dimensional K-vector spaces
mi/mi+1, 0 ≤ i ≤ N − 1. Since K is module-finite over the image of A, it follows that
R/AR is module finite over over A[[X1, . . . , Xn]]/A = A/µ. Choose elements of R whose
images in R/AR span it over A/µ. By the Proposition stated on p. 2, these elements span
R as an A[[X1, . . . , Xn]]-module. We are using that R is A-adically separated, but this
follows because AR ⊆ m, and R is m-adically separated.

(c) We repeat the argument of the proof of part (b), noting that now R/AR ∼= K ∼= A/µ,
so that 1 ∈ R generates R as an A[[X1, . . . , Xn]] module. But this says that R is a
cyclic A[[X1, . . . , Xn]]-module spanned by 1, which is equivalent to the assertion that
A[[X1, . . . , Xn]] → R is surjective. �

We have now done all the real work needed to prove the following:

Theorem. Let (R, m, K) be a complete local ring with coefficient field K0 ⊆ K, so that
K0 ⊆ R � R/m = K is an isomorphism. Let f1, . . . , fn be elements of m generating
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an ideal primary to m. Let K0[[X1, . . . , Xn]] → R be constructed as in the preceding
Proposition, with Xi mapping to fi and with A = K0. Then:

(a) R is module-finite over K0[[X1, . . . , Xn]].

(b) Suppose that f1, . . . , fn generate m. Then the homomorphism K0[[x1, . . . , xn]] → R
is surjective. (By Nakayama’s lemma, the least value of n that may be used is the
dimension as a K-vector space of m/m2.)

(c) If d = dim (R) and f1, . . . , fd is a system of parameters for R, the homomorphism

K0[[x1, . . . , xd]] → R

is injective, and so R is a module-finite extension of a formal power series subring.

Proof. (a) and (b) are immediate from the preceding Proposition. For part (c), let A
denote the kernel of the map K0[[x1, . . . , xd]] → R. Since R is a module-finite extension
of the ring K0[[x1, . . . , xd]]/A, d = dim (R) = dim (K0[[x1, . . . , xd]]/A). But we know
that dim (K0[[x1, . . . , xd]]) = d. Killing a nonzero prime in a local domain must lower the
dimension. Therefore, we must have that A = (0). �

Thus, when R has a coefficient field K0 and f1, . . . , fd are a system of parameters, we
may consider a formal power series ∑

ν∈Nd

cνfν ,

where ν = (ν1, . . . , νd) is a multi-index, the cν ∈ K0, and fν denotes fν1
1 · · · fνd

d . Because
R is complete, this expression represents an element of R. Part (c) of the preceding
Theorem implies that this element is not 0 unless all of the coefficients cν vanish. This
fact is sometimes referred to as the analytic independence of a system of parameters. The
elements of a system of parameters behave like formal indeterminates over a coefficient
field. Formal indeterminates are also referred to as analytic indeterminates.


