Math 615: Lecture of March 26, 2007

The results of the preceding Lecture imply that a complete local ring (R, m) that has a coefficient field K is a homomorphic image of a formal power series ring in n variables over K, where n is the least number of elements needed to generate m. Of course, by Nakayama's Lemma, $n = \dim_K(m/m^2)$. This integer is called the *embedding dimension* of R.

To understand why, consider the analogous situation with finitely generated reduced algebras S over an algebraically closed field K. The ring S corresponds to an affine algebraic set X, whose points are in bijective correspondence with the maximal ideals of S. Giving a surjection $K[X_1, \ldots, X_n] \to S$ as K-algebras is equivalent to giving an embedding $X \hookrightarrow \mathbb{A}^n_K$ as a closed algebraic set. The least n for which such an embedding is possible is the smallest dimension of an affine space in which X can be embedded, and it is natural to think of n as the embedding dimension of X, and hence, of S, in this context. The terminology "embedding dimension" for dim $_K(m/m^2)$ is used even when the local ring (R, m, K) does not contain a field.

The general construction of coefficient fields in positive characteristic

We now discuss the construction of coefficient fields in local rings (R, m, K) of prime characteristic p > 0 (these automatically contain the field $\mathbb{Z}/p\mathbb{Z}$) when K need not be perfect. If $q = p^n$ we write

$$K^q = \{c^q : c \in K\},\$$

the subfield of K consisting of all elements that are q th powers.

It will be convenient to call a polynomial in several variables *n*-special, where $n \ge 1$ is an integer, if every variable occurs with exponent at most $p^n - 1$ in every term. This terminology is not standard.

Let K be a field of characteristic p > 0. Finitely many elements $\theta_1, \ldots, \theta_n$ in K (they will turn out to be, necessarily, in $K - K^p$) are called *p*-independent if the following three equivalent conditions are satisfied:

- (1) $[K^p[\theta_1, \ldots, \theta_n]: K^p] = p^n.$
- (2) $K^p \subseteq K[\theta_1] \subseteq K^p[\theta_1, \theta_2] \subseteq \cdots \subseteq K^p[\theta_1, \theta_2, \dots, \theta_n]$ is a strictly increasing tower of fields.
- (3) The p^n monomials $\theta_1^{a_1} \cdots \theta_n^{a_n}$ such that $0 \le a_j \le p-1$ for all j with $1 \le j \le n$ are a K^p -vector space basis for K over K^p .

Note that since every θ_j satisfies $\theta_j^p \in K^p$, in the tower considered in part (2) at each stage there are only two possibilities: the degree of θ_{j+1} over $K^p[\theta_1, \ldots, \theta_j]$ is either 1,

which means that

$$\theta_{j+1} \in K^p[\theta_1, \ldots, \theta_j],$$

or p. Thus, $K[\theta_1, \ldots, \theta_n] = p^n$ occurs only when the degree is p at every stage, and this is equivalent to the statement that the tower of fields is strictly increasing. Condition (3) clearly implies condition (1). The fact that (2) \Rightarrow (3) follows by mathematical induction from the observation that

1,
$$\theta_{j+1}$$
, θ_{j+1}^2 , ..., θ_{j+1}^{p-1}

is a basis for $L_{j+1} = K^p[\theta_1, \ldots, \theta_{j+1}]$ over $L_j = K[\theta_1, \ldots, \theta_j]$ for every j, and the fact that if one has a basis \mathcal{C} for L_{j+1} over L_j and a basis \mathcal{B} for L_j over K^p then all products of an element from \mathcal{C} with an element from \mathcal{B} form a basis for L_{j+1} over K^p .

Every subset of a p-independent set is p-independent. An infinite subset of K is called p-independent if every finite subset is p-independent.

A maximal *p*-independent subset of K, which will necessarily be a subset of $K - K^p$, is called a *p*-base for K. Zorn's Lemma guarantees the existence of a *p*-base, since the union of a chain of *p*-independent sets is *p*-independent. If Θ is a *p*-base, then $K = K^p[\Theta]$, for if there were an element θ' of $K - K^p[\Theta]$, it could be used to enlarge the *p*-base. The empty set is a *p*-base for K if and only if K is perfect. If K is not perfect, a *p*-base for K is never unique: one can change an element of it by adding an element of K^p .

It is easy to see that Θ is a *p*-base for *K* if and only if every element of *K* is uniquely expressible as a polynomial in the elements of Θ with coefficients in K^p such that the exponent on every $\theta \in \Theta$ is at most p-1, i.e., the monomials in the elements of Θ of degree at most p-1 in each element are a basis for *K* over K^p . An equivalent statement is that every element of *K* is uniquely expressible as as 1-special polynomial in the elements of Θ with coefficients in K^p .

If $q = p^n$, then the elements of $\Theta^q = \{\theta^q : \theta \in \Theta\}$ are a *p*-base for K^q over K^{pq} : in fact we have a commutative diagram:

$$\begin{array}{cccc} K & \stackrel{F^q}{\longrightarrow} & K^q \\ \uparrow & & \uparrow \\ K^p & \stackrel{F^{pq}}{\longrightarrow} & K^{pq} \end{array}$$

where the vertical arrows are inclusions and the horizontal arrows are isomorphisms: here, $F^q(c) = c^q$. In particular, $\Theta^p = \{\theta^p : \theta \in \Theta\}$ is a *p*-base for K^p , and it follows by multiplying the two bases together that the monomials in the elements of Θ of degree at most $p^2 - 1$ are a basis for K over K^{p^2} . By a straightforward induction, the monomials in the elements of Θ of degree at most $p^n - 1$ in each element are a basis for K over K^{p^n} for every $n \in \mathbb{N}$. An equivalent statement is that every element of K can be written uniquely as an *n*-special polynomial in the elements of Θ with coefficients in K^{p^n} . **Theorem.** Let (R, m, K) be a complete local ring of positive prime characteristic p, and let Θ be a p-base for K. Let T be a subset of R that maps bijectively onto Θ , i.e., a lifting of the p-base to R. Then there is a unique coefficient field for R that contains T, namely, $K_0 = \bigcap_n R_n$, where $R_n = R^{p^n}[T]$. Thus, there is a bijection between liftings of the p-base Θ and the coefficient fields of R.

Proof. Note that any coefficient field must contain some lifting of Θ . Observe also that K_0 is clearly a subring of R that contains T. It will suffice to show that K_0 is a coefficient field L containing T is contained in K_0 . The latter is easy: the isomorphism $L \to K$ takes T to Θ , and so T is a p-base for L. Every element of L is therefore in $L^{p^n}[T] \subseteq R^{p^n}[T]$. Notice also that every element of $R^{p^n}[T]$ can be written as a polynomial in the elements of T of degree at most $p^n - 1$ in each element, i.e., as an n-special polynomial, with coefficients in R^{p^n} . The reason is that any $N \in \mathbb{N}$ can be written as $ap^n + b$ with $a, b \in \mathbb{N}$ and $b \leq p^n - 1$. So t^N can be rewritten as $(t^a)^{p^n}t^b$, and, consequently, if t^N occurs in a term we can rewrite that term so that it only involves t^b by absorbing $(t^a)^{p^n}$ into the coefficient from R^{p^n} . Thus, every element of $R^{p^n}[T]$ is represented by an n-special polynomial. Note that n-special polynomials in elements of T with coefficients in R^{p^n} map mod m onto the n-special polynomials in elements of T with coefficients in K^{p^n} , which we know give all of K.

We next observe that

$$R^{p^n}[T] \cap m \subseteq m^{p^n}.$$

Write the element of $u \in \mathbb{R}^{p^n}[T] \cap m$ as an *n*-special polynomial in elements of T with coefficients in \mathbb{R}^{p^n} . Then its image in K, which is 0, is an *n*-special polynomial in the elements of Θ with coefficients in \mathbb{K}^{p^n} , and so cannot vanish unless every coefficient is 0. This means that each coefficient of the *n*-special polynomial representing u must have been in $m \cap \mathbb{R}^{p^n} \subseteq m^{p^n}$. Thus,

$$K_0 \cap m = \bigcap_n (R^{p^n}[T] \cap m) \subseteq \bigcap_n m^{p^n} = (0).$$

We can therefore conclude that K_0 injects into K. It will suffice to show that $K_0 \to K$ is surjective to complete the proof.

Let $\lambda \in K$ be given. Since $K = K^{p^n}[\Theta]$, for every *n* we can choose an element of $R^{p^n}[T]$ that maps to λ : call it r_n . Then $r_{n+1} \in R^{p^{n+1}}[T] \subseteq R^{p^n}[T]$, and so $r_n - r_{n+1} \in R^{p^n}[T] \cap m \subseteq m^{p^n}$ (the difference $r_n - r_{n+1}$ is in *m* because both r_n and r_{n+1} map to λ in *K*). This shows that $\{r_n\}_n$ is Cauchy, and has a limit r_λ . It is clear that $r_\lambda \equiv \lambda$ mod *m*, since that is true for every r_n . Moreover, r_λ is independent of the choices of the r_n : given another sequence r'_n with the same property, $r_n - r'_n \in R^{p^n}[T] \cap m \subseteq m^{p^n}$, and so $\{r_n\}_n$ have the same limit. This implies that the map $K \to R$ such that $\lambda \mapsto R_\lambda$ is a ring homomorphism: if we have two Cauchy sequences whose terms map to λ and λ' respectively mod *K*, and whose *n* th terms are both in $R^{p^n}[T]$ for all *n*, when we add (respectively, multiply) the Cauchy sequences term by term, we get a Cauchy sequence

whose limit is $r_{\lambda+\lambda'}$ (respectively, $r_{\lambda\lambda'}$). Moreover, if $t \in T$ maps to $\theta \in \Theta$ then the Cauchy sequence with constant term t can be used to find r_{θ} , and so $r_{\theta} = t$.

It remains only to show that for every $n, r_{\lambda} \in \mathbb{R}^{p^n}[T]$. To see this, write λ as an *n*-special polynomial in the elements of Θ with coefficients in K^{p^n} . Explicitly,

$$\lambda = \sum_{\mu \in \mathcal{F}} c_{\mu}^{p^n} \mu$$

where \mathcal{F} is some finite set of *n*-special monomials in the elements of Θ , and every $c_{\mu} \in K$. If $\mu = \theta_1^{k_1} \cdots \theta_s^{k_s}$, let $\mu' = t_1^{k_1} \cdots t_s^{k_s}$, where t_j is the element of T that maps to θ_j . Then $r_{\mu} = \mu'$ and

$$r_{\lambda} = \sum_{\mu \in \mathcal{F}} r_{c_{\mu}}^{p^{n}} \mu' \in R^{p^{n}}[T]. \qquad \Box$$

Remark. The proof is valid for every complete and *m*-adically separated quasilocal ring (R, m, K) such that R has prime characteristic p > 0. We made no use of the fact that R is Noetherian.

Remark. This result shows that if (R, m, K) is a complete local ring that is not a field and K is not perfect, then the choice of a coefficient field is *never* unique. Given a lifting of a p-base T, where $T \neq \emptyset$ because K is not perfect, we can always change it by adding nonzero elements of m to one or more of the elements in the p-base.