Math 615: Lecture of March 26, 2007

The results of the preceding Lecture imply that a complete local ring (R, m) that has
a coefficient field K is a homomorphic image of a formal power series ring in n variables
over K, where n is the least number of elements needed to generate m. Of course, by
Nakayama’s Lemma, n = dimg(m/m?). This integer is called the embedding dimension
of R.

To understand why, consider the analogous situation with finitely generated reduced
algebras S over an algebraically closed field K. The ring S corresponds to an affine
algebraic set X, whose points are in bijective correspondence with the maximal ideals
of S. Giving a surjection K[Xy, ... ,X,] - S as K-algebras is equivalent to giving an
embedding X — A% as a closed algebraic set. The least n for which such an embedding is
possible is the smallest dimension of an affine space in which X can be embedded, and it
is natural to think of n as the embedding dimension of X, and hence, of S, in this context.
The terminology “embedding dimension” for dim g (m/m?) is used even when the local
ring (R, m, K) does not contain a field.

The general construction of coefficient fields in positive characteristic

We now discuss the construction of coefficient fields in local rings (R, m, K) of prime
characteristic p > 0 (these automatically contain the field Z/pZ) when K need not be
perfect. If ¢ = p™ we write

K7={c":ce K},

the subfield of K consisting of all elements that are qth powers.

It will be convenient to call a polynomial in several variables n-special, where n > 1
is an integer, if every variable occurs with exponent at most p™ — 1 in every term. This
terminology is not standard.

Let K be a field of characteristic p > 0. Finitely many elements 61, ... ,0, in K (they
will turn out to be, necessarily, in K — KP) are called p-independent if the following three
equivalent conditions are satisfied:

(1) [KP[bq, ...,0,]: KP] =p™.

(2) KP C K[0,] C KP[01, 03] C --- C KP[0y, 0o, ... ,0,] is a strictly increasing tower of
fields.

3) The p™ monomials 6" --- 0% such that 0 < a; <p—1forall j with 1 <j <n are a
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KP-vecctor space basis for K over KP?.

Note that since every ; satisfies 07 € K?, in the tower considered in part (2) at each

stage there are only two possibilities: the degree of 6,41 over K?[f;, ... ,0;] is either 1,
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which means that
9j+1 S prl» oo 79j]7

or p. Thus, K[fy, ... ,0,] = p™ occurs only when the degree is p at every stage, and this
is equivalent to the statement that the tower of fields is strictly increasing. Condition (3)
clearly implies condition (1). The fact that (2) = (3) follows by mathematical induction
from the observation that
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is a basis for Lj; 1 = KP[0, ... ,0;41] over L; = K[0y, ... ,0;] for every j, and the fact
that if one has a basis C for L;;; over L; and a basis B for L; over K” then all products
of an element from C with an element from B form a basis for L;; over KP.

Every subset of a p-independent set is p-independent. An infinite subset of K is called
p-independent if every finite subset is p-independent.

A maximal p-independent subset of K, which will necessarily be a subset of K — K?, is
called a p-base for K. Zorn’s Lemma guarantees the existence of a p-base, since the union
of a chain of p-independent sets is p-independent. If O is a p-base, then K = KP?[0], for if
there were an element 6’ of K — KP[©], it could be used to enlarge the p-base. The empty
set is a p-base for K if and only if K is perfect. if K is not perfect, a p-base for K is never
unique: one can change an element of it by adding an element of KP.

It is easy to see that © is a p-base for K if and only if every element of K is uniquely
expressible as a polynomial in the elements of © with coefficients in K? such that the
exponent on every # € O is at most p — 1, i.e., the monomials in the elements of © of
degree at most p — 1 in each element are a basis for K over KP. An equivalent statement is
that every element of K is uniquely expressible as as 1-special polynomial in the elements
of © with coefficients in KP?.

If ¢ = p™, then the elements of ©7 = {07 : § € O} are a p-base for K7 over KP9: in fact
we have a commutative diagram:

K . g

[ [

KP —, KP4
F'ra

where the vertical arrows are inclusions and the horizontal arrows are isomorphisms: here,
Fi(c) = ¢. In particular, OF = {#P : § € O} is a p-base for KP, and it follows by
multiplying the two bases together that the monomials in the elements of © of degree at
most p? — 1 are a basis for K over K P By a straightforward induction, the monomials in
the elements of © of degree at most p™ — 1 in each element are a basis for K over K" for
every n € N. An equivalent statement is that every element of K can be written uniquely
as an n-special polynomial in the elements of © with coefficients in K?".



Theorem. Let (R, m, K) be a complete local ring of positive prime characteristic p, and
let © be a p-base for K. Let T be a subset of R that maps bijectively onto ©, i.e., a lifting
of the p-base to R. Then there is a unique coefficient field for R that contains T, namely,
Ko =, Rn, where R, = RP"[T]. Thus, there is a bijection between liftings of the p-base
O and the coefficient fields of R.

Proof. Note that any coefficient field must contain some lifting of ©. Observe also that
K is clearly a subring of R that contains 7'. It will suffice to show that K is a coefficient
field and that any coefficient field L containing T is contained in K. The latter is easy:
the isomorphism L — K takes T to ©, and so T is a p-base for L. Every element of L
is therefore in LP"[T] C RP"[T]. Notice also that every element of RP"[T] can be written
as a polynomial in the elements of T" of degree at most p™ — 1 in each element, i.e., as
an n-special polynomial, with coefficients in RP". The reason is that any N € N can be
written as ap” + b with a,b € N and b < p” — 1. So t"V can be rewritten as (t*)?"t’,
and, consequently, if " occurs in a term we can rewrite that term so that it only involves
t* by absorbing (t%)P" into the coefficient from RP". Thus, every element of RP"[T] is
represented by an n-special polynomial. Note that n-special polynomials in elements of T’
with coefficients in R?" map mod m onto the n-special polynomials in elements of © with
coefficients in KP", which we know give all of K.

We next observe that
RP [T]Nm CmP .

Write the element of u € RP"[T] N'm as an n-special polynomial in elements of T with
coefficients in RP". Then its image in K, which is 0, is an n-special polynomial in the
elements of © with coefficients in KP?", and so cannot vanish unless every coefficient is
0. This means that each coefficient of the n-special polynomial representing u must have
been in m N RP" C mP". Thus,

Konm =R [T]nm) C(m"" = (0).

We can therefore conclude that K injects into K. It will suffice to show that Ky — K is
surjective to complete the proof.

Let A € K be given. Since K = KP"[0], for every n we can choose an element of
RP"[T)] that maps to A: call it r,,. Then r,,; € an+1[T] C RP'[T)], and so r, — rpq1 €
RP" [T]Nm C mP" (the difference r,, — rp41 is in m because both r, and r,+1 map to
A in K). This shows that {r,}, is Cauchy, and has a limit r). It is clear that ry = A
mod m, since that is true for every r,. Moreover, r) is independent of the choices of the
,: given another sequence 7/, with the same property, r, — 7/, € RP"[T]N'm C m?", and
so {rn}tn and {r]}, have the same limit. This implies that the map K — R such that
A — Ry is a ring homomorphism: if we have two Cauchy sequences whose terms map to
A and ) respectively mod K, and whose nth terms are both in RP" [T for all n, when we
add (respectively, multiply) the Cauchy sequences term by term, we get a Cauchy sequence



whose limit is )4y (respectively, ryy/). Moreover, if ¢ € T maps to 6 € © then the Cauchy
sequence with constant term ¢ can be used to find rg, and so rg = t.

It remains only to show that for every n, ry € RP"[T]. To see this, write A\ as an
n-special polynomial in the elements of © with coefficients in K?". Explicitly,

A= Zcﬁn,u

pneF

where F is some finite set of n-special monomials in the elements of ©, and every ¢, € K.
If =608 - 0k let i/ =5 ... th+ where t; is the element of T' that maps to 6;. Then
r, = p and
Ty = eryu'ER” T]. O
neF

Remark. The proof is valid for every complete and m-adically separated quasilocal ring
(R, m, K) such that R has prime characteristic p > 0. We made no use of the fact that R
is Noetherian.

Remark. This result shows that if (R, m, K) is a complete local ring that is not a field
and K is not perfect, then the choice of a coefficient field is never unique. Given a lifting
of a p-base T, where T # () because K is not perfect, we can always change it by adding
nonzero elements of m to one or more of the elements in the p-base.



