
Math 615: Lecture of March 26, 2007

The results of the preceding Lecture imply that a complete local ring (R, m) that has
a coefficient field K is a homomorphic image of a formal power series ring in n variables
over K, where n is the least number of elements needed to generate m. Of course, by
Nakayama’s Lemma, n = dimK(m/m2). This integer is called the embedding dimension
of R.

To understand why, consider the analogous situation with finitely generated reduced
algebras S over an algebraically closed field K. The ring S corresponds to an affine
algebraic set X, whose points are in bijective correspondence with the maximal ideals
of S. Giving a surjection K[X1, . . . , Xn] � S as K-algebras is equivalent to giving an
embedding X ↪→ An

K as a closed algebraic set. The least n for which such an embedding is
possible is the smallest dimension of an affine space in which X can be embedded, and it
is natural to think of n as the embedding dimension of X, and hence, of S, in this context.
The terminology “embedding dimension” for dim K(m/m2) is used even when the local
ring (R, m, K) does not contain a field.

The general construction of coefficient fields in positive characteristic

We now discuss the construction of coefficient fields in local rings (R, m, K) of prime
characteristic p > 0 (these automatically contain the field Z/pZ) when K need not be
perfect. If q = pn we write

Kq = {cq : c ∈ K},

the subfield of K consisting of all elements that are q th powers.

It will be convenient to call a polynomial in several variables n-special, where n ≥ 1
is an integer, if every variable occurs with exponent at most pn − 1 in every term. This
terminology is not standard.

Let K be a field of characteristic p > 0. Finitely many elements θ1, . . . , θn in K (they
will turn out to be, necessarily, in K −Kp) are called p-independent if the following three
equivalent conditions are satisfied:

(1) [Kp[θ1, . . . , θn] : Kp] = pn.

(2) Kp ⊆ K[θ1] ⊆ Kp[θ1, θ2] ⊆ · · · ⊆ Kp[θ1, θ2, . . . , θn] is a strictly increasing tower of
fields.

(3) The pn monomials θa1
1 · · · θan

n such that 0 ≤ aj ≤ p− 1 for all j with 1 ≤ j ≤ n are a
Kp-vecctor space basis for K over Kp.

Note that since every θj satisfies θp
j ∈ Kp, in the tower considered in part (2) at each

stage there are only two possibilities: the degree of θj+1 over Kp[θ1, . . . , θj ] is either 1,
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which means that
θj+1 ∈ Kp[θ1, . . . , θj ],

or p. Thus, K[θ1, . . . , θn] = pn occurs only when the degree is p at every stage, and this
is equivalent to the statement that the tower of fields is strictly increasing. Condition (3)
clearly implies condition (1). The fact that (2) ⇒ (3) follows by mathematical induction
from the observation that

1, θj+1, θ2
j+1, . . . , θp−1

j+1

is a basis for Lj+1 = Kp[θ1, . . . , θj+1] over Lj = K[θ1, . . . , θj ] for every j, and the fact
that if one has a basis C for Lj+1 over Lj and a basis B for Lj over Kp then all products
of an element from C with an element from B form a basis for Lj+1 over Kp.

Every subset of a p-independent set is p-independent. An infinite subset of K is called
p-independent if every finite subset is p-independent.

A maximal p-independent subset of K, which will necessarily be a subset of K −Kp, is
called a p-base for K. Zorn’s Lemma guarantees the existence of a p-base, since the union
of a chain of p-independent sets is p-independent. If Θ is a p-base, then K = Kp[Θ], for if
there were an element θ′ of K −Kp[Θ], it could be used to enlarge the p-base. The empty
set is a p-base for K if and only if K is perfect. if K is not perfect, a p-base for K is never
unique: one can change an element of it by adding an element of Kp.

It is easy to see that Θ is a p-base for K if and only if every element of K is uniquely
expressible as a polynomial in the elements of Θ with coefficients in Kp such that the
exponent on every θ ∈ Θ is at most p − 1, i.e., the monomials in the elements of Θ of
degree at most p−1 in each element are a basis for K over Kp. An equivalent statement is
that every element of K is uniquely expressible as as 1-special polynomial in the elements
of Θ with coefficients in Kp.

If q = pn, then the elements of Θq = {θq : θ ∈ Θ} are a p-base for Kq over Kpq: in fact
we have a commutative diagram:

K
F q

−−−−→ Kqx x
Kp −−−−→

F pq
Kpq

where the vertical arrows are inclusions and the horizontal arrows are isomorphisms: here,
F q(c) = cq. In particular, Θp = {θp : θ ∈ Θ} is a p-base for Kp, and it follows by
multiplying the two bases together that the monomials in the elements of Θ of degree at
most p2− 1 are a basis for K over Kp2

. By a straightforward induction, the monomials in
the elements of Θ of degree at most pn − 1 in each element are a basis for K over Kpn

for
every n ∈ N. An equivalent statement is that every element of K can be written uniquely
as an n-special polynomial in the elements of Θ with coefficients in Kpn

.
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Theorem. Let (R, m, K) be a complete local ring of positive prime characteristic p, and
let Θ be a p-base for K. Let T be a subset of R that maps bijectively onto Θ, i.e., a lifting
of the p-base to R. Then there is a unique coefficient field for R that contains T , namely,
K0 =

⋂
n Rn, where Rn = Rpn

[T ]. Thus, there is a bijection between liftings of the p-base
Θ and the coefficient fields of R.

Proof. Note that any coefficient field must contain some lifting of Θ. Observe also that
K0 is clearly a subring of R that contains T . It will suffice to show that K0 is a coefficient
field and that any coefficient field L containing T is contained in K0. The latter is easy:
the isomorphism L → K takes T to Θ, and so T is a p-base for L. Every element of L
is therefore in Lpn

[T ] ⊆ Rpn

[T ]. Notice also that every element of Rpn

[T ] can be written
as a polynomial in the elements of T of degree at most pn − 1 in each element, i.e., as
an n-special polynomial, with coefficients in Rpn

. The reason is that any N ∈ N can be
written as apn + b with a, b ∈ N and b ≤ pn − 1. So tN can be rewritten as (ta)pn

tb,
and, consequently, if tN occurs in a term we can rewrite that term so that it only involves
tb by absorbing (ta)pn

into the coefficient from Rpn

. Thus, every element of Rpn

[T ] is
represented by an n-special polynomial. Note that n-special polynomials in elements of T
with coefficients in Rpn

map mod m onto the n-special polynomials in elements of Θ with
coefficients in Kpn

, which we know give all of K.

We next observe that
Rpn

[T ] ∩m ⊆ mpn

.

Write the element of u ∈ Rpn

[T ] ∩ m as an n-special polynomial in elements of T with
coefficients in Rpn

. Then its image in K, which is 0, is an n-special polynomial in the
elements of Θ with coefficients in Kpn

, and so cannot vanish unless every coefficient is
0. This means that each coefficient of the n-special polynomial representing u must have
been in m ∩Rpn ⊆ mpn

. Thus,

K0 ∩m =
⋂
n

(Rpn

[T ] ∩m) ⊆
⋂
n

mpn

= (0).

We can therefore conclude that K0 injects into K. It will suffice to show that K0 → K is
surjective to complete the proof.

Let λ ∈ K be given. Since K = Kpn

[Θ], for every n we can choose an element of
Rpn

[T ] that maps to λ: call it rn. Then rn+1 ∈ Rpn+1
[T ] ⊆ Rpn

[T ], and so rn − rn+1 ∈
Rpn

[T ] ∩ m ⊆ mpn

(the difference rn − rn+1 is in m because both rn and rn+1 map to
λ in K). This shows that {rn}n is Cauchy, and has a limit rλ. It is clear that rλ ≡ λ
mod m, since that is true for every rn. Moreover, rλ is independent of the choices of the
rn: given another sequence r′n with the same property, rn − r′n ∈ Rpn

[T ] ∩m ⊆ mpn

, and
so {rn}n and {r′n}n have the same limit. This implies that the map K → R such that
λ 7→ Rλ is a ring homomorphism: if we have two Cauchy sequences whose terms map to
λ and λ′ respectively mod K, and whose n th terms are both in Rpn

[T ] for all n, when we
add (respectively, multiply) the Cauchy sequences term by term, we get a Cauchy sequence
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whose limit is rλ+λ′ (respectively, rλλ′). Moreover, if t ∈ T maps to θ ∈ Θ then the Cauchy
sequence with constant term t can be used to find rθ, and so rθ = t.

It remains only to show that for every n, rλ ∈ Rpn

[T ]. To see this, write λ as an
n-special polynomial in the elements of Θ with coefficients in Kpn

. Explicitly,

λ =
∑
µ∈F

cpn

µ µ

where F is some finite set of n-special monomials in the elements of Θ, and every cµ ∈ K.
If µ = θk1

1 · · · θks
s , let µ′ = tk1

1 · · · tks
s , where tj is the element of T that maps to θj . Then

rµ = µ′ and
rλ =

∑
µ∈F

rpn

cµ
µ′ ∈ Rpn

[T ]. �

Remark. The proof is valid for every complete and m-adically separated quasilocal ring
(R, m, K) such that R has prime characteristic p > 0. We made no use of the fact that R
is Noetherian.

Remark. This result shows that if (R, m, K) is a complete local ring that is not a field
and K is not perfect, then the choice of a coefficient field is never unique. Given a lifting
of a p-base T , where T 6= ∅ because K is not perfect, we can always change it by adding
nonzero elements of m to one or more of the elements in the p-base.


