
Math 615: Lecture of March 30, 2007

The following Theorem, which constructs coefficient rings when the maximal ideal of
the ring is nilpotent, is the heart of the proof of the existence of coefficient rings in com-
plete mixed characteristic local rings. Before giving the proof, we introduce the following
notation, which we will use in another argument later. Let x, y be indeterminates over Z.
Let q be a power of p, a prime. Then (x + y)q − xq − yq is divisible by p in Z[x, y], since
the binomial coefficients that occur are all divisible by p, and we write Gq(x, y) ∈ Z[x, y]
for the quotient, so that (x + y)q = xq + yq + pGq(x, y).

Theorem. Suppose that (R, m, K) is local where K has characteristic p > 0, and that
mn = 0. Choose a p-base Θ for K, and a lifting of the p-base to R: that is, for every θ ∈ Θ
choose an element tθ ∈ R with residue θ modulo m. Let T = {tθ : θ ∈ Θ}. Then R has
a unique coefficient ring V that contains T . In fact, suppose that we fix any sufficiently
large power q = pN of p (in particular, N ≥ n − 1 suffices) and let SN be the set of all
expressions of the form

∑
µ∈M rq

µµ, where the M is a finite set of mutually distinct N -
special monomials in the elements of T and every rq

µ ∈ Rq = {rq : r ∈ R}. Then we may
take

V = SN + pSN + p2SN + · · ·+ pn−1SN ,

which will be the same as the smallest subring of R containing Rq and T .

Before giving the proof, we note that it is not true in general that Rq is closed under
addition, and neither is SN , but we will show that for large N , V is closed under addition
and multiplication, and this will imply at once that it is the smallest subring of R containing
Rq and T . Of course, Rq is closed under multiplication.

Proof of the Proposition. We first note if r ≡ s mod m then rq ≡ sq mod mn if N ≥ n−1,
by the Lemma at then end of the Lecture Notes of March 26. Therefore Rq maps bijectively
onto Kq = {λq : λ ∈ K} when we take residue classes mod m. It follows from our analysis
of the properties of p-bases that the residue class map R → K sends SN bijectively onto
K.

Suppose that W is a coefficient ring containing T . For each r ∈ R, if w ≡ r mod m,
then wq = rq. Thus, Rq ⊆ W . Then SN ⊆ W , and so V ⊆ W . Now consider any
element w ∈ W . Since SN contains a complete set of representatives of elements of K,
every element of W has the form σ0 + u where σ0 ∈ SN and u ∈ m ∩W = pW , and so
w = σ0 + pw1. But we may also write w1 in this way and substitute, to get an expression

w = σ0 + pσ1 + p2w2,

where σ0, σ1 ∈ SN and w2 ∈ W . Continuing in this way, we find, by a straightforward
induction, that

W = SN + pSN + · · ·+ pjSN + pj+1W
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for every j ≥ 0. We may apply this with j = n− 1 and note that pn = 0 to conclude that
W = V . Thus, if there is a coefficient ring, it must be V . However, at this point we do
not even know that V is closed under addition.

We next claim that V is a ring. Let Ṽ be the closure of V under addition. Then we can
see that Ṽ is a ring, since, by the distributive law, it suffices to show that the product of
two elements pirqµ and pjr′

q
µ′ has the same form. The point is that µµ′ can be rewritten

in the form νqµ′′ where µ′′ has all exponents ≤ q − 1, and pi+j(rr′ν)qµ′′ has the correct
form. Thus, Ṽ is the smallest ring that contains Rq and T .

We next prove that V itself is closed under addition. We shall achieve this by proving
by reverse induction on j that pjV = pj Ṽ for all j, 0 ≤ j ≤ n. The case that we are
really aiming for is, of course, where j = 0. The statement is obvious when j = n, since
pn = 0 and pnV = pnṼ = 0. Now suppose that pj+1V = pj+1Ṽ for some fixed j. We
shall show that pjV = pj Ṽ , thereby completing the inductive step. Since pj Ṽ is spanned
over pj+1Ṽ = pj+1V by pjSN , it will suffice to show that given any two elements of pjSN ,
their sum differs from an element of pjSN by an element of pj+1Ṽ = pj+1V . Call the two
elements

v = pj
∑

µ∈M
rq
µµ

and
v′ = pj

∑
µ∈M

r′
q
µµ,

where rµ, r′µ ∈ R andM is a finite set of n-special monomials in elements of T large enough
to contain all those monomials that occur with nonzero coefficient in the expressions for
v and v′. Since SN gives a complete set of representatives of K and rq only depends on
what r is modulo m, we may assume that all of the rµ and r′µ are elements of SN . Let

v′′ = pj
∑

µ∈M
(rµ + r′µ)qµ.

Then
v′′ − v − v′ = pj

∑
µ∈M

pGq(rµ, r′µ)µ = pj+1
∑

µ∈M
Gq(rµ, r′µ)µ ∈ pj+1V ′,

as required, since all the rµ, r′µ ∈ SN and Ṽ is a ring. This completes the proof that
Ṽ = V , and so V is a subring of R.

We have now shown that V is a subring of R, and that it is the only possible coefficient
ring. It is clear that pV ⊆ m, while an element of V − pV has nonzero image in K: its
constant term in SN is nonzero, and SN maps bijectively to K. Thus, m ∩ V = pV , and
we know that V/pV ∼= K, since SN maps onto K. It follows that pV is a maximal ideal of
V generated by a nilpotent, and so pV is the only prime ideal of V . Any nonzero element
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of the maximal ideal can be written as ptu with t as large as possible (we must have that
t < n), and then u must be a unit. Thus, every nonzero element of V is either a unit, or
a unit times a power of p. It follows that every nonzero proper ideal is generated by pk

for some positive integer k, where k is as small as possible such that pk is in the ideal. It
follows that V is a principal ideal ring. Thus, V is a Noetherian local ring, and, in fact,
an Artin local ring. �

We want to extend this result to complete local rings in which m is not nilpotent. We
first need:

Lemma. Let K be a field of characteristic p > 0 and let (V, pV, K), (W, pW, K) and
(Vn, pVn, K), n ∈ N, be coefficient rings.

(a) If pt = 0 while pt−1 6= 0 in V , which is equivalent to the statement that pt is the
characteristic of V , then AnnV pjV = pt−jV , 0 ≤ j ≤ t. Moreover, if ps = 0 while
ps−1 6= 0 in W , and W � V is a surjection, then V = W/ptW .

(b) Suppose that
V0 � V1 � · · · � Vn � · · ·

is an inverse limit system of coefficient rings and surjective maps, and that the char-
acteristic of Vn is pt(n) where t(n) ≥ 1. Then either t(n) is eventually constant, in
which case the maps hn : Vn+1 � Vn are eventually all isomorphisms, and the inverse
limit is isomorphic with Vn for any sufficiently large n, or t(n) → ∞ as n → ∞, in
which case the inverse limit is a complete local principal ideal domain V with maximal
ideal pV and residue class field K. In particular, the inverse limit V is a coefficient
ring.

Proof. (a) Every ideal of V (respectively, W ) has the form pkV (respectively, pW )for a
unique integer k, 0 ≤ k ≤ t (respectively, 0 ≤ k ≤ s). The first statement follows because
k+j ≥ n iff k ≥ n−j. The second statement follows because V must have the form S/pkS
for some k, 0 ≤ k ≤ S, and the characteristic of S/pkS is pk, which must be equal to pt.

(b) If t(n) is eventually constant it is clear that all the maps are eventually isomorphisms.
Therefore, we may assume that t(n) →∞ as n →∞. By passing to an infinite subsequence
of the Vn we may assume without loss of generality that t(n) is strictly increasing with n.
We may think of an element of the inverse limit as a sequence of elements vn ∈ Vn such
that vn is the image of vn+1 for every n. It is easy to see that one of the vn is a unit if
and only if all of them are. Suppose on the other hand that none of the vn is a unit. Then
each vn can be written as pwn for wn ∈ Vn. The problem is that while pwn+1 maps to
pwn, for all n, it is not necessarily true that wn+1 maps to wn.

Let hn be the map Vn+1 → Vn. For all n, let w′n = hn(wn+1). We will show that for all
n, vn = pw′n and that hn(w′n+1) = w′n for all n. Note first that hn(pwn+1) = pwn = vn,
and it is also pw′n. This establishes the first statement. Since p(wn+1 − w′n+1) = 0, it
follows that wn+1 − w′n+1 = pt(n+1)−1δ, by part (a). Then

w′n = hn(wn+1) = hn(w′n+1) + pt(n+1)−1hn(δ) = hn(w′n+1),
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as required, since pt(n+1)−1 is divisible by pt(n), the characteristic of Vn.

It follows that the inverse limit has a unique maximal ideal generated by p. No nonzero
element is divisible by arbitrarily high powers of p, since the element will have nonzero
image in Vn for some n, and its image in this ring is not divisible by arbitrarily high powers
of p. It follows that every nonzero element can be written as a power of p times a unit,
and no power of p is 0, because the ring maps onto Vt for arbitrarily large values of t. It is
forced to be a principal ideal domain in which every nonzero ideal is generated by a power
of p. The fact that the ring arises as an inverse limit implies that it is complete. �

We can now prove:

Theorem (I. S. Cohen). Every complete local ring (R, m, K) has a coefficient ring. If
the residue class field has characteristic p > 0, there is a unique coefficient ring containing
a given lifting T to R of a p-base Θ for K.

Proof. We may assume that K has characteristic p > 0: we already know that there is a
coefficient field if the characteristic of K is 0.

Any coefficient ring for R containing T must map onto a coefficient ring for Rn = R/mn

containing the image of T . Here, there is a unique coefficient ring Vn, which may be
described, for any sufficiently large q = pN , as the smallest subring containing all q th
powers and the image of T . We may take q large enough that it may be used in the
description of coefficient rings Vn+1 for Rn+1 and Vn for Rn, and it is then clear that
Rn+1 � Rn induces Vn+1 � Vn. If we construct V = lim

←− n Vn and lim
←− n Rn = R as

sequences of elements {rn}n such that rn+1 maps to rn for all n, it is clear that

V = lim
←− n Vn ⊆ lim

←− n Rn = R.

By part (b) of the preceding Lemma, V is a coefficient ring, and it follows that V is a
coefficient ring for R. �


