
Math 615: Lecture of April 2, 2007

We next prove that, up to non-unique isomorphism, a coefficient ring of mixed character-
istic p in which p is nilpotent is determined by its residue class field and and characteristic
(the latter is a power of p). However, there is a uniqueness statement about the isomor-
phism once liftings of a p-base for K are chosen.

Theorem. Let K, K ′ be isomorphic fields of characteristic p > 0 and let g : K → K ′

be the isomorphism. Let (V, pV,K) and (V ′, pV ′,K ′) be two coefficient rings of the same
characteristic, pn > 0. We shall also write λ′ for the image of λ ∈ K under g. Let Θ be
a p-base for K and let Θ′ = g(Θ) be the corresponding p-base for K ′. Let T be a lifting
of Θ to V and let T ′ be a lifting of Θ′ to T ′. We have an obvious bijection g̃ : T → T ′

such that if t ∈ T lifts θ ∈ Θ then g̃(t) ∈ T ′ lifts θ′ = g(θ). Then g̃ extends uniquely to an
isomorphism of V with V ′ that lifts g : K → K ′.

Proof. As in the proof of the Theorem on existence of coefficient rings stated on the first
page of the Lecture Notes of March 30, we choose N ≥ n − 1 and let q = pN . For every
element λ ∈ K there is a unique element ρλ ∈ V q that maps to λq ∈ Kq. Similarly, there is
a unique element ρ′λ′ ∈ V ′q that maps to λ′

q for every λ′ ∈ K ′. If there is an isomorphism
V ∼= V ′ as stated, it must map ρλ → ρ′λ′ for every λ ∈ K. Said otherwise, we have an
obvious bijection V q → V ′q, and g̃ must extend it. Just as in the proof of the Theorem
on existence of coefficient rings, we can define SN = S to consist of linear combinations of
distinct N -special monomials in T such that every coefficient is in V q. Then S will map
bijectively onto K. We define S′

N = S′ ⊆ V ′ analogously. Since S′ maps bijectively onto
K ′, we have an obvious bijection g̃ : S → S′. We use σ′ for the element of S′ corresponding
to σ ∈ S.

Every element v ∈ V must have the form σ0 + pv1 where σ0 is the unique element of
S that has the same residue as v modulo pV . Continuing this way, as in the proof of the
Theorem on existence of coefficient rings, we get a representation

v = σ0 + pσ1 + p2σ2 + · · ·+ pn−1σn−1

for the element v ∈ V , where the σj ∈ S. We claim this is unique. Suppose we have
another such representation

v = σ∗0 + pσ∗1 + · · ·+ pn−1σ∗n−1.

Suppose that σi = σ∗i for i < j. We want to show that σj = σ∗j as well. Working in
V/pj+1V we have that σjp

j = σj+1p
j , i.e., that (σj − σ∗j ) kills pj working mod pj+1.

By part (a) of the Lemma from p. 3 of the Lecture Notes of March 30 we have that
σj − σ∗j ∈ pV , and so σj and σ∗j represent the same element of K = V/pV , and therefore
are equal.
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Evidently, any isomorphism V ∼= V ′ satisfying the specified conditions must take

σ0 + pσ1 + · · ·+ pn−1σn−1

to
σ′0 + pσ′1 + · · ·+ pn−1σ′n−1.

To show that this map really does give an isomorphism of V with V ′ one shows simul-
taneously, by induction on j, that addition is preserved in pjV , and that multiplication is
preserved when one multiplies elements in phV and piV such that h + i ≥ j. For every
element λ ∈ K, let σλ denote the unique element of S that maps to λ. Note that we may
write ρλ as σq

λ, since σλ has residue λ mod pV .

Now,
pjρλµ + pjρηµ = pj(σq

λ + σq
η)µ = pj

(
(σλ + ση)q − pGq(σλ, ση)

)
,

where Gq(x, y) ∈ Z[x, y] is such that (x + y)q = xq + yq + pGq(x, y). Since σλ + ση has
residue λ + η mod pV , we have that (σλ + ση)q = ρλ+η, and it follows that

pjρλµ + pjρηµ = pjρλ+ηµ− pj+1Gq(σλ, ση)µ.

We have similarly that

pjρ′λ′µ′ + pjρ′η′µ′ = pjρ′λ′+η′µ′ − pj+1Gq(σ′λ′ , σ′η′)µ′,

and it follows easily that addition is preserved by our map pjV → pjV ′: note that
pj+1Gq(σλ, ση)µ maps to pj+1Gq(σ′λ′ , σ′η′)µ′ because all terms are multiples of pj+1 (the
argument here needs that certain multiplications are preserved as well addition).

Once we have that our map preserves addition on terms in pjV , the fact that it preserves
products of pairs of terms from phV × piV for h + i ≥ j follows from the distributive law,
the fact that addition in pjV is preserved, and the fact that there is a unique way of writing
µ1µ2, where µ1 and µ2 are monomials in the elements of T with all exponents ≤ q − 1, in
the form νqµ3 where all exponents in µ3 are ≤ q − 1, and

(phρλµ1)(piρηµ2) = ph+i(σλσην)qµ3

in V , while
(phρ′λ′µ′1)(p

iρ′η′µ′2) = ph+i(σ′λ′σ′η′ν′)qµ′3

in V ′. �
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Theorem. Let K be a field of characteristic p > 0. Then there exists a complete Noe-
therian valuation domain (V, pV, K) with residue class field K.

Proof. It suffices to prove that there exists a Noetherian valuation domain (V, pV, K): its
completion will then be complete with the required properties. Choose a well-ordering of
K in which 0 is the first element. We construct, by transfinite induction, a direct limit
system of Noetherian valuation domains {Vλ, pVλ, Kλ} indexed by the well-ordered set K
and injections Ka ↪→ K such that

(1) K0
∼= Z/pZ

(2) The image of Kλ in K contains a.

(3) The diagrams
Vλ′ � Kλ′ ↪→ K
↑ ↑ ||
Vλ � Kλ ↪→ K

commute for all λ ≤ λ′ ∈ K.

Note the given a direct limit system of Noetherian valuation domains and injective local
maps such that the same element, say, t (in our case t = p) generates all of their maximal
ideals, the direct limit, which may be thought of as a directed union, of all of them is a
Noetherian discrete valuation domain such that t generates the maximal ideal, and such
that the residue class field is the directed union of the residue class fields. Every element of
any of these rings not divisible by t is a unit (even in that ring): thus, if W is the directed
union, pW is the unique maximal ideal. Every nonzero element of the union is a power of
t times a unit, since that is true in any of the valuation domains that contain it, and it
follows that every nonzero ideal is generated by the smallest power of p that it contains.
The statement about residue class fields is then quite straightforward.

Once we have a direct limit system as described, the direct limit will be a discrete
Noetherian valuation domain in which p generates the maximal ideal and the residue class
field is isomorphic with K.

It will therefore suffice to construct the direct limit system.

We may take V0 = ZP where P = pZ. We next consider an element λ′ ∈ K which
is the immediate successor of λ ∈ K. We have a Noetherian discrete valuation domain
(Vλ, pVλ, Kλ) and an embedding Kλ ↪→ K. We want to enlarge Vλ suitably to form Vλ′ .
If λ′ is transcendental over Kλ we simply let Vλ′ be the localization of the polynomial
ring Vλ[x] in one variable over Vλ at the expansion of pVλ: the residue class field may be
identified with Kλ(x), and the embedding of Kλ ↪→ K may be extended to the simple
transcendental extension Kλ(x) so that x maps to λ′ ∈ K.

If λ′ is already in the image of Kλ we may take Vλ′ = Vλ. If instead λ′ is algebraic
over the image of Kλ, but not in the image, then it satisfies a minimal monic polynomial
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g = g(x) of degree at least 2 with coefficients in the image of Kλ. Lift the coefficients to
Vλ so as to obtain a monic polynomial G = G(x) of the same degree over Vλ. We shall
show that Vλ′ = Vλ[x]/

(
G(x)

)
has the required properties. If G were reducible over the

fraction field of Vλ, by Gauss’ Lemma it would be reducible over Vλ, and then g would be
reducible over the image of Kλ in K. If follows that

(
G(x)

)
is prime in Vλ[x] and so Vλ′

is a domain that is a module-finite extension of Vλ. Consider a maximal ideal m of Vλ′ .
Then the chain m ⊃ (0) in Vb lies over a chain of distinct primes in Vλ: since Vλ has only
two distinct primes, we see that m lies over pVλ and so p ∈ m. But

Vλ′/pVλ′ ∼= Im (Kλ)[x]/g(x) ∼= Im (Kλ)[λ′],

and so p must generate a unique maximal ideal in Vλ′ , and the residue class field behaves
as we require as well.

Finally, if λ′ is a limit ordinal, we first take the direct limit of the system of Noetherian
discrete valuation domains indexed by the predecessors of λ′, and then enlarge this ring
as in the preceding paragraph so that the image of its residue class field contains λ′. �

Corollary. If p is a positive prime integer and K is field of characteristic p, there is, up
to isomorphism, a unique coefficient ring of characteristic p > 0 with residue class field
K and characteristic pt, and it has the form V/ptV , where (V, pV,K) is a Noetherian
discrete valuation domain.

Proof. By the preceding Theorem, we can construct V so that it has residue field K. Then
V/ptV is a coefficient ring with residue class field K of characteristic p, and we already
know that such all rings are isomorphic, which establishes the uniqueness statement. �

Corollary. Let p be a positive prime integer, K a field of characteristic p, and suppose
that (V, pV, K) and (W, pW, K) are complete Noetherian discrete valuation domains with
residue class field K. Fix a p-base Θ for K. Let T be a lifting of Θ to V and T ′ a lifting
to W . Then there is a unique isomorphism of V with W that maps each element of T to
the element with the same residue in Θ in T ′.

Proof. By our results for the case where the maximal ideal is nilpotent, we get a unique
such isomorphism V/pnV ∼= W/pnW for every n, and this gives an isomorphism of the
inverse limit systems

V/pV � V/p2V � · · · � V/pnV � · · ·

and
W/pW � W/p2W � · · · � W/pnW � · · ·

that takes the image of T in each V/pnV to the image of T ′ in the corresponding W/pnW .
This induces an isomorphism of the inverse limits, which are V and W , respectively. �


