Math 615: Lecture of April 2, 2007

We next prove that, up to non-unique isomorphism, a coefficient ring of mixed characteristic p in which p is nilpotent is determined by its residue class field and and characteristic (the latter is a power of p). However, there is a uniqueness statement about the isomorphism once liftings of a p-base for K are chosen.

Theorem. Let K, K' be isomorphic fields of characteristic p > 0 and let $g : K \to K'$ be the isomorphism. Let (V, pV, K) and (V', pV', K') be two coefficient rings of the same characteristic, $p^n > 0$. We shall also write λ' for the image of $\lambda \in K$ under g. Let Θ be a p-base for K and let $\Theta' = g(\Theta)$ be the corresponding p-base for K'. Let T be a lifting of Θ to V and let T' be a lifting of Θ' to T'. We have an obvious bijection $\tilde{g} : T \to T'$ such that if $t \in T$ lifts $\theta \in \Theta$ then $\tilde{g}(t) \in T'$ lifts $\theta' = g(\theta)$. Then \tilde{g} extends uniquely to an isomorphism of V with V' that lifts $g : K \to K'$.

Proof. As in the proof of the Theorem on existence of coefficient rings stated on the first page of the Lecture Notes of March 30, we choose $N \ge n-1$ and let $q = p^N$. For every element $\lambda \in K$ there is a unique element $\rho_{\lambda} \in V^q$ that maps to $\lambda^q \in K^q$. Similarly, there is a unique element $\rho'_{\lambda'} \in V'^q$ that maps to λ'^q for every $\lambda' \in K'$. If there is an isomorphism $V \cong V'$ as stated, it must map $\rho_{\lambda} \to \rho'_{\lambda'}$ for every $\lambda \in K$. Said otherwise, we have an obvious bijection $V^q \to V'^q$, and \tilde{g} must extend it. Just as in the proof of the Theorem on existence of coefficient rings, we can define $S_N = S$ to consist of linear combinations of distinct N-special monomials in T such that every coefficient is in V^q . Then S will map bijectively onto K. We define $S'_N = S' \subseteq V'$ analogously. Since S' maps bijectively onto K', we have an obvious bijection $\tilde{g}: S \to S'$. We use σ' for the element of S' corresponding to $\sigma \in S$.

Every element $v \in V$ must have the form $\sigma_0 + pv_1$ where σ_0 is the unique element of S that has the same residue as v modulo pV. Continuing this way, as in the proof of the Theorem on existence of coefficient rings, we get a representation

$$v = \sigma_0 + p\sigma_1 + p^2\sigma_2 + \dots + p^{n-1}\sigma_{n-1}$$

for the element $v \in V$, where the $\sigma_j \in S$. We claim this is unique. Suppose we have another such representation

$$v = \sigma_0^* + p\sigma_1^* + \dots + p^{n-1}\sigma_{n-1}^*.$$

Suppose that $\sigma_i = \sigma_i^*$ for i < j. We want to show that $\sigma_j = \sigma_j^*$ as well. Working in $V/p^{j+1}V$ we have that $\sigma_j p^j = \sigma_{j+1}p^j$, i.e., that $(\sigma_j - \sigma_j^*)$ kills p^j working mod p^{j+1} . By part (a) of the Lemma from p. 3 of the Lecture Notes of March 30 we have that $\sigma_j - \sigma_j^* \in pV$, and so σ_j and σ_j^* represent the same element of K = V/pV, and therefore are equal.

Evidently, any isomorphism $V \cong V'$ satisfying the specified conditions must take

$$\sigma_0 + p\sigma_1 + \dots + p^{n-1}\sigma_{n-1}$$

to

$$\sigma'_0 + p\sigma'_1 + \dots + p^{n-1}\sigma'_{n-1}.$$

To show that this map really does give an isomorphism of V with V' one shows simultaneously, by induction on j, that addition is preserved in $p^j V$, and that multiplication is preserved when one multiplies elements in $p^h V$ and $p^i V$ such that $h + i \ge j$. For every element $\lambda \in K$, let σ_{λ} denote the unique element of S that maps to λ . Note that we may write ρ_{λ} as σ_{λ}^{q} , since σ_{λ} has residue $\lambda \mod pV$.

Now,

$$p^{j}\rho_{\lambda}\mu + p^{j}\rho_{\eta}\mu = p^{j}(\sigma_{\lambda}^{q} + \sigma_{\eta}^{q})\mu = p^{j}((\sigma_{\lambda} + \sigma_{\eta})^{q} - pG_{q}(\sigma_{\lambda}, \sigma_{\eta})),$$

where $G_q(x, y) \in \mathbb{Z}[x, y]$ is such that $(x + y)^q = x^q + y^q + pG_q(x, y)$. Since $\sigma_{\lambda} + \sigma_{\eta}$ has residue $\lambda + \eta \mod pV$, we have that $(\sigma_{\lambda} + \sigma_{\eta})^q = \rho_{\lambda+\eta}$, and it follows that

$$p^{j}
ho_{\lambda}\mu + p^{j}
ho_{\eta}\mu = p^{j}
ho_{\lambda+\eta}\mu - p^{j+1}G_{q}(\sigma_{\lambda}, \sigma_{\eta})\mu.$$

We have similarly that

$$p^{j}\rho_{\lambda'}'\mu' + p^{j}\rho_{\eta'}'\mu' = p^{j}\rho_{\lambda'+\eta'}'\mu' - p^{j+1}G_{q}(\sigma_{\lambda'}', \sigma_{\eta'}')\mu',$$

and it follows easily that addition is preserved by our map $p^j V \to p^j V'$: note that $p^{j+1}G_q(\sigma_\lambda, \sigma_\eta)\mu$ maps to $p^{j+1}G_q(\sigma'_{\lambda'}, \sigma'_{\eta'})\mu'$ because all terms are multiples of p^{j+1} (the argument here needs that certain multiplications are preserved as well addition).

Once we have that our map preserves addition on terms in $p^j V$, the fact that it preserves products of pairs of terms from $p^h V \times p^i V$ for $h + i \ge j$ follows from the distributive law, the fact that addition in $p^j V$ is preserved, and the fact that there is a unique way of writing $\mu_1 \mu_2$, where μ_1 and μ_2 are monomials in the elements of T with all exponents $\le q - 1$, in the form $\nu^q \mu_3$ where all exponents in μ_3 are $\le q - 1$, and

$$(p^h \rho_\lambda \mu_1)(p^i \rho_\eta \mu_2) = p^{h+i} (\sigma_\lambda \sigma_\eta \nu)^q \mu_3$$

in V, while

$$(p^{h}\rho_{\lambda'}'\mu_{1}')(p^{i}\rho_{\eta'}'\mu_{2}') = p^{h+i}(\sigma_{\lambda'}'\sigma_{\eta'}'\nu')^{q}\mu_{3}'$$

in V'. \Box

Theorem. Let K be a field of characteristic p > 0. Then there exists a complete Noetherian valuation domain (V, pV, K) with residue class field K.

Proof. It suffices to prove that there exists a Noetherian valuation domain (V, pV, K): its completion will then be complete with the required properties. Choose a well-ordering of K in which 0 is the first element. We construct, by transfinite induction, a direct limit system of Noetherian valuation domains $\{V_{\lambda}, pV_{\lambda}, K_{\lambda}\}$ indexed by the well-ordered set K and injections $K_a \hookrightarrow K$ such that

(1) $K_0 \cong \mathbb{Z}/p\mathbb{Z}$

- (2) The image of K_{λ} in K contains a.
- (3) The diagrams

commute for all $\lambda \leq \lambda' \in K$.

Note the given a direct limit system of Noetherian valuation domains and injective local maps such that the same element, say, t (in our case t = p) generates all of their maximal ideals, the direct limit, which may be thought of as a directed union, of all of them is a Noetherian discrete valuation domain such that t generates the maximal ideal, and such that the residue class field is the directed union of the residue class fields. Every element of any of these rings not divisible by t is a unit (even in that ring): thus, if W is the directed union, pW is the unique maximal ideal. Every nonzero element of the union is a power of t times a unit, since that is true in any of the valuation domains that contain it, and it follows that every nonzero ideal is generated by the smallest power of p that it contains. The statement about residue class fields is then quite straightforward.

Once we have a direct limit system as described, the direct limit will be a discrete Noetherian valuation domain in which p generates the maximal ideal and the residue class field is isomorphic with K.

It will therefore suffice to construct the direct limit system.

We may take $V_0 = \mathbb{Z}_P$ where $P = p\mathbb{Z}$. We next consider an element $\lambda' \in K$ which is the immediate successor of $\lambda \in K$. We have a Noetherian discrete valuation domain $(V_{\lambda}, pV_{\lambda}, K_{\lambda})$ and an embedding $K_{\lambda} \hookrightarrow K$. We want to enlarge V_{λ} suitably to form $V_{\lambda'}$. If λ' is transcendental over K_{λ} we simply let $V_{\lambda'}$ be the localization of the polynomial ring $V_{\lambda}[x]$ in one variable over V_{λ} at the expansion of pV_{λ} : the residue class field may be identified with $K_{\lambda}(x)$, and the embedding of $K_{\lambda} \hookrightarrow K$ may be extended to the simple transcendental extension $K_{\lambda}(x)$ so that x maps to $\lambda' \in K$.

If λ' is already in the image of K_{λ} we may take $V_{\lambda'} = V_{\lambda}$. If instead λ' is algebraic over the image of K_{λ} , but not in the image, then it satisfies a minimal monic polynomial g = g(x) of degree at least 2 with coefficients in the image of K_{λ} . Lift the coefficients to V_{λ} so as to obtain a monic polynomial G = G(x) of the same degree over V_{λ} . We shall show that $V_{\lambda'} = V_{\lambda}[x]/(G(x))$ has the required properties. If G were reducible over the fraction field of V_{λ} , by Gauss' Lemma it would be reducible over V_{λ} , and then g would be reducible over the image of K_{λ} in K. If follows that (G(x)) is prime in $V_{\lambda}[x]$ and so $V_{\lambda'}$ is a domain that is a module-finite extension of V_{λ} . Consider a maximal ideal m of $V_{\lambda'}$. Then the chain $m \supset (0)$ in V_b lies over a chain of distinct primes in V_{λ} : since V_{λ} has only two distinct primes, we see that m lies over pV_{λ} and so $p \in m$. But

$$V_{\lambda'}/pV_{\lambda'} \cong \operatorname{Im}(K_{\lambda})[x]/g(x) \cong \operatorname{Im}(K_{\lambda})[\lambda'],$$

and so p must generate a unique maximal ideal in $V_{\lambda'}$, and the residue class field behaves as we require as well.

Finally, if λ' is a limit ordinal, we first take the direct limit of the system of Noetherian discrete valuation domains indexed by the predecessors of λ' , and then enlarge this ring as in the preceding paragraph so that the image of its residue class field contains λ' . \Box

Corollary. If p is a positive prime integer and K is field of characteristic p, there is, up to isomorphism, a unique coefficient ring of characteristic p > 0 with residue class field K and characteristic p^t , and it has the form V/p^tV , where (V, pV, K) is a Noetherian discrete valuation domain.

Proof. By the preceding Theorem, we can construct V so that it has residue field K. Then $V/p^t V$ is a coefficient ring with residue class field K of characteristic p, and we already know that such all rings are isomorphic, which establishes the uniqueness statement. \Box

Corollary. Let p be a positive prime integer, K a field of characteristic p, and suppose that (V, pV, K) and (W, pW, K) are complete Noetherian discrete valuation domains with residue class field K. Fix a p-base Θ for K. Let T be a lifting of Θ to V and T' a lifting to W. Then there is a unique isomorphism of V with W that maps each element of T to the element with the same residue in Θ in T'.

Proof. By our results for the case where the maximal ideal is nilpotent, we get a unique such isomorphism $V/p^n V \cong W/p^n W$ for every n, and this gives an isomorphism of the inverse limit systems

$$V/pV \leftarrow V/p^2V \leftarrow \cdots \leftarrow V/p^nV \leftarrow \cdots$$

and

$$W/pW \leftarrow W/p^2W \leftarrow \cdots \leftarrow W/p^nW \leftarrow \cdots$$

that takes the image of T in each $V/p^n V$ to the image of T' in the corresponding $W/p^n W$. This induces an isomorphism of the inverse limits, which are V and W, respectively. \Box