
Math 615: Lecture of April 4, 2007

Let p > 0 be a prime integer. We now know that a coefficient ring of mixed characteristic
p and characteristic pn, where n ≥ 2, is determined up to isomorphism by its residue class
field. Let K be a given field of characteristic p. We also know that there is a complete
mixed characteristic Noetherian discrete valuation ring (V, pV, K) with residue class field
K. This implies that V/pnV is a coefficient ring of characteristic pn. Hence, as asserted
earlier:

Theorem. A mixed characteristic coefficient ring of characteristc pn, where p > 0 is
prime, has the form V/pnV , where V is a complete Noetherian discrete valuation ring that
is a coefficient field. �

This completes our proof of all of the structure theorems for complete local rings. We
restate the following:

Theorem. Every complete local ring is either a homomorphic image of K[[x1, . . . , xn]],
a power series ring over a field K, or of V [[x1, . . . , xn]], a power series ring over a mixed
characteristic coefficient ring (V, pV, K) that is a Noetherian discrete valuation ring.

Both K[[x1, . . . , xn]] and V [[x1, . . . , xn]] are Cohern-Macaulay, as is every regular local
ring, since a minimal system of generators for the maximal ideal is a regular sequence. But
Cohen-Macaulay rings are universally catemary. Hence:

Corollary. Every complete local ring is universally catenary. �

Complete regular local rings are formal power series rings in equal chacteristic, and also
in mixed characteristic if unramified. The following is an important tool in working with
formal power series rings.

Theorem (Weierstrass preparation theorem). Let (A, m, K) be a complete local
ring and let x be a formal indeterminate over A. Let f =

∑∞
n=0 anxn ∈ A[[x]], where

ah ∈ A − m is a unit and an ∈ m for n < h. (Such an element f is said to be regular
in x of order h.) Then the images of 1, x, . . . , xh−1 are a free basis over A for the ring
A[[x]]/fA[[x]], and every element g ∈ A[[x]] can be written uniquely in the form qf + r
where q ∈ A[[x]], and r ∈ A[x] is a polynomial of degree ≤ h− 1.

Proof. Let M = A[[x]]/(f), which is a finitely generated A[[x]]-module, and so will be sep-
arated in the M-adic topology, where M = (m, x)A[[x]]. Hence, it is certainly separated
in the m-adic topology. Then M/mM ∼= K[[x]]/(f), where f is the image of f under the
map A[[x]] � K[[x]] induced by A � K: it is the result of reducing coefficients of f mod

1



2

m. It follows that the lowest nonzero term of f has the form cxh, where c ∈ K, and so
f = xhγ where γ is a unit in K[[x]]. Thus,

M/mM ∼= K[[x]]/(f) = K[[x]]/(xh),

which is a K-vector space for which the images of 1, x, . . . , xh−1 form a K-basis. By the
Proposition on p. 2 of the Lecture Notes of March 23, the elements 1, x, . . . , xh−1 span
A[[x]]/(f) as an A-module. This means precisely that every g ∈ A[[x]] can be written
g = qf + r where r ∈ A[x] has degree at most h− 1.

Suppose that g′f + r′ is another such representation. Then r′ − r = (q − q′)f . Thus, it
will suffice to show if r = qf is a polynomial in x of degree at most h− 1, then q = 0 (and
r = 0 follows). Suppose otherwise. Since some coefficient of q is not 0, we can choose t
such that q is not 0 when considered mod mtA[[x]]. Choose such a t as small as possible,
and let d be the least degree such that the coefficient of xd is not in mt. Pass to R/mt.
Then q has lowest degree term axd, and both a and all higher coefficients are in mt−1, or
we could have chosen a smaller value of t. When we multiply by f (still thinking mod mt),
note that all terms of f of degree smaller than h kill q, because their coefficients are in m.
There is at most one nonzero term of degree h + d, and its coefficient is not zero, because
the coefficient of xh in f is a unit. Thus, qf has a nonzero term of degree ≥ h+ d > h− 1,
a contradiction. This completes the proof of the existence and uniqueness of q and r. �

Corollary. Let A[[x]] and f be as in the statement of the Weierstrass Preparation The-
orem, with f regular of order h in x. Then f has a unique multiple fq which is a monic
polynomial in A[x] of degree h. The multiplier q is a unit, and qf has all non-leading
coefficients in m. The polynomial qf called the unique monic associate of f .

Proof. Apply the Weierstrass Preparation Theorem to g = xh. Then xh = qf + r, which
says that xh − r = qf . By the uniqueness part of the theorem, these are the only choices
of q, r that satisfy the equation, and so the uniqueness statement follows. It remains only
to see that q is a unit, and that r has coefficients in m. To this end, we may work mod
mA[[x]]. We use u for the class of u ∈ A[[x]] mod mA[[x]], and think of u as an element of
K[[x]].

Then xh − r = qf . Since f is a unit γ times xh, we must have r = 0. It follows that
xh = xhqγ. We may cancel xh, and so q is a unit of of K[[x]]. It follows that q is a unit
of A[[x]], as asserted. �

Discussion. This result is often applied to the formal power series ring in n variables,
K[[x1, . . . , xn]]: one may take A = K[[x1, . . . , xn−1]] and x = xn, for example, though,
obviously, one might make any of the variable play the role of x. In this case, a power
series f is regular in xn if it involves a term of the form cxh

n with c ∈ K − {0}, and if one
takes h as small as possible, f is regular of order h in xn. The regularity of f of order h
in xn is equivalent to the assertion that under the unique continuous K[[xn]]-algebra map
K[[x1, . . . , xn]] → K[[xn]] that kills x1, . . . , xn−1, the image of f is a unit times xh

n. A
logical notation for the image of f is f(0, . . . , 0, xn). The Weierstrass preparation theorem
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asserts that for any g, we can write f = qg + r uniquely, where q ∈ K[[x1, . . . , xn]], and
r ∈ K[[x1, . . . , xn−1]][xn]. In this context, the unique monic associate of f is sometimes
call the distinguished pseudo-polynomial associated with f . If K = R or C one can consider
instead the ring of convergent (on a neighborhood of 0) power series. One can carry through
the proof of the Weierstrass preparation theorem completely constructively, and show that
when g and f are convergent, so are q and r. See, for example, [O. Zariski and P. Samuel,
Commutative Algebra, Vol. II, D. Van Nostrand Co., Inc., Princeton, 1960], pp. 139–146.

Any nonzero element of the power series ring (convergent or formal) can be made regular
in xn by a change of variables. The same applies to finitely many elements f1, . . . , fs, since
it suffices to make the product f1 · · · fs regular in xn, (if the image of f1 · · · fs in K[[xn]]
is nonzero, so is the image of every factor). If the field is infinite one may make use of a
K-automorphism that maps x1, . . . , xn to a different basis for Kx1 + · · ·+ Kxn. One can
think of f as f0 + f1 + f2 + · · · where every fj is a homogeneous polynomial of degree j
in x1, . . . , xn. Any given form occurring in fj 6= 0 can be made into a monic polynomial
by a suitable linear change of variables, by problem 3. of Problem Set #3 for Math 614,
Fall 2003 and its solution.

If K is finite one can still get the image of f under an automorphism to be regular
in xn by mapping x1, . . . , xn to x1 + xN1

n , . . . , xn−1 + x
Nn−1
n , xn, respectively, as in the

proof of the Noether normalization theorem, although the details are somewhat more
difficult. Consider the monomials that occur in f (there is at least one, since f is not 0),
and totally order the monomials so that xj1

1 · · ·xjn
n < xk1

1 · · ·xkn
n means that for some i,

1 ≤ i ≤ n, j1 = k1, j2 = k2, . . . , ji−1 = ki−1, while ji < ki. Let xd1
1 · · ·xdn

n be the smallest
monomial that occurs with nonzero coefficient in f with respect to this ordering, and let
d = max{d1, . . . , dn}. Let Ni = (nd)n−i, and let θ denote the continuous K-automorphism
of K[[x1, . . . , xn]] that sends xi 7→ xi + xn

Ni for 1 ≤ i ≤ n − 1, and xn 7→ xn. We claim
that θ(f) is regular in xn. The point is that the value of θ(f) after killing x1, . . . , xn−1 is

f(xN1
n , xN2

n , . . . , xNn−1
n , xn),

and the term c′xe1
1 · · ·xen

n where c′ ∈ K − {0} maps to

c′xe1N1+e2N2+···+en−1Nn−1+en
n .

In particular, there is a term in the image of θ(f) coming from the xd1
1 · · ·xdn

n term in f ,
and that term is a nonzero scalar multiple of

xd1N1+d2N2+···+dn−1Nn−1+dn
n .

It suffices to show that no other term cancels it, and so it suffices to show that if for some
i with 1 ≤ i ≤ n, we have that ej = dj for j < i and ei > di, then

e1N1 + e2N2 + · · ·+ en−1Nn−1 + en > d1N1 + d2N2 + · · ·+ dn−1Nn−1 + dn.

Subtracting the right hand side of the inequality above from the left hand side yields

(ei − di)Ni +
∑
j>i

(ej − dj)Nj ,
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since dj = ej for j < i. It will be enough to show that this difference is positive. Since
ei > di, the leftmost term is at least Ni. Some of the remaining terms are nonnegative,
and we omit these. The terms for those j such ej < dj are negative, but what is being
subtracted is bounded by djNj ≤ dNj . Since at most n − 1 terms are being subtracted,
the sum of the quantities being subtracted is strictly bounded by nd maxj>i{dNj}. The
largest of the Nj is Ni+1, which is (dn)n−(i+1). Thus, the total quantity being subtracted
is strictly bounded by (dn)(dn)n−i−1 = (dn)n−i = Ni. This completes the proof that

e1N1 + e2N2 + · · ·+ en−1Nn−1 + en > d1N1 + d2N2 + · · ·+ dn−1Nn−1 + dn,

and we see that θ(f) is regular in xn, as required. �

If the Weierstrass Preparation Theorem is proved directly for a formal or convergent
power series ring R over a field K (the constructive proofs do not use a priori knowledge
that the power series ring is Noetherian), the theorem can be used to prove that the ring
R is Noetherian by induction on n. The cases where n = 0 or n = 1 are obvious: the ring
is a field or a discrete valuation ring. Suppose the result is known for the power series ring
A in n − 1 variables, and let R be the power series ring in one variable xn over A. Let
I be an ideal of R. We must show that I is finitely generated over R. If I = (0) this is
clear. If I 6= 0 choose f ∈ I with f 6= 0. Make a change of variables such that f is regular
in xn over A. Then I/fR ⊆ R/fR, which is a finitely generated module over A. By the
induction hypothesis, A is Noetherian, and so R/fR is Noetherian over A, and hence I/fR
is a Noetherian A-module, and is finitely generated as an A-module. Lift these generators
to I. The resulting elements, together with f , give a finite set of generators for I.

Although we shall later give a quite different proof valid for all regular local rings,
we want to show how the Weierstrass preparation theorem can be used to prove unique
factorization in a formal power series ring.

Theorem. Let K be a field and let (V, π, K) be a Noetherian discrete valuation ring.
R = K[[x1, . . . , xn]] or V [[x1, . . . , xn]] be the formal power series ring in n variables over
K or V . Then R is a unique factorization domain.

Proof. We use induction on n. If n = 0 then R is a field or a discrete valuation ring. In
the latter case, R is a principal ideal domain and, hence, a unique factorization domain.

Suppose that n ≥ 1. It suffices to prove that if f ∈ m is irreducible then f is prime. If π
divides f , the f is a multiple of π by a unit, since f is irreducible. We know that π is prime,
since R/(π) ∼= K[[x1, . . . , xn]], a domain. Hence, we may assume that π does not divide
f . Suppose that f divides gh, where it may be assumed without loss of generality that
g, h ∈ m. Then we have an equation fw = gh, and since f is irreducible, we must have
that w ∈ m as well. If some power of π divides w, then π divides g or h. We may factor
out π and obtain a similar equation in which a lower power of π divides w. Eventually, we
obtain an equation in which π does not divide w: otherwise, w would be in every power of
the maximal ideal. Then π does not divide g nor h as well. Hence, π does not divide fgh.
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Therefore, by the Discussion on pp. 3 and 4, we can make a change of variables in the
formal power series ring such that fgh is regular in xn modulo π. Since an element of the
ring that is a unit modulo π is a unit, we have that fgh is regular in xn in R as well. Then
f , g, and h are all regular in xn, and we may multiply each by a unit so as to replace it
by its unique monic associate: here we view R as A[[xn]] where A = K[[x1, . . . , xn−1]] or
V [[x1, . . . , xn−1]]. Thus, we may assume without loss of generality that f , g, and h are
monic polynomials in A[xn] whose non-leading coefficients are in Q = (x1, . . . , xn−1)A.
In the process of replacing f, g, h by their products units, w is replaced by its product
with a certain unit as well, so that we still have fw = gh. However, a priori, w may be a
power series in xn rather than a polynomial.

It is easy, however, to see that w ∈ A[xn] as well. We can divide gh ∈ A[xn] by f , which
is monic in xn, to get a unique quotient and remainder, say gh = qf+r, where the degree of
r is less than the degree d of f . The Weierstrass preparation theorem guarantees a unique
such representation in A[[xn]], and in the larger ring we know that r = 0. Therefore, the
equation gh = qf holds in A[xn], and this means that q = w is a monic polynomial in xn

as well.

By the induction hypothesis, A is a UFD, and so A[xn] is a UFD. We first note that
f is still irreducible in A[xn] (this is an issue because it might factor as a polynomial
with an invertible constant term in one factor: such a factorization does not contradict
irreducibility in A[[xn]]). But if f factors non-trivially f = f1f2 in A[xn], the factors f1,
f2 must be polynomials in xn of lower degree which can be taken to be monic. Mod Q,
f1, f2 give a factorization of xd

n, and this must be into two powers of xn of lower degree.
Therefore, f1 and f2 both have all non-leading coefficients in Q, and, in particular their
constant terms are in Q. This implies that neither f1 nor f2 is a unit of R, and this
contradicts the irreducibility of f in R. Thus, f must be irreducible in A[xn] as well. But
then, in A[xn] we have that f | g or f |h, and the same obviously holds in the larger ring
R, as required. �


