
Math 615: Lecture of April 6, 2007

We next want to prove unique factorization in all regular local rings, and we shall use
an entirely different method. We first discuss the basic facts about the divisor class group
C` (R) of a normal Noetherian domain R.

Primary decomposition of principal ideals in a normal Noetherian domain has a par-
ticularly simple form: there are no embedded primes, and so if 0 6= a ∈ P the P -primary
component is unique, and corresponds to the contraction of an ideal primary to the maxi-
mal ideal in RP , a discrete valuation ring. But the only ideals primary to PRP in RP are
the powers of PRP , and so every P -primary ideal has the form P (n) for a unique positive
integer n, where P (n) denotes the n th sybolic power of P , the contraction of PnRP to R.
Thus, if a 6= 0 is not a unit, then aR is uniquely an intersection

P
(k1)
1 ∩ · · · ∩ P (kn)

n .

Form the free abelian group G on generators that are taken either to be the height one
primes of R (as we shall do) or elements in bijective correspondence with the height one
primes of R. The elements of G are called divisors. If the ideal aR has the primary
decomposition indicated, the element

∑n
i=1 kiPi is called the divisor of a, and denoted

div (a). The coefficient of P is the same as the order of a in the discrete valuation ring
RP . By convention, the divisor of a unit of R is 0. The quotient of G by the span of
all the divisors is called the divisor class group of R, and denoted C` (R). It turns out to
vanish if and only if R is a UFD. In fact, P maps to 0 in C` (R) iff P is principal. One can
say something even more general. An ideal I of a Noetherian ring R is said to have pure
height h if all associated primes of I as an ideal have height h. The unit ideal, which has
no associated primes, satisfies this condition by default. If I is an ideal of a Noetherian
normal domain of pure height one, then I has a primary decomposition P

(k1)
1 ∩· · ·∩P

(kn)
n ,

and so there is a divisor div (I) associated with I, namely
∑n

i=1 kiPi. If I = R is the unit
ideal, we define div (I) = 0.

Theorem. Let R be a Noetherian normal domain. If I has pure height one, then so does
fI for every nonzero element f of R, and div (fI) = div (f) + div (I). For any two ideals
I and J of pure height one, div (I) = div (J) iff I = J , while the images of div (I) and
div (J) in C` (R) are the same iff there are nonzero elements f, g of R such that fI = gJ .
This holds iff I and J are isomorphic as R-modules. In particular, I is principal if and
only if div (I) is 0 in the divisor class group. Hence, R is a UFD if and only if C` (R) = 0.

The elements of C` (R) are in bijective correspondence with isomorphism classes of pure
height one ideals considered as R-modules, and the inverse of the element represented
by div (I) is given by div (J), for a pure height one ideal J ∼= HomR(I, R). In fact, if
g ∈ I − {0}, we may take J = gR :R I.
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Proof. I = J iff div (I) = div (J) because, for pure height one ideals, the associated divisor
completely determines the primary decomposition of the ideal. Observe that we have
0 ⊆ fR/fI ⊆ R/fI and that the cokernel is isomorphic with R/fR while fR/fI ∼= R/I.
Since Ass (R/I) contains only height one primes and Ass (R/fR) contains only height one
primes (since R is normal), it follows that Ass (R/aI) contains only height one primes.
The statement that div (fI) = div (f) + div (I) may be checked locally after localizing at
each height one prime ideal Q, and is obvious in the case of a discrete valuation ring. In
particular, div (fg) = div (f) + div (g) when f, g ∈ R− {0}. It follows easily that

Span {div (f) : f ∈ R− {0}} = {div (g)− div (f) : f, g ∈ R− {0}}.

Thus, if div (I) = div (J) in C` (R), then div (I) − div (J) = div (g) − div (f) and so
div (fI) = div (gJ) and fI = gJ . Then I ∼= fI = gJ ∼= J as modules. Now suppose
θ : I ∼= J as modules (it does not matter whether I, J have pure height one) and let
g ∈ I − {0} have image f in J . For all a ∈ I, gθ(a) = θ(ga) = aθ(g) = af , and so
θ(a) = (f/g)a, and θ is precisely multiplication by f/g. This yields that (f/g)I = J and,
hence, fI = gJ .

Now fix I 6= (0) and g ∈ I − {0}. Any map I → R is multiplication by a fraction f/g,
where f is the image of g in R: thus, HomR(I, R) ∼= {f ∈ R : (f/g)I ⊆ R}, where the
homomorphism corresponding to multiplication by f/g is mapped to f . But (f/g)I ⊆ R
iff fI ⊆ gR, i.e., iff f ∈ gR :R I. Thus, HomR(I, R) ∼= gR :R I = J . We claim
that J has pure height one (even if I does not) and that if I has pure height one then
div (J) + div (I) = div (g), which shows that div (J) = −div (I) in C` (R). Let f1, . . . , fk

generate I. Then we have an exact sequence

0 → gR :R I → R → (R/gR)⊕k

where the map from R sends r 7→ (rf1, . . . , rfk) with the overlines indicating residues
modulo gR. It follows that R/(gR :R I) embeds in (R/gR)⊕k, and so

Ass
(
R/(gR :R I)

)
⊆ Ass

(
(R/gR)⊕k

)
= Ass (R/gR),

which shows that all associated primes of gR :R I have pure height one. Now localize at
any height one prime P to check that div (J) + div (I) = div (g). After localization, if x
generates the maximal ideal we have that I = xmR, g = xm+nR, where m, n ∈ N, and,
since localization commutes with formation of colon ideals, that J = xm+nR : xnR, which
is xmR. This is just what we need to show that the coefficients of P in div (I) and div (J)
sum to the coefficient of P in div (g).

It remains only to show that every element of C` (R) is represented by div (I) for some
ideal I. But this is clear, since the paragraph above shows that inverses of elements like
[P ] are represented by divisors of ideals. �

Remarks. A further related result is that a finitely generated torsion-free module M of
torsion-free rank one over a Noetherian normal domain R is isomorphic with a pure height
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one ideal if and only if it is a reflexive R-module, i.e, if and only if the natural map
M → M∗∗ is an isomorphism, where ∗ indicates Hom( , R), and the natural map
sends u ∈ M to the map M∗ → R whose value on f ∈ M∗ is f(u). In fact, a finitely
generated torsion-free module of rank one over a Noetherian domain is always isomorphic
to an ideal I 6= 0 of R, and if R is normal, I∗∗ may be identified with the intersection of
the primary components of I corresponding to height one minimal primes of I. (If there
are no such minimal primes then I∗∗ may be identified with R.) One can define the divisor
class group of the Noetherian normal domain R to be the isomorphism classes of rank one
reflexive R-modules with multiplication given by [I][J ] = [(I ⊗R J)∗∗]. See the Lecture
Notes for March 29 and p. 1 for March 31 from Math 615, Winter 2004 for an analysis of
the behavior of reflexive modules over a normal Noetherian domain and a proof that the
rank one reflexive modules coincide, up to isomorphism, with the ideals of pure height one.

Our next objective is to construct the divisor class group in a different way, using
Grothendieck groups. The second point of view gives information that is not readily
available directly.

Let R be a Noetherian ring. Let M denote the set of modules

{Rn/M : n ∈ N, M ⊆ Rn}.

Every finitely generated R-module is isomorphic to one in M, which is all that we really
need aboutM: we can also start with some other set of modules with this property without
affecting the Grothendieck group, but we use this one for definiteness.

Consider the free abelian group with basis M, and kill the subgroup generated by all
elements of the form M −M ′ −M ′′ where

0 → M ′ → M → M ′′ → 0

is a short exact sequence of elements of M. The quotient group is called the Grothendieck
group G0(R) of R. It is an abelian group generated by the elements [M ], where [M ] denotes
the image of M ∈M in G0(R). Note that if M ′ ∼= M we have a short exact sequence

0 → M ′ → M → 0 → 0,

so that [M ] = [M ′] + [0] = [M ′], i.e., isomorphic modules represent the same class in
G0(R).

A map L from M to an abelian group (A, +) is called additive if whenever

0 → M ′ → M → M ′′ → 0

is exact, then L(M) = L(M ′) + L(M ′′). The map θ sending M to [M ] ∈ G0(R) is
additive, and is a universal additive map in the following sense: given any additive map
L : M→ A, there is a unique homomorphism h : G0(M) → A such that L = h ◦ θ. Since



4

we need L(M) = h([M ]), if there is such a map it must be induced by the map from the
free abelian group with basis M to A that sends M to h(M). Since h is additive, the
elements M −M ′ −M ′′ coming from short exact sequences

0 → M ′ → M → M ′′ → 0

are killed, and so there is an induced map h : G0(R) → A. This is obviously the only
possible choice for h.

Over a field K, every finitely generated module is isomorphic with K⊕n for some n ∈ N.
It follows that G0(K) is generated by γ = [K], and in fact it is Zγ, the free abelian group
on one generator. The additive map associated with the Grothendieck group sends M
to dim K(M)γ. If we identify Zγ with Z by sending γ 7→ 1, this is the (K-vector space)
dimension map.

If R is a domain with fraction field F , we have an additive map to Z that sends M to
dimFF ⊗R M , which is called the torsion-free rank of M . This induces a surjective map
G0(R) → Z. If R is a domain and if γ = [R] generates G0(R), then G0(R) ∼= Zγ ∼= Z, with
the isomorphism given by the torsion-free rank map.

Notice that if L is additive and

0 → Mn → · · · → M1 → M0 → 0

is exact, then
L(M0)− L(M1) + · · ·+ (−1)nL(Mn) = 0.

If n ≤ 2, this follows from the definition. We use induction. In the general case note that
we have a short exact sequence

0 → N → M1 → M0 → 0

and an exact sequence

0 → Mn → · · · → M3 → M2 → N → 0,

since
Coker (M3 → M2) ∼= Ker (M1 → M0) = N.

Then
(∗) L(M0)− L(M1) + L(N) = 0,

and
(∗∗) L(N)− L(M2) + · · ·+ (−1)n−1L(Mn) = 0

by the induction hypothesis. Subtracting (∗∗) from (∗) yields the result. �
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Our proof of unique factorization in arbitrary regular local rings is based on the following
two theorems, whose proofs we postpone momentarily.

To state the first of these theorems, observe that we can define a filtration of G0(R) by
letting 〈G0(R)〉i denote the subgroup spanned by classes of primes P such that height (P ) ≥
i. This filtration decreases as i increases. From it, we obtain an associated graded group:
we write

[G0(R)]i = 〈G0(R)〉i/〈G0(R)〉i+1.

Theorem (M. P. Murthy). If R is a normal domain, then C` (R) ∼= [G0(R)]1 in such a
way that the generator of C` (R) corresponding to a height one prime P is mapped to the
image of R/P in [G0(R)]1.

The second of these theorems is the following, which is a local version of the Hilbert
syzygy theorem.

Theorem (Hilbert syzygy theorem for regular local rings). Let (R, m, K) be a
regular local ring of Krull dimension n, and let M be a finitely generated R-module. Then
M is free if and only if depth(M) = n. If M is not free and M1 is any first module
of syzygies of M , depth(M1) = depth(M) + 1. Hence, M has a finite free resolution
by finitely generated free modules, and any shortest such free resolution of M has length
n− depth(M).

Once we have proved this, we have:

Corollary. If R is a regular local ring, G0(R) = Zγ, where γ = [R], and so for every
finitely generated module M , [M ] ∈ G0(R) is rank (M)γ, where rank indicates torsion-free
rank. In particular, if M is a torsion-module, [M ] = 0, and so [R/P ] = 0 for every prime
ideal P with height P ≥ 1.

Proof. R is a domain, and we have the additive map given by torsion-free rank. It will
suffice to show that [R] generates G0(R). But if M is any finitely generated R-module, we
know that M has a finite free resolution

0 → Rbk → · · · → Rb1 → Rb0 → M → 0,

and so the element [M ] may be expressed as

[Rb0 ]− [Rb1 ] + · · ·+ (−1)k[Rbk ] = b0γ − b1γ + · · ·+ (−1)kbkγ = (b0 − b1 + · · ·+ (−1)kbk)γ

�

Hence:
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Corollary (Auslander-Buchsbaum). Every regular local ring is a UFD.

Proof. (M. P. Murthy) The universal additive map is the same as torsion-free rank, so that
if P 6= (0), we have that [R/P ] = 0 in G0(R). It follows that 〈G0(R)〉i = 0 for all i ≥ 1,
and, hence, C` (R) = [G0(R)]1 = 0. �

It remains to prove the local version of the Hilbert syzygy theorem and Murthy’s char-
acterization of the divisor class group.


