
Math 615: Lecture of April 13, 2007

Note that given a finite filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn−1 ⊆ Mn = M

of a finitely generated R-module M and an additive map L we have that

L(M) = L(Mn/Mn−1) + L(Mn−1),

and, by induction on n, that

L(M) =
n∑

j=1

L(Mj/Mj−1).

In particular, [M ] ∈ G0(R) is
n∑

j=1

[Mj/Mj−1].

The following result gives a presentation of the Grothendieck group.

Theorem. Let R be a Noetherian ring. G0(R) is generated by the elements [R/P ], as P
runs through all prime ideals of R. If P is prime and x ∈ R− P , then [R/(P + xR)] = 0,
and so if R/Q1, . . . , R/Qk are all the factors in a prime filtration of [R/(P + xR)], we
have that [R/Q1] + · · ·+ [R/Qk] = 0. The relations of this type are sufficient to generate
all relations on the classes of the prime cyclic modules.

Proof. The first statement follows from the fact that every finitely generated module over
a Noetherian ring R has a finite filtration in which the factors are prime cyclic modules.
The fact that [R/(P + xR)] = 0 follows from the short exact sequence

0 → R/P
x−→ R/P → R/(P + xR) → 0,

which implies [R/P ] = [R/P ] + [R/(P + xR)] and so [R/(P + xR)] = 0 follows.

Now, for every M ∈ M, fix a prime cyclic filtration of M . We need to see that if we
have a short exact sequence

0 → M ′ → M → M ′′ → 0

that the relation [M ] = [M ′]+ [M ′′] is deducible from ones of the specified type. We know
that M ′ will be equal to the sum of the classes of the prime cyclic modules occurring in its
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chosen prime filtration, and so will M ′′. These two prime cyclic filtrations together induce
a prime cyclic filtration F of M , so that the information [M ] = [M ′]+ [M ′′] is conveyed by
setting [M ] equal to the sum of the classes of the prime cyclic modules in these specified
filtrations of [M ] and [M ′]. But F will not typically be the specified filtration of [M ], and
so we need to set the sum of the prime cyclic modules in the specified filtration of M equal
to the sum of all those occurring in the specified filtrations of M ′ and M ′′.

Thus, we get sufficiently many relations to span all relations if for all finitely generated
modules M and for all pairs of possibly distinct prime cyclic filtrations of M , we set the
sum of the classes of the prime cyclic modules coming from one filtration equal to the
corresponding sum for the other. But any two filtrations have a common refinement. Take
a common refinement, and refine it further until it is a prime cyclic filtration again. Thus,
we get sufficiently many relations to span if for every finitely generated module M and
for every pair consisting of a prime cyclic filtration of M and a refinement of it, we set
the sum of the classes coming from one filtration to the sum of those in the other. Any
two prime cyclic filtrations may then be compared by comparing each to a prime cyclic
filtration that refines them both.

In refining a given prime cyclic filtration, each factor R/P is refined. Therefore, we
get sufficiently many relations to span if for every R/P and every prime cyclic filtration
of R/P , we set [R/P ] equal to the sum of the classes in the prime cyclic filtration of
R/P . Since Ass (R/P ) = P , the first submodule of a prime cyclic filtration of R/P will
be isomorphic with R/P , and will therefore have the form x(R/P ), where x ∈ R − P .
If the other factors are R/Q1, . . . , R/Qk, then these are the factors of a filtration of
(R/P )/x(R/P ) = R/(P + xR). Since [x(R/P )] = [R/P ], the relation we get is

[R/P ] = [R/P ] + [R/Q1] + · · ·+ [R/Qk],

which is equivalent to
[R/Q1] + · · ·+ [R/Qk] = 0,

and so the specified relations suffice to span all relations. �

We can immediately deduce as a consequence the theorem of Murthy stated in the
Lecture Notes of April 6.

Theorem (M. P. Murthy). If R is a normal domain, then C` (R) ∼= [G0(R)]1 in such a
way that the generator of C` (R) corresponding to a height one prime P is mapped to the
image of R/P in [G0(R)]1.

Proof. We know that G0(R) is the free group on the classes of the R/P , P prime, modulo
relations obtained from prime cyclic filtrations of R/(P + xR), x /∈ P . We shall show
that if we kill all the [R/Q] for Q of height 2 or more, all relations are also killed except
those coming from P = (0), and the image of any relation corresponding to a prime cyclic
filtration of R/xR corresponds precisely to div (x). Clearly, if P 6= 0 and x /∈ P , any prime
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containing P + xR strictly contains P and so has height two or more. Thus, we need only
consider relations on the R/P for P of height one coming from prime cyclic filtrations of
R/xR, x 6= 0. Clearly, R does not occur, since R/xR is a torsion module, and occurrences
of R/Q for Q of height ≥ 2 do not matter. We need only show that for every prime P
of height one, the number of occurrences of R/P in any prime cyclic filtration of R/xR is
exactly k, where P (k) is the P -primary component of xR. But we can do this calculation
after localizing at P : note that all factors corresponding to other primes become 0, since
some element in the other prime not in P is inverted. Then xRP = P kRp, and we need to
show that any prime cyclic filtration of RP /xRP has k copies of RP /PRP , where we know
that xRP = P kRP . Notice that (RP , PRP ) is a DVR, say (V, tV ), and xRP = tkV . The
number of nonzero factors in any prime cyclic filtration of V/tkV is the length of V/tkV
over V , which is k, as required: the only prime cyclic filtration without repetitions is

0 ⊂ tk−1V ⊂ tk−2V ⊂ · · · ⊂ t2V ⊂ tV ⊂ V. �

We next restate and then prove the local form of the Hilbert syzygy theorem stated in
the Lecture Notes of April 6. The result is entirely analogous to the corresponding result
in the graded case treated in the second problem of Problem Set #3.

Theorem (Hilbert syzygy theorem for regular local rings). Let (R, m, K) be a
regular local ring of Krull dimension n, and let M be a finitely generated nonzero R-module.
Then M is free if and only if depth(M) = n. If M is not free and M1 is any first module
of syzygies of M , depth(M1) = depth(M) + 1. Hence, M has a finite free resolution
by finitely generated free modules, and any shortest such free resolution of M has length
n− depth(M).

Proof. For the first statement we use induction on dim (R). If n = 0 then R is a field,
every module is free, and there is nothing to prove. Assume that n > 0. It is clear that
if M is a nonzero free module then its depth is n. Suppose that M has depth n. In
particular, depth(M) ≥ 1 and we can choose x ∈ m not in m2 nor in any minimal prime
of M . Then M/xM has depth n− 1 over R/xR, which is again regular. Thus, M/xM is
free by the induction hypothesis: let u1, . . . , uh be elements of M whose images are a free
basis for M/xM . These elements span M by Nakayama’s Lemma. To complete the proof
of this part, it suffices to show that they have no nonzero relation over R. Let N denote
the module of all relations on u1, . . . , uh over R. If (f1, . . . , fh) ∈ N is a relation, so that
f1u1 + · · · fhuh = 0, then we may consider this relation modulo xR. Since the images of
the uj are a free basis for M/xM , it follows that every fj is in xR, and can be written xgj

for some gj ∈ R. Then x(g1u1 + · · · ghuh) = 0, and since x is not a zerodivisor on M , we
have that g1u1 + · · · ghuh = 0. Thus (f1, . . . , fh) = x(g1, . . . , gh) with (g1, . . . , gh) ∈ N ,
and we consequently have that N = xN . By Nakayama’s Lemma, N = 0, and it follows
that M is free on the basis u1, . . . , uh.

The remaining statements now follow from part (a) of the second problem of Problem
Set #2 exactly as in the graded case. �
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We have now completed the proof of unique factorization in regular local rings, following
M. P. Murthy.

We want to note another proof of a variant of the Hilbert syzygy theorem for finitely
generated modules over polynomial rings, based on Gröbner basis ideas. The argument
is based on Schreyer’s method for computing modules of relations or syzygies, which is
described beginning near the bottom of p. 2 of the Lecture of January 24, and continuing
on pp. 3, 4, and 5. We review the method, which is very simple.

Let R = K[x1, . . . , xn] denote the polynomial ring in n variables over a field K, and let
M ⊆ F be a submodule of F , where F is free with ordered basis b1, . . . , bs. Let g1, . . . , gr

be a Gröbner basis for M . (We shall momentarily impose a mild condition on the ordering
of the gi.) We may view the relations on g1, . . . , gr as a submodule Rr, for which we
denote the standard basis as e1, . . . , er. Schreyer’s method asserts that the module of all
relations on g1, . . . , gr is generated by certain standard relations as follows. Suppose that
i < j and that in(gi) = µibk, in(gj) = µjbk involve the same element bk of b1, . . . , bs.
Then we can write

(∗ij)
µj

GCD(µi, µj)
gi −

µi

GCD(µi, µj)
gj =

r∑
t=1

qijtgt

where the left hand side is a standard expression for division of the left hand side by
g1, . . . , gr. The remainder is 0 in each case by the Buchberger criterion. The displayed
equation implies that

(#ij)
µj

GCD(µi, µj)
ei −

µi

GCD(µi, µj)
ej −

r∑
t=1

qijtet

is a relation on g1, . . . , gr. This is a typical standard relation, and we saw that these
not only generate the module of all relations, but are, in fact, a Gröbner basis for it with
respect to a suitable monomial order on Rr. Moreover, the initial term of (#ij) is

(†ij)
µj

GCD(µi, µj)
ei.

We now make an almost trivial observation:

Lemma. Let hypotheses and notations be as above and suppose that g1, . . . , gr have been
ordered so that if i > g and in(gi) = µibk and in(gj) = µjbk involve the same element bk of
the ordered basis b1, . . . , bs for F then µi > µj in lexicographic order on the monomials of
R. (This does not depend on what the monomial order on F is: one can always order the
gi so that this condition is satsified.) Suppose that the initial terms of the gi involve only
the xi for i ≥ h. Then the initial terms of the standard relations on g1, . . . , gr involve
only the variables xi for i ≥ h + 1.

Proof. Since only the variables xh, . . . , xn occur and µi > µj in lexicographic order, we
must have that the highest power of xh occurring in µi is at least that occurring in µj : call
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the latter xa
h. It follows that xa

h is also the highest power of xh occurring in GCD(µi, µj),
and so xh does not occur in the initial term shown in (†ij) of the standard relation (#ij). �

Given any finitely generated module M over R its first module of syzygies M1 is a
submodule of a free module. Even if all the variables occur in generators of the initial
module for M1, after at most n repetitions of Schreyer’s method, each time with the
Gröbner basis obtained ordered as indicated in the Lemma above, one obtains a Gröbner
basis for the module of syzygies such that every initial term is simply one of the ej . We can
now complete our variant proof of the HIlbert syzygy theorem by showing that a module
with a Gröbner basis of this form is free.


