
Math 615: Lecture of April 16, 2007

We next note the following fact:

Proposition. Let R be any ring and F = Rn a free module. If f1, . . . , fn ∈ F generate
F , then f1, . . . , fn is a free basis for F .

Proof. We have a surjection Rn � F that maps ei ∈ Rn to fi. Call the kernel N . Since F
is free, the map splits, and we have Rn ∼= F ⊕N . Then N is a homomorphic image of Rn,
and so is finitely generated. If N 6= 0, we may preserve this while localizing at a suitable
maximal ideal m of R. We may therefore assume that (R, m, K) is quasilocal. Now apply
K ⊗R . We find that Kn ∼= Kn ⊕N/mN . Thus, N = mN , and so N = 0. �

The final step in our variant proof of the Hilbert syzygy theorem is the following:

Lemma. Let R = K[x1, . . . , xn] be a polynomial ring over a field K, let F be a free R-
module with ordered free basis e1, . . . , es, and fix any monomial order on F . Let M ⊆ F
be such that in(M) is generated by a subset of e1, . . . , es, i.e., such that M has a Gröbner
basis whose initial terms are a subset of e1, . . . , es. Then M and F/M are R-free.

Proof. Let S be the subset of e1, . . . , es generating in(M), and suppose that S has r
elements. Let T = {e1, . . . , es} − S, which has s− r elements. Let G ∼= Rs−r be the free
submodule of F spanned by T . By the Theorem on the bottom of p. 2 of the Lecture Notes
of January 12, the images of the monomials not in in(M) are a K-vector space basis for
F/M . These monomials, which are simply those involving an element of T , are obviously
also a K-vector space basis for G. It follows that the composite R-linear map G ⊆ F �
F/M is an isomorphism of K-vector spaces. Since it is R-linear, it is also an isomorphism
of R-modules. It is clear that M + G = F , since in(M) ∪ in(G) = S ∪ T = in(F ). Since
no element of G−{0} is killed in F/M , the sum is direct, i.e., F = M ⊕G. Let g1, . . . , gr

be elements of a Gröbner basis for M whose initial terms are the elements of S. Then
g1, . . . , gr together with T are s elements that generate F ∼= Rs, and so they form a free
basis for Rs by the preceding Proposition. It follows that g1, . . . , gr is a free basis for
M . �

We have now proved a “global” result on modules of syzygies over a polynomial ring:
every finitely generated module has an n th module of syzygies that is free. It follows that
every finitely generated module has a finite resolution by finitely generated free modules.
This means in turn that if R = K[x1, . . . , xn], a polynomial ring over a field, then G0(R) =
Zγ, where γ = [R], and the universal additive map is given by torsion-free rank. It follows
just as in the local case that [G0(R)]1 = 0, i.e., that C` (R) = 0, which gives a new proof
that a polynomial ring over a field is a UFD, quite different from the usual one.

We next want to discuss projective modules over a Noetherian ring. A module P over
R is projective if for every surjective map M � N the map HomR(P, M) → HomR(P, N)
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is surjective. It follows at once that HomR(P, ) is a (covariant) exact functor from
R-modules to R-modules. It is easy to see that free modules are projective: to lift a
map f : F → N when F has free basis B, for every b ∈ B one chooses ub ∈ M such
that ub 7→ f(b) ∈ N , and one may then define g : F → M such that g(b) = ub for all
b ∈ B. The direct sum of two modules is projective if and only if both are projective: this
follows from the fact that HomR(P ⊕ Q, M) may be identified, functorially in M , with
HomR(P, M) ⊕ HomR(Q, M). Hence, a direct summand of a free module is projective.
Note that since free modules are flat, and since a direct sum of two modules is flat if and
only if both are (because of the identification, functorial in M , of

(P ⊕Q)⊗R M ∼= (P ⊗R M)⊕ (Q⊗R M), )

it follows that projective modules are flat.

We have the following in great generality:

Proposition. Let R be any ring and P an R-module. The following conditions are equiv-
alent:

(1) P is projective.

(2) Every surjective map f : M � P splits, where M is an aribtrary R-module.

(3) P is a direct summand of a free module.

Moreover, if P is finitely generated, then P is projective if and only if it is a direct
summand of a finitely generated free module.

Proof. We have seen in the paragraph above that (3) ⇒ (1). If P is projective and we
have f : M � P , the identity map 1P : P → P lifts to a map g : P → M : this means that
f ◦ g = 1P , so that g is the required splitting. Finally, (2) ⇒ (3) because if P satisfies (2)
and we map a free module F � P , the map splits, and so P is a direct summand of F . If
P is finitely generated, we may take F to be finitely generated. �

If P is a finitely generated projective module, we know that there exists a projective
module Q such that P ⊕ Q is free. Q is called a complement for P . Q itself need not be
free. If there exists a free module G such that P ⊕ G is a finitely generated free module,
G is called a free complement for P .

Proposition. Let R be any ring and let P be a projective module that has a finite resolu-
tion by finitely generated free modules. Then P has a free complement.

Proof. We use induction on the length of the free resolution. If the resolution is

0 → F1 → F0 → P → 0

then the map F0 � P splits, and F0
∼= P ⊕ F1. Now suppose that the resolution has

length k > 1. Let Q = Ker (F0 � P ). Then F0
∼= P ⊕ Q, so that Q is projective, and Q
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has a free resolution of length at most k−1. By the induction hypothesis, we can choose a
finitely generated free module G such Q⊕G = H is a finitely generated free module. Then
P ⊕ (Q⊕G) = F0⊕G is free, and since Q⊕G = H, we have that H is a free complement
for P . �

Hence, given our results for polynomial rings, we have an easy proof of the following:

Theorem. Let R be a polynomial ring K[x1, . . . , xn] over a field K. Then every finitely
generated projective R-module has a free complement. �

In the mid 1950s Serre asked whether every finitely generated projective module over a
polynomial ring is free. This was not answered until 1976, when D. Quillen and A. Suslin
gave proofs indepedently. Another, simpler, proof was found soon thereafter by Vaserstein.
One way of attacking the problem is as follows.

One wants to prove that when R is a polynomial ring over a field, if P ⊕ Rk is free,
then P is free. It suffices to show this when k = 1. For then, since P ′ ⊕ R is free, with
P ′ = P ⊕ Rk−1, one can conclude that P ′ is free, and the result follows by induction
on k. Thus, once one knows that every finitely generated projective module has a free
complement, showing that every finitely generated projective module is free is equivalent
to showing that if P ⊕R = Rn then P is free.

Over any ring R, giving a projective module P such that P ⊕ R = Rn is equivalent to
giving a surjective map Rn � R. The kernel of this map, call it P , then has the property
that P ⊕R = Rn, for the map Rn � R is split, and so the short exact sequence

0 → P → Rn → R → 0

is split. Giving a surjective map Rn → R is the same as giving a 1×n matrix
(
g1 . . . , gn

)
whose entries generate the unit ideal of R. This determines P . Note that we have elements
f1, . . . , fn ∈ R such that f1g1 + · · · + fngn = 1, and the map of R → Rn sending
1 7→ (f1, . . . , fn) gives the splitting.

The projective module P , if free, must have rank n− 1. In fact, P is free if and only if
it is generated by n−1 elements ρ2, . . . , ρn. For in this case, these elements together with
ρ1 = (f1, . . . , fn) generate Rn, and so we have a surjetion Rn → Rn which is, necessarily, a
bijection. If we make the ρi into the rows of a matrix, the condition that the rows generate
Rn (equivalently, that the rows be a free basis for Rn) is that the matrix be invertible.

A row whose entries generate the unit ideal is called a unimodular row. The unimodular
row problem asks the following: given a unimodular row over a ring R, can it be completed
to a square matrix whose determinant is 1? This question has an affirmative answer over
R for all size rows if and only if for every projective module P over R such that P ⊕ R
is free of finite rank, P is free. If every finitely generated projective R-module has a
free complement, an affirmative answer to the unimodular row problem implies that every
finitely generated projective R-module is free.
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As mentioned above, this is the case for polynomial rings in finitely many variables
over a field. We want to give one example where there is a projective module with free
complement of rank one that is not free. Let R = R[X, Y, Z]/(X2 +Y 2 +Z2) = R[x, y, z],
which may be thought of as the coordinate ring of the real 2-sphere S2. Elements of R may
be thought of as real-valued continuous functions on S2. Note that

(
x y z) is a unimodular

row, since x2 + y2 + z2 = 1 in R. This row cannot be completed to a 3× 3 matrix whose
determinant is 1 if the entries of the matrix are in R, nor even if the entries are allowed to
be arbitrary continuous real-valued functions on S2. It follows that

P = Ker (R3 � R),

where the map has matrix
(
x y z

)
, is a projective module over R that is not free but

such that P ⊕ R = R3. To show that we cannot complete the matrix, suppose that we
can, and let the second row be

(
f g h

)
where f, g, h are continuous real-valued functions

on S2. Since the determinant of the matrix is constantly equal to 1, for every point
(a, b, c) ∈ S2, if we substitute a, b, c for the variables the first two rows of the matrix are
linearly independent. Thus, (a, b, c) and

w(a, b, c) =
(
f(a, b, c), g(a, b, c), h(a, b, c)

)
are linearly independent, and since the vector (a, b, c) is normal to the tangent plane to the
sphere at the point (a, b, c), the vector w(a, b, c) has a nonzero projection v(a, b, c) on the
tangent plane to S2 at (a, b, c) that varies continuously with (a, b, c). This constructs a
continuous nonzero vector field on S2, which contradicts a well-known theorem in toplogy
(“you can’t comb the hair on a billiard ball”).

After tensoring with the complex numbers, one can complete the row. Working now
over C[X, Y, Z]/(X2 + Y 2 + Z2 − 1), we see that the matrix x xi + y z

0 −z −xi + y
1 0 0


has determinant 1: expand with respect to the third row. If we subtract i times the first
column from the second, we get the matrix we want: x y z

0 −z −xi + y
1 −i 0

 .

The flatness of the Frobenius endomorphism for regular rings

We shall return to the subject of projective modules, but we first want to establish the
assertion made earlier that the Frobenius endomorphism is flat for every regular Noetherian
ring of prime characteristic p > 0. To do so, we want to reduce to the case where the ring
is complete local. We first observe the following:
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Proposition. Let θ : (R, m, K) → (S, n, L) be a homomorphism of local rings that is
local, i.e., θ(m) ⊆ n. Then S is flat over R if and only if for every injective map N ↪→ M
of finite length R-modules, S ⊗R N ↪→ S ⊗R M is injective.

Proof. The condition is obviously necessary. We shall show that it is sufficient. Since tensor
commutes with direct limits and every injection N ↪→ M is a direct limit of injections of
finitely generated R-modules, it suffices to consider the case where N ⊆ M are finitely
generated. Suppose that some u ∈ S ⊗R N is such that u 7→ 0 in S ⊗R M . It will suffice
to show that there is also such an example in which M and N have finite length. Fix any
integer t > 0. Then we have an injection

N/(mtM ∩N) ↪→ M/mtM

and there is a commutative diagram

S ⊗R N
ι−−−−→ S ⊗R M

f

y g

y
S ⊗R

(
N/(mtM ∩N)

) ι′−−−−→ S ⊗R

(
M/mtM

).
The image f(u) of u in S⊗R (

(
N/(mtM ∩N)

)
maps to 0 under ι′, by the commutativity of

the diagram. Therefore, we have the required example provided that f(u) 6= 0. However,
for all h > 0, we have from the Artin-Rees Lemma that for every sufficiently large integer
t, mtM ∩N ⊆ mhN . Hence, the proof will be complete provided that we can show that
the image of u is nonzero in

S⊗R (N/mhN) ∼= S⊗R

(
(R/mh)⊗R N

) ∼= (R/mh)⊗R (S⊗R N) ∼= (S⊗R N)/mh(S⊗R N).

But
mh(S ⊗R N) ⊆ nh(S ⊗R N),

and the result follows from the fact that the finitely generated S-module S ⊗R N is n-
adically separated. �

Lemma. Let (R, m, K) → (S, n, L) be a local homomorphism of local rings. Then S is
flat over R if and only if Ŝ is flat over R̂, and this hold iff Ŝ is flat over R.

Proof. If S is flat over R then, since Ŝ is flat over S, we have that Ŝ is flat over R.
Conversely, if Ŝ is flat over R, then S is flat over R because Ŝ is faithfully flat over S: if
N ⊆ M is flat but S ⊗R N → S ⊗R M has a nonzero kernel, the kernel remains nonzero
when we apply Ŝ ⊗S , and this has the same effect as applying Ŝ ⊗R to N ⊆ M , a
contradiction.

We have shown that R → S is flat if and only R → Ŝ is flat. If R̂ → Ŝ is flat then since
R → R̂ is flat, we have that R → Ŝ is flat, and we are done. It remains only to show that
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if R → S is flat, then R̂ → Ŝ is flat. By the Proposition, it suffices to show that if N ⊆ M

have finite length, then Ŝ⊗N → Ŝ⊗M is injective. Suppose that both modules are killed
by mt. Since S/mtS is flat over R/mt, if Q is either M or N we have that

Ŝ ⊗
R̂

Q ∼= Ŝ/mtŜ ⊗
R̂/mtR̂

Q ∼= Ŝ/mtŜ ⊗R/mt Q ∼= Ŝ ⊗R Q,

and the result now follow because Ŝ is flat over R. �

We are now ready to prove:

Theorem. Let R be a regular Noetherian ring of prime characteristic p > 0. Then the
Frobenius endomorphism F : R → R is flat.

Proof. To distinguish the two copies of R, we let S denote the right hand copy, so that
F : R → S. The issue of flatness is local on R, and if P is prime, then (R− P )−1S is the
localization of S at the unique prime Q lying over P (if we remember that S is R, then Q
is P ), since the p th power of every element of S−Q is in the image of R−P . Hence, there
is no loss of generality in replacing R by RP , and we henceforth assume that (R, m, K) is
local. By the preceding Lemma, F : R → R is flat if and only if the induced map R̂ → R̂ is
flat, and this map is easily checked to be the Frobenius endomorphism on R̂. We have now
reduced to the case where R is a complete regular local ring. By the structure theory for
complete local rings, we may assume without loss of generality that R = K[[x1, . . . , xn]]
where K is a field of characteristic p. By the Theorem on p. 2 of the Lecture Notes of
February 19, the Frobenius endomorphism F : K[x1, . . . , xn] → K[x1, . . . , xn] makes
K[x1, . . . , xn] into a free algebra over itself. It follows that it is flat over itself, and this
remains true when we localize at (x1, . . . , xn). By the preceding Lemma, we still have
flatness after we complete both rings. Completing yields

F : K[[x1, . . . , xn]] → K[[x1, . . . , xn]],

which proves the flatness result we need. �

We can now give the application of this result that we have been intending for some
time.

Theorem. Let R be a regular Noetherian ring of prime characteristic p > 0. Then every
ideal I of R is tightly closed.

Proof. Suppose u ∈ I∗ − I and c ∈ R is not in any minimal prime and satisfies cuq ∈ I [q]

for all q � 0. We may replace R by its localization at a maximal ideal in the support of
(I + Ru)/I, I by its expansion to the local ring, and u by its image in the local ring. The
image of c in this local ring is still not in any minimal prime, i.e., it is not 0. We still have
that u ∈ I∗− I. Thus, we may assume without loss of generality that R is local. Then for
some q0,

c ∈
⋂

q≥q0

I [q] :R uq =
⋂

q≥q0

(I :R u)[q] ⊆
⋂

q≥q0

m[q] ⊆
⋂

q≥q0

mq = (0),
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a contradiction. Note that the fact that I [q] :R uq = (I :R u)[q] used in this argument is a
consequence of the flatness of the Frobenius endomorphism. �

Projective modules over Noetherian rings

We now return to the subject of projective modules. For finitely generated projective
modules over Noetherian rings there are some interesting characterizations.

Theorem. Let P be a finitely presented module over a quasilocal ring (R, m, K) (in
particular, it suffices if R is local and P is finitely generated). Then the following conditions
are equivalent:

(1) P is free.

(2) P is projective.

(3) P is flat.

(4) The map m⊗R P → P sending u⊗ v 7→ uv is injective (and so gives an isomorphism
m⊗R P ∼= mP ).

Proof. The implications (1) ⇒ (2) ⇒ (3), while (3) ⇒ (4) follows by applying ⊗R P to
the injection m ↪→ R. It remains to prove the difficult implication (4) ⇒ (1).

Choose a minimal set of generators u1, . . . , un for M and map Rn onto P such that
(r1, . . . , rn) is sent to r1u1 + · · ·+ rnun. Let N be the kernel of the surjection Rn � P , so
that we have a short exact sequence 0 → N → Rn → P → 0. We also have a short exact
sequence 0 → m → R → K → 0: think of this as written vertically with m at the top and
K at the bottom. Then we may tensor the two sequences together to get the following
array (all tensor products are taken over R):

0y
m⊗N −−−−→ m⊗Rn −−−−→ m⊗ P −−−−→ 0y y yα

0 −−−−→ N −−−−→ Rn −−−−→ P −−−−→ 0y y y
K ⊗N

f−−−−→ K ⊗Rn g−−−−→ K ⊗ P −−−−→ 0y y y
0 0 0

The rows are obtained by applying m⊗ , R⊗ , and K ⊗ , respectively to the short
exact sequence 0 → N → Rn → P → 0, and the columns are obtained by applying ⊗N ,
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⊗ Rn, and ⊗ P , respectively, to the short exact sequence 0 → m → R → K → 0.
The exactness of the rows and columns shown follows from the right exactness of tensor,
with two exceptions: the injective arrow on the left in the middle row comes from the fact
that tensoring with R simply yields the short exact sequence with which we started, while
the injectivity of α is the hypothesis in (4). (We also have an injection at the top of the
middle column because Rn is free, but we don’t need this.)

It is easy to see that the four squares in the diagram commute.

The minimality of the set of generators u1, . . . , un implies that g is an isomorphism of
Kn with Kn, and the fact that M is finitely presented implies that N is finitely generated.
To complete the proof it suffices to show that K⊗N = 0, for then, by Nakayama’s lemma,
we have that N = 0. But if N = 0 then Rn → M is an isomorphism. To show that K⊗N
is 0, it suffices to prove that the map f is injective.

Suppose that u is an element in the kernel of f . Choose v ∈ N that maps to u. The
image of v in Rn (we still call it v) maps to 0 in K ⊗ Rn: we can go around the square
on the lower left the other way, and u is killed by f . It follows that v is the image of an
element w in m⊗Rn. Suppose that w maps to x in m⊗M . Then α(x) = 0, because we
can go around the square on the upper right the other way, and the image of v in M must
be 0 because v ∈ N . But α is injective! Therefore, x = 0, which shows that w is the image
of an element y in m ⊗ N . Since w maps to v, y maps to v in N (the map N → Rn is
injective), and this implies that v maps to 0 in K ⊗ N . But v maps to u, and so u = 0.
We are done: we have shown that f is injective! �


