
MATH 614 LECTURE NOTES, FALL, 2008

by Mel Hochster

Lecture of September 3

We assume familiarity with the notions of ring, ideal, module, and with the polynomial
ring in one or finitely many variables over a commutative ring, as well as with homomor-
phisms of rings and homomorphisms of R-modules over the ring R.

As a matter of notation, N ⊆ Z ⊆ Q ⊆ R ⊆ C ae the non-negative integers, the
integers, the rational numbers, the real numbers, and the complex numbers, respectively,
throughout this course.

Unless otherwise specified, all rings are commutative, associative, and have a multiplica-
tive identity 1 (when precision is needed we write 1R for the identity in the ring R). It is
possible that 1 = 0, in which case the ring is {0}, since for every r ∈ R, r = r ·1 = r ·0 = 0.
We shall assume that a homomorphism h of rings R→ S preserves the identity, i.e., that
h(1R) = 1S . We shall also assume that all given modules M over a ring R are unital, i.e.,
that 1R ·m = m for all m ∈M .

When R and S are rings we write S = R[θ1, . . . , θn] to mean that S is generated
as a ring over its subring R by the elements θ1, . . . , θn. This means that S contains R
and the elements θ1, . . . , θn, and that no strictly smaller subring of S contains R and
the θ1, . . . , θn. It also means that every element of S can be written (not necessarily
uniquely) as an R-linear combination of the monomials θk11 · · · θkn

n . When one writes S =
R[x1, . . . , xk] it often means that the xi are indeterminates, so that S is the polynomial
ring in k variables over R. But one should say this.

The main emphasis in this course will be on Noetherian rings, i.e., rings in which every
ideal is finitely generated. Specifically for all ideals I ⊆ R, there exist f1, . . . , fk ∈ R

such that I = (f1, . . . , fk) = (f1, . . . , fk)R =
∑k
i=1Rfi. We shall develop a very useful

theory of dimension in such rings. This will be discussed further quite soon. We shall not
be focused on esoteric examples of rings. In fact, almost all of the theory we develop is of
great interest and usefulness in studying the properties of polynomial rings over a field or
the integers, and homomorphic images of such rings.

Before we begin the systematic development of our subject, we shall look at some very
simple examples of problems, many unsolved, that are quite natural and easy to state.
Suppose that we are given polynomials f and g in C[x], the polynomial ring in one variable
over the complex numbers C. Is there an algorithm that enables us to tell whether f and
g generate C[x] over C? This will be the case if and only if x ∈ C[f, g], i.e., if and only
if x can be expressed as a polynomial with complex coefficients in f and g. For example,
suppose that f = x5 + x3 − x2 + 1 and g = x14 − x7 + x2 + 5. Here it is easy to see that
f and g do not generate, because neither has a term involving x with nonzero coefficient.
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But if we change f to x5 + x3− x2 + x+ 1 the problem does not seem easy. The following
theorem of Abhyankar and Moh, whose original proof was about 150 pages long, gives a
method of attacking this sort of problem.

Theorem (Abhyankar-Moh). Let f , g in C[x] have degrees d and e respectively. If
C[f, g] = C[x], then either d | e or e | d, i.e., one of the two degrees must divide the other.

Shorter proofs have since been given. Given this difficult result, it is clear that the
specific f and g given above cannot generate C[x]: 5 does not divide 14. Now suppose
instead that f = x5 + x3 − x2 + x + 1 and g = x15 − x7 + x2 + 5. With this choice,
the Abhyankar-Moh result does not preclude the possibility that f and g generate C[x].
To pursue the issue further, note that in g − f3 the degree 15 terms cancel, producing a
polynomial of smaller degree. But when we consider f and g−f3, which generate the same
ring as f and g, the larger degree has decreased while the smaller has stayed the same.
Thus, the sum of the degrees has decreased. In this sense, we have a smaller problem. We
can now see whether the Abhyankar-Moh criterion is satisfied for this smaller pair. If it
is, and the smaller degree divides the larger, we can subtract off a multiple of a power of
the smaller degree polynomial and get a new pair in which the larger degree has decreased
and the smaller has stayed the same. Eventually, either the criterion fails, or we get a
constant and a single polynomial of degree ≥ 2, or one of the polynomials has degree 1.
In the first two cases the original pair of polynomials does not generate. In the last case,
they do generate.

This is a perfectly general algorithm. To test whether f of degree d and g of degree
n ≥ d are generators, check whether d divides n. If so and n = dk, one can choose a
constant c such that g− cfk has degree smaller than n. If the leading coefficients of f and
g are a 6= 0 and b 6= 0, take c = b/ak. The sum of the degrees for the pair f, g − cfk has
decreased.

Continue in the same way with the new pair, f , g−cfk. If one eventually reaches a pair
in which one of the polynomials is linear, the original pair were generators. Otherwise, one
reaches either a pair in which neither degree divides the other, or else a pair in which one
polynomial has degree ≥ 2 while the other is constant. In either of these cases, the two
polynomials do not generate. The constant does not help, since we have all of C available
anyway, and a polynomial g of degree d ≥ 2 cannot generate: when g is substituted into a
polynomial of degree n, call it F , F (g) has a term of degree dn coming from gn, and no
other term occurring can cancel it. Thus, one cannot have x = F (g).

One can work backwards from a pair in which one of the polynomials is linear to get all
pairs of generators. For example, one gets pairs of generators

x, 0→
x, 1→
x+ 5, 1→
x+ 5, (x+ 5)7 + 1→(
(x+ 5)7 + 1

)11 + x+ 5, (x+ 5)7 + 1.
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If one expands the last pair out, it is not very obvious from looking at the polynomials
that they generate. Of course, applying the algorithm described above would enable one
to see it.

This gives a reasonably appealing method for telling whether two polynomials in one
variable generate C[x].

The step of going from the problem of when two polynomials generate to C[x] over C
to when three polynomials generate turns out to be a giant one, however! No effective
method is known. One might hope that given three polynomials that generate C[x], say f ,
g, and h, with degrees d, e, n, respectively, that it might be true that one of the degrees
has to be a sum of non-negative integer multiples of the other two, e.g., n = rd+ se. Then
one could reduce to a smaller problem (i.e., one where the sum of the degrees is smaller)
by subtracting a constant times frgs from h, while keeping the same f and g. But it is not
true in the case of three polynomials that one of the degrees must be a sum of non-negative
integer multiples of the other two. (See whether f = x5, g = x4 + x, and h = x3 generate
C[x].)

The problem of giving an algorithm for deciding when m polynomials generate the
polynomial ring C[x1, . . . , xn] in n variables over C is obviously formidable, since the case
n = 1 and m = 3 has not been solved. However, when m = n there is at least a conjecture.

In order to state it, we first want to point out that derivatives with respect to x can be
defined for polynomials in x over any commutative ring R. One way is simply to decree
that polynomials are to be differentiated term by term, and that the derivative of rxn is
nrxn−1. A somewhat more conceptual method is to introduce an auxiliary variable h. If
one wants to differentiate F (x) ∈ R[x], one forms F (x+ h)− F (x). This is a polynomial
in two variables, x and h, and all the terms that do not involve h as a factor cancel. Thus,
one can write F (x + h) − F (x) = hP (x, h) for a unique polynomial in two variables P .
That is,

P (x, h) =
F (x+ h)− F (x)

h
.

One then defines the derivative
dF

dx
or F ′(x) to be P (x, 0), the result of substituting h = 0

in P (x, h). This is the algebraist’s method of taking a limit as h → 0: just substitute
h = 0.

Given a polynomial F ∈ R[x1, . . . , xn] we may likewise define its partial derivatives
in the various xi. E.g., to get ∂F

∂xn
we identify the polynomial ring with S[xn] where

S = R[x1, . . . , xn−1]. We can think of F as a polynomial in xn only with coefficients in
S, and ∂F

∂xn
is simply its derivative with respect to xn when it is thought of this way.

The Jacobian conjecture asserts that F1, . . . , Fn ∈ C[x1, . . . , xn] generate (note that
the number of the Fi is equal to the number n of variables) if and only if the Jacobian
determinant det

(
∂Fi/∂xj

)
is identically a nonzero constant. This is true when n = 1 and

is known to be a necessary condition for the Fi to generate the polynomial ring. But even
when n = 2 it is an open question!
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If you think you have a proof, have someone check it carefully — there are at least
five published incorrect proofs in the literature, and new ones are circulated frequently. A
preprint was posted on the Web this summer, but was withdrawn after a few days.

It is known that if there is a counter-example one needs polynomials of degree at least
100. Such polynomials tend to have about 5,000 terms. It does not seem likely that it will
be easy to give a counter-example.

Algebraic sets

The problems discussed above are very easy to state, and very hard. However, they are
not close to the main theme in this course, which is dimension theory. We are going to
assign a dimension, the Krull dimension, to every commutative ring. It may be infinite,
but will turn out to be finite for rings that are finitely generated over a field or the integers.

In order to give some idea of where we are headed, we shall discuss the notion of a
closed algebraic set in Kn, where K is a field. Everyone is welcome to think of the case
where K = C, although for the purpose of drawing pictures, it is easier to think about the
case where K = R.

Let K be a field. A polynomial in K[x1, . . . , xn] may be thought of as a function from
Kn → K. Given a finite set f1, . . . , fm of polynomials in K[x1, . . . , xn], the set of points
where they vanish simultaneously is denoted V (f1, . . . , fm). Thus

V (f1, . . . , fm) = {(a1, . . . , an) ∈ Kn : fi(a1, . . . , an) = 0, 1 ≤ i ≤ n}.

If X = V (f1, . . . , fm), one also says that f1, . . . , fm define X.

Over R[x, y], V (x2 + y2 − 1) is a circle in the plane, while V (xy) is the union of the
coordinate axes. Note that V (x, y) is just the origin.

A set of the form V (f1, . . . , fm) is called a closed algebraic set in Kn. We shall only be
talking about closed algebraic sets here, and so we usually omit the word “closed.”

For the moment let us restrict attention to the case where K is an algebraically closed
field such as the complex numbers C. We want to give algebraic sets a dimension in such
a way that Kn has dimension n. Thus, the notion of dimension that we develop will
generalize the notion of dimension of a vector space.

We shall do this by associating a ring with X, denoted K[X]: it is simply the set of
functions defined on X that are obtained by restricting a polynomial function on Kn to
X. The dimension of X will be the same as the dimension of the ring K[X]. Of course,
we have not defined dimension for rings yet.

In order to illustrate the kind of theorem we are going to prove, consider the problem
of describing the intersection of two planes in real three-space R3. The planes might be
parallel, i.e., not meet at all. But if they do meet in at least one point, they must meet in
a line.

More generally, if one has vector spaces V and W over a field K, both subspaces of some
larger vector space, then dim(V ∩W ) = dimV +dimW−dim(V +W ). If the ambient vector
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space has dimension n, this leads to the result that dim(V ∩W ) ≥ dimV + dimW −n. In
the case of planes in three-space, we see that that dimension of the intersection must be
at least 2 + 2− 3 = 1.

Over an algebraically closed field, the same result turns out to be true for algebraic sets!
Suppose that V and W are algebraic sets in Kn and that they meet in a point x ∈ Kn.
We have to be a little bit careful because, unlike vector spaces, algebraic sets in general
may be unions of finitely many smaller algebraic sets, which need not all have the same
dimension. Algebraic sets which are not finite unions of strictly smaller algebraic sets are
called irreducible. Each algebraic set is a finite union of irreducible ones in such a way
that none can be omitted: these are called irreducible components. We define dimx V to
be the largest dimension of an irreducible component of V that contains x. One of our
long term goals is to prove that for any algebraic sets V and W in Kn meeting in a point
x, dimx(V ∩W ) ≥ dimx V + dimxW − n. This is a beautiful and useful result: it can be
thought of as guaranteeing the existence of a solution (or many solutions) of a family of
equations.

We conclude for now by mentioning one other sort of problem. Given a specific algebraic
set X = V (f1, . . . , fm), the set J of all polynomials vanishing on it is closed under addition
and multiplication by any polynomial — that is, it is an ideal of K[x1, . . . , xn]. J always
contains the ideal I generated by f1, . . . , fm. But J may be strictly larger than I. How
can one tell?

Here is one example of an open question of this sort. Consider the set of pairs of
commuting square matrices of size n. Let M = Mn(K) be the set of n× n matrices over
K. Thus,

W = {(A, B) ∈M ×M : AB = BA}.

The matrices are given by their 2n2 entries, and we may think of this set as a subset of
K2n2

. (To make this official, one would have to describe a way to string the entries of the
two matrices out on a line.) Then W is an algebraic set defined by n2 quadratic equations.
If X = (xij) is an n × n matrix of indeterminates and Y = (yij) is another n × n matrix
of indeterminates, then we may think of the algebraic set W as defined by the vanishing
of the entries of the matrix XY − Y X. These are the n2 quadratic equations.

Is the ideal of all functions that vanish on W generated by the entries of XY − Y X?
This is a long standing open question. It is known if n ≤ 3.
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Lecture of September 5

The notes for this lecture contain some basic definitions concerning abstract topological
spaces that were not given in class. If you are not familiar with this material please read
it carefully. I am not planning to do it in lecture.

————————

We mention one more very natural but very difficult question about algebraic sets.
Suppose that one has an algebraic set X = V (f1, . . . , fm). What is the least number of
elements needed to define X? In other words, what is the least positive integer k such that
X = V (g1, . . . , gk)?

Here is a completely specific example. Suppose that we work in the polynomial ring in
6 variables x1, . . . , x3, y1, . . . , y3 over the complex numbers C and let X be the algebraic
set in C6 defined by the vanishing of the 2× 2 subdeterminants or minors of the matrix(

x1 x2 x3

y1 y2 y3

)
,

that is, X = V (f, g, h) where f = x1y2 − x2y1, g = x1y3 − x3y1, and h = x2y3 − x3y2.
We can think of points of X as representing 2 × 3 matrices whose rank is at most 1: the
vanishing of these equations is precisely the condition for the two rows of the matrix to be
linearly dependent. Obviously, X can be defined by 3 equations. Can it be defined by 2
equations? No algorithm is known for settling questions of this sort, and many are open,
even for relatively small specific examples. In the example considered here, it turns out
that 3 equations are needed. I do not know an elementary proof of this fact — perhaps
you can find one!

One of the themes of this course is that there is geometry associated with any commu-
tative ring R. The following discussion illustrates this.

For an algebraic set over an algebraically closed field K, the maximal ideals of the ring
K[X] (reminder: functions from X to K that are restrictions of polynomial functions) are
in bijective correspondence with the points of X — the point x corresponds to the maximal
ideal consisting of functions that vanish at x. This is, essentially, Hilbert’s Nullstellensatz,
and we shall prove this theorem soon. This maximal ideal may also be described as the
kernel of the evaluation homomorphism from K[X] onto K that sends f to f(x).

If R is the ring of continuous real-valued functions on a compact (Hausdorff) topological
space X the maximal ideals also correspond to the points of X.

A filter F on a set X is a non-empty family of subsets closed under finite intersection
and such that if Y ∈ F , and Y ⊆ Y ′ ⊆ X, then Y ′ ∈ F . Let K be a field. Let S be
the ring of all K-valued functions on X. The ideals of S correspond bijectively with the
filters on X: given a filter, the corresponding ideal consists of all functions that vanish
on some set in the filter. The filter is recovered from the ideal I as the family of sets of
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the form F−1(0) for some f ∈ I. The key point is that for f and g1, . . . , gk ∈ S, f is in
the ideal generated by the gk if and only if it vanishes whenever all the gi do. The unit
ideal corresponds to the filter which is the set of all subsets of X. The maximal ideals
correspond to the maximal filters that do not contain the empty set: these are called
ultrafilters. Given a point of x ∈ X, there is an ultrafilter consisting of all sets that contain
x. Ultrafilters of this type are called fixed. If X is infinite, there are always others: the sets
with finite complement form a filter, and by Zorn’s lemma it is contained in an ultrafilter.
For those familiar with the Stone-Cech compactification, the ultrafilters (and, hence, the
maximal ideals) correspond bijectively with the points of the Stone-Cech compactification
of X when X is given the discrete topology (every set is open).

We shall see that even for a completely arbitrary commutative ring R, the set of all
maximal ideals of R, and even the set of all prime ideals of R, has a geometric structure.
In fact, these sets have, in a natural way, the structure of topological spaces. We shall give
a brief review of the notions needed from topology shortly.

Categories

We do not want to dwell too much on set-theoretic issues but they arise naturally here.
We shall allow a class of all sets. Typically, classes are very large and are not allowed to
be elements. The objects of a category are allowed to be a class, but morphisms between
two objects are required to be a set.

A category C consists of a class Ob (C) called the objects of C and, for each pair of objects
X, Y ∈ Ob (C) a set Mor (X, Y ) called the morphisms from X to Y with the following
additional structure: for any three given objects X, Y and Z there is a map

Mor (X, Y )×Mor (Y, Z)→ Mor (X, Z)

called composition such that three axioms given below hold. One writes f : X → Y or
X

f−→ Y to mean that f ∈ Mor (X, Y ). If f : X → Y and g : Y → Z then the composition
is denoted g ◦ f or gf . The axioms are as follows:

(0) Mor (X,Y ) and Mor (X ′, Y ′) are disjoint unless X = X ′ and Y = Y ′.
(1) For every object X there is an element denoted 1X or idX in Mor (X, X) such that if

g : W → X then 1X ◦ g = g while if h : X → Y then h ◦ 1X = h.
(2) If f : W → X, g : X → Y , and h : Y → Z then h ◦ (g ◦ f) = (h ◦ g) ◦ f (associativity

of composition).

The morphism 1X is called the identity morphism on X and one can show that it is
unique. If f : X → Y then X is called the domain of f and Y is called the codomain,
target, or range of f , but it is preferable to avoid the term “range” because it is used for
the set of values that a function actually takes on. A morphism f : X → Y is called an
isomorphism if there is a morphism g : Y → X such that gf = 1X and fg = 1Y . If it
exists, g is unique and is an isomorphism from Y → X. If there is an isomorphism from
X → Y then X and Y are called isomorphic.
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Examples. (a) Let the class of objects be the class of all sets, let the morphisms
from a set X to a set Y be the functions from X to Y , and let composition be ordinary
composition of functions. In this category of sets and functions, two sets are isomorphic if
and only if they have the same cardinality.

In the next few examples the objects have underlying sets and composition coincides
with composition of functions.

(b) Rings and ring homomorphisms form a category.

(c) Commutative rings with identity and ring homomorphisms that preserve the identity
form a category.

(d) For a fixed ring R, R-modules and R-linear homomorphisms form a category.

Examples (c) and (d) give the environments in which we’ll be “living” during this course.

(e) Groups and group homomorphisms are another example of a category.

We pause to review some basics about topological spaces before continuing with our
examples.

A topology on a set X is a family of sets, called the open sets of the topology satisfying
the following three axioms:

(0) The empty set and X itself are open.
(1) A finite intersection of open sets is open.
(2) An arbitrary union of open sets is open.

A set is called closed if its complement is open. A topological space is a set X together
with a topology. Such a space may be described equally well by specifying what the closed
sets are. They must satisfy:

(0) The empty set and X itself are closed.
(1) A finite union of closed sets is closed.
(2) An arbitrary intersection of closed sets is closed.

A subset Y of a topological space X becomes a topological space in its own right: one
gets the topology by intersecting the open sets of X with Y . (The closed sets of Y are
likewise gotten by intersecting the closed sets of X with Y .) The resulting topology on Y
is called the inherited topology, and Y with this topology is called a (topological) subspace
of X.

A topological space is called T0 if for any two distinct points there is an open set that
contains one of them and not the other. It is called T1 if every point is closed. It is called
T2 or Hausdorff if for any two distinct points x and y there are disjoint open sets U and
V such that x ∈ U and y ∈ V .

A family of open subsets of a topological space X (following the usual imprecise practice,
we mention the underlying set without mentioning the topology) is called an open cover if
its union is all of X. A subset of such a family whose union is all of X is called a subcover.
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A topological space is called quasi-compact if every open cover has a subcover containing
only finitely many open sets, i.e., a finite subcover.

A family of sets is said to have the finite intersection property if every finite subfamily
has non-empty intersection. Being quasi-compact is equivalent to the condition that every
family of closed sets with the finite intersection property has non-empty intersection. (This
is only interesting when the family is infinite.) A quasi-compact Hausdorff space is called
compact. We assume familiarity with the usual topology on Rn, in which a set is closed
if and only if for every convergent sequence of points in the set, the limit point of the
sequence is also in the set. Alternatively, a set U is open if and only if for any point x in
the set, there exists a > 0 in R such that all points of Rn within distance of a of x are in
U .

The compact subspaces of Rn are precisely the closed, bounded sets.

A topological space is called connected if it is not the union of two non-empty disjoint
open subsets (which will then both be closed as well). The connected subsets of the real
line are identical with the intervals: these are the subsets with the property that if they
contain a and b, they contain all real numbers in between a and b. They include the empty
set, individual points, open intervals, half-open intervals, closed intervals, and the whole
line.

A function f from a topological space X to a topological space Y is called continuous
if for every open set V of Y , f−1V = {x ∈ X : f(x) ∈ V } is open. It is an equivalent
condition to require that the inverse image of every closed set be closed.

We are now ready to continue with our discussion of examples of categories.

(f) Topological spaces and continuous maps give a category. In this category, isomor-
phism is called homeomorphism.

We now consider some examples in which composition is not necessarily composition of
functions.

(g) A partially ordered set (or poset) consists of a set P together with a relation ≤ such
that for all x, y, z ∈ P , (1) if x ≤ y and y ≤ x then x = y and (2) if x ≤ y and y ≤ z then
x ≤ z. Given a partially ordered set, we can construct a category in which the objects are
the elements of the partially ordered set. We artificially define there to be one morphism
from x to y when x ≤ y, and no morphisms otherwise. In this category, isomorphic objects
are equal. Note that there is a unique way to define composition: if we have a morphism
f from x to y and one g from y to z, then x ≤ y and y ≤ z. Therefore, x ≤ z, and there is
a unique morphism from x to z, which we define to be the composition gf . Conversely, a
category in which (1) the objects form a set, (2) there is at most one morphism between
any two objects, and (3) isomorphic objects are equal is essentially the same thing as a
partially ordered set. One defines a partial ordering on the objects by x ≤ y if and only if
there is a morphism from x to y.

(h) A category with just one object in which every morphism is an isomorphism is
essentially the same thing as a group. The morphisms of the object to itself are the
elements of the group.
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Lecture of September 8

Given any category C we can construct an opposite category Cop. It has the same objects
as C, but for any two objects X and Y in Ob (C), Mor Cop(X, Y ) = Mor C(Y, X). There
turns out to be an obvious way of defining composition using the composition in C: if
f ∈ Mor Cop(X, Y ) and g ∈ Mor Cop(Y, Z) we have that f : Y → X in C and g : Z → Y ,
in C, so that f ◦ g in C is a morphism Z → X in C, i.e., a morphism X → Z in Cop, and
thus g ◦Cop f is f ◦C g.

By a (covariant) functor from a category C to a category D we mean a function F that
assigns to every object X in C an object F (X) in D and to every morphism f : X → Y in
C a morphism F (f) : F (X)→ F (Y ) in D such that

(1) For all X ∈ Ob (C), F (1X) = 1F (X) and
(2) For all f : X → Y and g : Y → Z in C, F (g ◦ f) = F (g) ◦ F (f).

A contravariant functor from C to D is a covariant functor to C to Dop. This means that
when f : X → Y in C, F (f) : F (Y ) → F (X) in D, and F (g ◦ f) = F (f) ◦ F (g) whenever
g ◦ f is defined in C.

Here are some examples.

(a) Given any category C, there is an identity functor 1C on C: it sends the object X to
the object X and the morphism f to the morphism f . This is a covariant functor.

(b) There is a functor from the category of groups and group homomorphisms to the
category of abelian groups and homomorphisms that sends the group G to G/G′, where
G′ is the commutator subgroup of G: G′ is generated by the set of all commutators
{ghg−1h−1 : g, h ∈ G}: it is a normal subgroup of G. The group G/G′ is abelian. Note
also that any homomorphism from G to an abelian group must kill all commutators, and
factors through G/G′, which is called the abelianization of G.

Given φ : G → H, φ automatically takes commutators to commutators. Therefore, it
maps G′ into H ′ and so induces a homomorphism G/G′ → H/H ′. This explains how this
functor behaves on homomorphisms. It is covariant.

(c) Note that the composition of two functors is a functor. If both are covariant or
both are contravariant the composition is covariant. If one is covariant and the other is
contravariant, the composition is contravariant.

(d) There is a contravariant functor F from the category of topological spaces to the
category of rings that maps X to the ring of continuous R-valued functions on X. Given
a continuous map f : X → Y , the ring homomorphism F (Y ) → F (X) is induced by
composition: if h : Y → R is any continuous function on Y , then h ◦ f is a continuous
function on X.

(e) Given a category such as groups and group homomorphisms in which the objects
have underlying sets and the morphisms are given by certain functions on those sets, we
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can give a covariant functor to the category of sets: it assigns to each object its underlying
set, and to each morphism the corresponding function. Functors of this sort are called
forgetful functors. The category of rings and ring homomorphisms and the category of
topological spaces and continuous maps both have forgetful functors as well.

We next want to give a contravariant functor from commutative rings to topological
spaces.

We first want to review some terminological conventions. All rings, unless otherwise
specified, are commutative with multiplicative identity 1. We use 1R for the identity in
the ring R if greater precision is needed. We recall that 1 = 0 is allowed, but this forces
every element of the ring to be 0. Up to unique isomorphism, there is a unique ring with
one element, which we denote 0.

By a domain or integral domain we mean a commutative ring such that 1 6= 0 and such
that if ab = 0 then either a = 0 or b = 0. It is an arbitrary convention to exclude the
ring in which every element is zero, but this turns out to be convenient. By a field we
mean a ring in which 1 6= 0 and in which every nonzero element has an inverse under
multiplication. A field K has only two ideals: {0} and K. A field is an integral domain,
although the converse is not true in general.

An ideal P in R is called prime if R/P is an integral domain. This means that P is
prime in R if and only if 1 /∈ P and for all a, b ∈ R, if ab ∈ P then either a ∈ P or b ∈ P .

An ideal m ∈ R is called maximal if, equivalently, either R/m is a field or m is maximal
among all proper ideals of R. A maximal ideal is prime.

Every proper ideal is contained in a maximal ideal. To see this, we first recall Zorn’s
lemma, which we shall not prove. It is equivalent to the axiom of choice in set theory. A
subset of a partially ordered set is called a chain if it is linearly ordered, i.e., if any two of
its elements are comparable.

(3.1) Zorn’s lemma. Let P be a non-empty partially ordered set in which every chain
has an upper bound. Then P has a maximal element.

(3.2) Corollary. Let I be a proper ideal of the commutative ring R. Then I is contained
in a maximal ideal m.

Proof. We apply Zorn’s lemma to the partially ordered set of proper ideals containing I.
Given any chain containing I, its union is a proper ideal containing I and is an upper bound
for the chain. Thus there are maximal elements in the set of proper ideals containing I,
and these will be maximal ideals. �

We are now ready to introduce our functor, Spec , from commutative rings to topological
spaces. If R is a ring, let Spec (R) denote the set of all prime ideals of R. Note that Spec (R)
is empty if and only if R is the 0 ring. We place a topology, the Zariski topology, on Spec (R)
as follows. For any subset I of R, let V (I) denote the set {P ∈ Spec (R) : I ⊆ P}. If the
set I is replaced by the ideal it generates, V (I) is unaffected. The Zariski topology has the
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subsets of Spec (R) of the form V (I) as its closed sets. Note that V (0) = Spec (R), that
V (R) = ∅, and that for any family of ideals {Iλ}λ∈Λ,⋂

λ∈Λ

V (Iλ) = V (
∑
λ∈Λ

Iλ).

It remains only to show that the union of two closed sets (and, hence, any finite number)
is closed, and this will follow if we can show that for any two ideals I, J , V (I) ∪ V (J) =
V (I ∩ J) = V (IJ). It is clear that the leftmost term is smallest. Suppose that a prime
P contains IJ but not I, so that u ∈ I but u /∈ P . For every v ∈ J , uv ∈ P , and since
u /∈ P , we have v ∈ P . Thus, if P does not contain I, it contains J . It follows that
V (IJ) ⊆ V (I) ∪ V (J), and the result follows.

The Zariski topology is T0. If P and Q are distinct primes, one of them contains an
element not in the other. Suppose, say, that u ∈ P and u /∈ Q. The closed set V (u)
contains P but not Q.

It is easy to show that the closure of the one point set {P}, where P is prime, is the
set V (P ). The closure has the form V (I), and is the smallest set of this form such that
P ∈ V (I), i.e., such that I ⊆ P . As I gets smaller, V (I) gets larger. It is therefore
immediate that the smallest closed set containing P is V (P ).

It follows that {P} is closed if and only if P is maximal. In general, Spec (R) is not T1.

Spec becomes a contravariant functor from the category of commutative rings with
identity to the category of topological spaces if, given a ring homomorphism f : R → S,
we define Spec (f) by having it send Q ∈ Spec (S) to f−1(Q) = {r ∈ R : f(r) ∈ Q}.
There is an induced ring homomorphism R/f−1(Q)→ S/Q which is injective. Since S/Q
is an integral domain, so is its subring R/f−1(Q). (We are also using tacitly that the
inverse image of a proper ideal is proper, which is a consequence of our convention that
f(1R) = 1S .) f−1(Q) is sometimes denoted Qc and called the contraction of Q to R. This
is a highly ambiguous notation.

We want to talk about when two functors are isomorphic and to do that, we need to
have a notion of morphism between two functors. Let F,G be functors from C → D with
the same variance. For simplicity, we shall assume that they are both covariant. The case
where they are both contravariant is handled automatically by thinking instead of the case
of covariant functors from C to Dop. A natural transformation from F to G assigns to every
object X ∈ Ob (C) a morphism TX : F (X)→ G(X) in such a way that for all morphisms
f : X → Y in C, there is a commutative diagram:

F (X)
F (f)−−−−→ F (Y )

TX

y yTY

G(X) −−−−→
G(f)

G(Y )

The commutativity of the diagram simply means that TY ◦ F (f) = G(f) ◦ TX .
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This may seem like a complicated notion at first glance, but it is actually very “natural,”
if you will forgive the expression.

This example may clarify. If V is a vector space write V ∗ for the space of linear
functionals on V , i.e., for HomK(V, K), the K-vector space of K-linear maps from V → K.
Then ∗ is a contravariant functor from K-vector spaces and K-linear maps to itself. (If
θ : V → W is linear, θ∗ : W ∗ → V ∗ is induced by composition: if g ∈ W ∗, so that
g : W → K, then θ∗(g) = g ◦ θ.)

The composition of ∗ with itself gives a covariant functor ∗∗: the double dual functor.
We claim that there is a natural transformation T from the identity functor to ∗∗. To give
T is the same as giving a map TV : V → V ∗∗ for every vector space V . To specify TV (v)
for v ∈ V , we need to give a map from V ∗ to K. If g ∈ V ∗, the value of TV (v) on g is
simply g(v). To check that this is a natural transformation, one needs to check that for
every K-linear map f : V →W , the diagram

V
f−−−−→ W

TV

y yTW

V ∗∗ −−−−→
f∗∗

W ∗∗

commutes. This is straightforward. Note that the map V → V ∗∗ is not necessarily an
isomorphism. It is always injective, and is an isomorphism when V is finite-dimensional
over K.
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Lecture of September 10

Here is another example of a natural transformation: in this case, the functors are
contravariant. Let F and G be the functors from topological spaces to rings such that F (X)
(respectively, G(X) ) is the ring of continuous real-valued (respectively, complex-valued)
functions on X. (The values on continuous maps are both induced by composition.) The
inclusions F (X) ⊆ G(X) give a natural transformation from F to G.

Le C be the category of pairs (X, x) where X is a non-empty topological space and
x ∈ X, i.e., of topological spaces with basepoint. A morphism from (X, x) to (Y, y) is
a continuous function from X to Y such that f(x) = y. For every X there is a group
homomorphism from TX : π1(X,x) → H1(X, Z) where the former is the fundamental
group and the latter is singular homology with integer coefficients. (Let S1 be a circle
and fix a generator θ of H1(S1,Z) ∼= Z. Every element of π1(X,x) is represented by
(the homotopy class of) a continuous map f : S1 → X. TX([f ]) = f∗(θ) ∈ H1(X, Z).)
These TX give a natural transformation from π1 to the functor H1( ,Z), both regarded
as functors from C to the category of groups. There are also natural transformations
H1( ,Z)→ H1( ,Q)→ H1( ,R)→ H1( ,C).

In giving definitions for natural transformations, we will stick with the case of covariant
functors: the contravariant case may be handled by replacing D by Dop.

Given functors F, G, H from C → D, a natural transformation S : F → G, and a
natural transformation T : G→ H, we may define a natural transformation T ◦ S from F
to H by the rule (T ◦ S)X = TX ◦ SX .

There is an identity natural transformation, 1F , from the functor F : C → D to itself:
1F,X : F (X)→ F (X) is 1F (X). It behaves as an identity should under composition. Given
two functors F and G from C → D, we can now define them to be isomorphic if there
are natural transformations T : F → G and T ′ : G → F such that T ′ ◦ T = 1F and
T ◦ T ′ = 1G. In fact, T is an isomorphism of functors if and only if all the morphisms TX
are isomorphisms, and in that case the unique way to define T ′ is by the rule T ′X = (TX)−1.

Once we have a notion of isomorphism of functors we can define two categories C and
D to be equivalent if there are functors F : C → D and G : D → C such that G ◦ F is
isomorphic to the identity functor on C and F ◦ G is isomorphic to the identity functor
on D. If C is equivalent to Dop it is said to be antiequivalent to D. Roughly speaking,
equivalence is like isomorphism, but there may not be the same number of objects in an
isomorphism class in one of the two equivalent categories as there are in the other. For
example, suppose that we have a category D and another C in which there is exactly one
object of D from each isomorphism class of objects in D. Also suppose that the morphisms
from one object in C to another are the same as when they are considered as objects of
D, and likewise for composition. Then one can show, with a suitably strong form of the
axiom of choice, that C and D are equivalent categories.

Another application of the notion of isomorphism of functors is the definition of a
representable functor. This is a point of view that unifies numerous constructions, both in
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commutative algebra and in many other parts of mathematics. If we fix an object Z in a
category C then we get a covariant functor hZ mapping C to the category of sets by letting
hZ(X) = Mor (Z, X). If f : X → Y we let hZ(f) : Mor (Z,X)→ Mor (Z, Y ) be the map
induced by composition — it sends g to f ◦g. A covariant functor G from C to sets is called
representable in C if it is isomorphic to hZ for some Z ∈ Ob (C). We say that Z represents
G. Similarly, we can define a contravariant functor hZ to sets by hZ(X) = Mor (X, Z)
while hZ(f) : Mor (Y, Z) → Mor (X, Z) sends g to g ◦ f . A contravariant functor is
representable in C if it is isomorphic with hZ for some Z.

Examples. (a) Let C be the category of abelian groups and group homomorphisms.
Let G be any group. We can define a functor F from abelian groups to sets by letting
F (A) = Hom(G,A), the set of group homomorphisms from G to A. Can we represent F
in the category of abelian groups? Yes! Let G = G/G′, the abelianization of G. Then
every homomorphism G → A factors uniquely G → G → A, giving a bijection of F (A)
with Hom(G, A). This yields an isomorphism of F ∼= hG.

(b) Let R be a ring and and I be an ideal. Define a functor from the category of
commutative rings with identity to the category of sets by letting F (S) be the set of all
ring homomorphisms f : R → S such that f kills I. Every homomorphism R → S such
that f kills I factors uniquely R � R/I → S, from which it follows that the functor F is
representable and is ∼= hR/I .

(c) In this example we want to define products in an arbitrary category. Our motivation
is the way the Cartesian product Z = X×Y behaves in the category of sets. It has product
projections πX : Z → X sending (x, y) to x and πY : Z → Y sending (x, y) to y. To give a
function from W → X ×Y is equivalent to giving a pair of functions, one α : W → X and
another β : W → Y . The function f : W → X × Y then sends w to (α(w), β(w)). The
functions α and β may be recovered from f as πX ◦ f and πY ◦ f , respectively.

Now let C be any category. Let X, Y ∈ Ob (C). An object Z together with morphisms
πX : Z → X and πY : Z → Y (called the product projections on X an Y , respectively) is
called a product for X and Y in C if for all objects W in C the function Mor (W, Z) →
Mor (W, X) ×Mor (W, Y ) sending f to (πX ◦ f, πY ◦ f) is a bijection. This means that
the functor sending W to Mor (W, X)×Mor (W, Y ) is representable in C. Given another
product Z ′, π′X , π′Y , there are unique mutually inverse isomorphisms γ : Z → Z ′ and
δ : Z ′ → Z that are compatible with the product projections, i.e., such that πX = γ ◦ π′X
πY = γ ◦ π′Y (the existence and uniqueness of γ are guaranteed by the defining property
of the product) and similarly for δ. The fact that the compositions are the appropriate
identity maps also follows from the defining property of the product.

Products exist in many categories, but they may fail to exist. In the categories of sets,
rings, groups, abelian groups, R-modules over a given ring R, and topological spaces, the
product turns out to be the Cartesian product with the usual additional structure (in the
algebraic examples, operations are performed coordinate-wise; in the case of topological
spaces, the product topology works: the open sets are unions of Cartesian products of open
sets from the two spaces). In all of these examples, the product projections are the usual
set-theoretic ones. In the category associated with a partially ordered set, the product of
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two elements x and y is the greatest lower bound of x and y, if it exists. The point is
that w has (necessarily unique) morphisms to both x and y iff w ≤ x and w ≤ y iff w is
a lower bound for both x and y. For z to be a product, we must have that z is a lower
bound for x, y such that every lower bound for x, y has a morphism to z. This says that
z is a greatest lower bound for x, y in the partially ordered set. It is easy to give examples
of partially ordered sets where not all products exist: e.g., a partially ordered set that
consists of two mutually incomparable elements (there is no lower bound for the two), or
one in which there are four elements a, b, x, y such that a and b are incomparable, x and
y are incomparable, while both a and b are strictly less than both x and y. Here, a and b
are both lower bounds for the x, y, but neither is a greatest lower bound.

The product of two objects in Cop is called their coproduct in C. Translating, the
coproduct of X and Y in C, if it exists, is given by an object Z and two morphisms
ιX : X → Z, ιY : Y → Z such that for every object W , the map Mor (Z, W ) →
Mor (X, W )×Mor (Y, W ) sending f to (f ◦ ιX , f ◦ ιY ) is bijective. This means that the
functor sending W to Mor (X, W ) ×Mor (Y, W ) is representable in C. Coproducts have
the same sort of uniqueness that products do: they are products (in Cop).

In the category of sets, coproduct corresponds to disjoint union: one takes the union
of disjoint sets X ′ and Y ′ set-isomorphic to X and Y respectively. The function ιX is an
isomorphism of X with X ′ composed with the inclusion of X ′ in X ′ ∪ Y ′, and similarly
for ιY . To give a function from the disjoint union of two sets to W is the same as to give
two functions to W , one from each set.

In the category of R-modules over a commutative ring R, coproduct corresponds to
direct sum. We shall discuss the existence of coproducts in the category of commutative
rings later on. In the category associated with a partially ordered set, it corresponds to
the least upper bound of the two elements.
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Lecture of September 12

Let R be a commutative ring with identity. An R-module F is said to be free with
free basis B ⊆ F if every element of F is uniquely an R-linear combination of elements in
B. The uniqueness statement is very important: it implies that if b1, . . . , bn are distinct
elements of B and r1b1 + · · · + rnbn = 0 then r1 = · · · = rn = 0, which says that the
elements of the free basis are linearly independent over R.

A word about degenerate cases: the 0 module is considered free on the empty set of
generators.

In case R is a field, an R-module is just a vector space, and a free basis is the same thing
as a vector space basis. (The term “basis” for a module is sometimes used to mean a set
of generators or spanning set for the module. I will try not to use this term in this course,
to avoid ambiguity.) By Zorn’s lemma, every set of independent vectors in a vector space
is contained in a maximal such set (one can start with the empty set), and a maximal
independent set must span the whole space: any vector not in the span could be used to
enlarge the maximal independent set. Thus, over a field, every module is free (i.e., every
vector space has a basis).

Freeness is equivalent to the statement that for every b ∈ B, Rb ∼= R in such a way that
rb corresponds to r, and that F is the direct sum of all these copies of R, i.e., F ∼=

⊕
b∈B Rb.

The free R-module on the free basis b1, . . . , bn is isomorphic with Rn, the module of n-
tuples of elements of R under coordinate-wise addition and scalar multiplication. Under
the isomorphism, the element r1b1 + · · ·+ rnbn corresponds to (r1, . . . , rn). The element
bi corresponds to ei = (0, 0, . . . , 0, 1, 0, . . . , 0) where the unique nonzero entry (which is
1) occurs in the i th coordinate. In particular, the ei give a free basis for Rn.

In general, if F is free on B, F is isomorphic with the set of functions B → R which are 0
on all but finitely many elements of B. Under the isomorphism, the element r1b1+· · ·+rnbn
corresponds to the function that assigns every bi the value ri, while assigning the value 0
to all elements of B−{b1, . . . , bn}. When B is infinite, this is strictly smaller than the set
of all functions from B to R: the latter may be thought of as the product of a family of
copies of R indexed by B.

When M and N are R-modules, the set of R-linear maps from M to N is denoted
HomR(M, N) or Hom (M, N): this is Mor (M,N) in the category of R-modules. It is not
only a set: it is also an R-module, since we may define f + g and rf for r ∈ R by the rules
(f + g)(m) = f(m) + g(m) and (rf)(m) = r

(
f(m)

)
.

We next want to define the notion of an A-algebra, where A is a commutative ring. We
shall say that R is an A-algebra if R itself is a commutative ring and is also a (unital)
A-module in such a way that for all a ∈ A and r, s ∈ R, a(rs) = (ar)s. (Note that
the for all a, b ∈ A and r ∈ R, we also have that a(br) = (ab)r, but we don’t need to
assume it separately: it is part of the definition of an A-module.) In this situation we get
a ring homomorphism from A → R that sends a ∈ A to a · 1R. Conversely, given a ring
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homomorphism θ : A → R, the ring R becomes an A-algebra if we define ar as θ(a)r.
That is, to give a ring R the structure of an A-algebra is exactly the same thing as to give
a ring homomorphism A → R. When R is an A-algebra, the homomorphism θ : A → R
is called the structural homomorphism of the algebra. A-algebras form a category: the
A-algebra morphisms (usually referred to as A-algebra homomorphisms) from R to S are
the A-linear ring homomorphisms. If f and g are the structural homomorphisms of R
and S respectively over A and h : R → S is a ring homomorphism, it is an A-algebra
homomorphism if and only if h ◦ f = g.

Note that every commutative ring R with identity is a Z-algebra in a unique way, i.e.,
there is a unique ring homomorphism Z → R. To see this, observe that 1 must map to
1R. By repeated addition, we see that n maps to n · 1R for every nonnegative integer
n. It follows by taking inverses that this holds for negative integers as well. This shows
uniqueness, and it is easy to check that the map that sends n to n · 1R really is a ring
homomorphism for every ring R.

By a semigroup S we mean a set together with an associative binary operation that has a
two-sided identity. (The existence of such an identity is not always assumed. Some people
use the term “monoid” for a semigroup with identity.) We shall assume the semigroup
operation is written multiplicatively and that the identity is denoted 1S or simply 1. A
group is a semigroup in which every element has a two-sided inverse.

By a homomorphism of semigroups h : S → S′ we mean a function on the underlying
sets such that for all s, t ∈ S, h(st) = h(s)h(t) and such that h(1S) = 1S′ .

The elements of a commutative ring with identity form a commutative semigroup under
multiplication.

The set of vectors Nn with nonnegative integer entries forms a semigroup under addition
with identity (0, . . . , 0). We want to introduce an isomorphic semigroup that is written
multiplicatively. If x1, . . . , xn are distinct elements we can introduce formal monomials
xk11 · · ·xkn

n in these elements, in bijective correspondence with the elements (k1, . . . , kn) ∈
Nn. (We can, for example, make all this precise by letting xk11 · · ·xkn

n be an alternate
notation for the function whose value on xi is ki, 1 ≤ i ≤ n.) These formal monomials
form a multiplicative semigroup that is isomorphic as a semigroup with Nn: to multiply
two formal monomials, one adds the corresponding exponents. It is also innocuous to
follow the usual practices of omitting a power of one of the xi from a monomial if the
exponent on xi is 0, of replacing x1

i by xi, and of writing 1 for x0
1 · · · x0

n. With these
conventions, xki is the product of xi with itself k times, and xk1i · · · xkn

n is the product of
n terms, of which the i th term is xki

i .

We can likewise introduce the multiplicative semigroup of formal monomials in the
elements of an infinite set: it can thought of as the union of what one gets from its various
finite subsets. Only finitely many of the elements occur with nonzero exponents in any
given monomial.

Not every commutative semigroup is isomorphic with the multiplicative semigroup of
a ring: for one thing, there need not be an element that behaves like 0. But even if
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we introduce an element that behaves like 0, this still need not be true. The infinite
multiplicative semigroup of monomials in just one element, {xk : k ∈ N}, together with
0, is not the multiplicative semigroup of a ring. To see this, note that the ring must
contain an element to serve as −1. If that element is xk for k > 0, then x2k = 1, and the
multiplicative semigroup is not infinite after all. Therefore, we must have that −1 = 1,
i.e., that the ring has characteristic 2. But then x + 1 must coincide with xk for some
k > 1, i.e., the equation xk − x− 1 = 0 holds. This implies that every power of x is in the
span of 1, x, . . . , xk−1, forcing the ring to be a vector space of dimension at most k over
Z2, and therefore finite, a contradiction.

Given a commutative semigroup S and a commutative ring A we can define a functor
G from the category of A-algebras to sets whose value on R is the set of semigroup ho-
momorphisms from S to R. If we have a homomorphism R → R′ composition with it
gives a function from G(R) to G(R′). In this way, G is a covariant functor to the category
of sets. We want to see that G is representable in the category of A-algebras. The con-
struction is as follows: we put an A-algebra structure on the free A-module with free basis
S by defining the product of

∑h
i=1 aisi with

∑k
j=1 a

′
js
′
j , where the ai, a′j ∈ A and the

si, s
′
j ∈ S, to be

∑
i, j(aia

′
j)(sisj) where aia′j is calculated in A and sis′j is calculated in S.

It is straightforward to check that this is a commutative ring with identity 1A1S This ring
is denoted A[S] and is called the semigroup ring of S with coefficients in A. We identify
S with the set of elements of the form 1As, s ∈ S. It turns out that every semigroup
homomorphism φ : S → R (using R for the multiplicative semigroup of R), where R is an
A-algebra, extends uniquely to an A-algebra homomorphism A[S]→ R. It is clear that to
perform the extension one must send

∑h
i=1 aisi to

∑h
i=1 aiφ(si), and it is straightforward

to verify that this is an A-algebra homomorphism. Thus, restriction to S gives a bijection
from HomA(A[S], R) to G(R) for every A-algebra R, and so A[S] represents the functor
G in the category of A-algebras.

We can now define the polynomial ring in a finite or infinite set of variables {xi : i ∈ I}
over A as the semigroup ring of the formal monomials in the xi with coefficients in A.

We can also view the polynomial ring A[X ] in a set of variables X as arising from
representing a functor as follows. Given any A-algebraR, to give an A-homomorphism from
A[X ]→ R is the same as to give a function from X → R, i.e., the same as simply to specify
the values of the A-homomorphism on the variables. Clearly, if the homomorphism is to
have value ri on xi for every xi ∈ X , the monomial xk1i1 · · · x

kn
in

must map to rk1i1 · · · r
kn
in

, and
this tells us as well how to map any A-linear combination of monomials. If for example,
only the indeterminates x1, . . . , xn occur in a given polynomial (there are always only
finitely many in any one polynomial) then the polynomial can be written uniquely as∑
k∈E akx

k where E is the finite set of n-tuples of exponents corresponding to monomials
occurring with nonzero coefficient in the polynomial, k = (k1, . . . , kn) is a n-tuple varying
in E, every ak ∈ A, and xk denotes xk11 · · · xkn

n . If the value that xi has is ri, this
polynomial must map to

∑
k∈E akr

k, where rk denotes rk11 · · · rkn
n . It is straightforward

to check that this does give an A-algebra homomorphism. In the case where there are n
variables x1, . . . , xn, and every xi is to map to ri, the value of a polynomial P under this
homomorphism is denoted P (r1, . . . , rn), and we refer to the homomorphism as evaluation
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at (r1, . . . , rn). Let H denote the functor from A-algebras to sets whose value on R is the
set of functions from X to R. Then the polynomial ring A[X ] represents the functor H in
the category of A-algebras: the map from HomA(A[X ], R) to Mor (sets)(X , R) that simply
restricts a given A-homomorphism A[X ]→ R to the set X gives a bijection, and this gives
the required natural isomorphism of functors.

By a multiplicative system S in a ring R we mean a non-empty subset of R that is
closed under multiplication. Given such a set S we next want to consider the problem
of representing the functor LS in the category of rings, where LS(T ) denotes the set of
ring homomorphisms R → T such the image of every element of S is invertible in T . We
shall show that this is possible, and denote the ring we construct S−1R. It is called the
localization of R at S. It is constructed by enlarging R to have inverses for the elements
of S while changing R as little as possible in any other way.
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Lecture of September 15

We give two constructions of the localization of a ring R at a multiplicative system
S ⊆ R. In the first construction we introduce an indeterminate xs for every element of
S. Let A = R[xs : s ∈ S], the polynomial ring in all these indeterminates. Let I be the
ideal of A generated by all of the polynomials sxs − 1 for s ∈ S. The composition of the
homomorphisms R → R[xs : s ∈ S] = A � A/I makes A/I into an R-algebra, and we
take S−1R to be this R-algebra. Note that the polynomials we killed force the image of
xs in S−1R to be an inverse for the image of s.

Now suppose that g : R → T is any ring homomorphism such that g(s) is invertible in
T for every element s ∈ S. We claim that R→ T factors uniquely R→ S−1R→ T , where
the first homomorphism is the one we constructed above. To obtain the needed map, note
that we must give an R-homomorphism of A = R[xs : s ∈ S] → T that kills the ideal
I. But there is one and only one way to specify values for the xs in T so that all of the
polynomials sxs − 1 map to 0 in T : we must map xs to g(s)−1. This proves that the map
does, in fact, factor uniquely in the manner specified, and also shows that S−1R represents
the functor

LS = {g ∈ HomR(R, T ) : for all s ∈ S, g(s) is invertible}

in the category of rings, as required. Note that xs1 · · · xsk
= xs1 ··· sk

mod I, since both
sides represent inverses for the image of s1 · · · sk in S−1T . This means that every element
of S−1R is expressible as an R-linear combination of the xs. But we can manipulate
further: it is easy to check that the images of rs2xs1s2 and rxs1 are the same, since they
are the same after multiplying by the invertible element which is the image of s1s2, and so
r1xs1 + r2xs2 = r1s2xs1s2 + r2s1xs1s2 = (r1s2 + r2s1)xs1s2 mod I. Therefore every element
of S−1R can be written as the image of rxs for some r ∈ R and s ∈ S. This representation
is still not unique.

We now discuss the second construction. An element r of the ring R is called a ze-
rodivisor if ru = 0 for u ∈ R − {0}. An element that is not a zerodivisor is a called a
nonzerodivisor. The second construction is slightly complicated by the possibility that S
contains zerodivisors. Define an equivalence relation ∼ on R × S by the condition that
(r1, s1) ∼ (r2, s2) if there exists s ∈ S such that s(r1s2 − r2s1) = 0. Note that if S
contains no zerodivisors, this is the same as requiring that r1s2 − r2s1 = 0. In the case
where S contains zerodivisors, one does not get an equivalence relation from the simpler
condition. The equivalence class of (r, s) is often denoted r/s, but we stick with [(r, s)] for
the moment. The check that one has an equivalence relation is straightforward, as is the
check that the set of equivalence classes becomes a ring if we define the operations by the
rules [(r1, s1)] + [(r2, s2)] = [(r1s2 + r2s1, s1s2)] and [(r1, s1)][(r2, s2)] = [(r1r2, s1s2)].
One needs to verify that the operations are well-defined, i.e., independent of choices of
equivalence class representatives, and that the usual ring laws are satisfied. This is all
straightforward. The zero element is [(0, 1)], the multiplicative identity is [(1, 1)], and the
negative of [(r, s)] is [(−r, s)]. Call this ring B for the moment. It is an R-algebra via
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the map that sends r to [(r, 1)]. The elements of S have invertible images in B, since
[(s, 1)][(1, s)] = [(s, s)] = [(1, 1)].

This implies that we have an R-algebra homomorphism T → B. Note that it maps xs to
[(1, s)], and, hence, it maps rxs to [(r, s)]. Now one can prove that T is isomorphic with B
by showing that the map R×S → T that sends (r, s) to rxs is well-defined on equivalence
classes. This yields a map B → T that sends [(r, s)] to rxs. It is then immediate that
these are mutually inverse ring isomorphisms: since every element of T has the form rxs,
it is clear that the composition in either order gives the appropriate identity map.

It is easy to calculate the kernel of the map R → S−1R. By the definition of the
equivalence relation we used, (r, 1) ∼ (0, 1) means that for some s ∈ S, sr = 0. The set
I = {r ∈ R : for some s ∈ S, sr = 0} is therefore the kernel. If no element of s is a
zerodivisor in R, then the map R→ S−1R is injective. One can think of localization at S
as being achieved in two steps: first kill I, and then localize at the image of S, which will
consist entirely of nonzerodivisors in R/I.

If R is an integral domain then S = R − {0} is a multiplicative system. In this case,
S−1R is easily verified to be a field, the fraction field of R. Localization may be viewed as
a generalization of the construction of fraction fields.

Localization and forming quotient rings are related operations. Both give R-algebras
that represent functors. One corresponds to homomorphisms that kill an ideal I, while the
other to homomorphisms that make every element in a multiplicative system S invertible.
But the resemblance is even greater.

To explain this further similarity, we introduce the notion of an epimorphism in an
arbitrary category. In the category of sets it will turn out that epimorphisms are just
surjective maps. But this is not at all true in general. Let C be a category. Then f : X → Y
is an epimorphism if for any two morphisms g, h : Y → Z, whenever g ◦ f = h ◦ f then
g = h. In the case of functions, this says that if g and h agree on f(X), then they agree on
all of Y . This is obviously true if f(X) = Y , i.e., if f is surjective. It is almost as obvious
that it is not true if f is not surjective: let Z have two elements, say 0 and 1. Let g be
constantly 0 on Y , and let h be constantly 0 on f(X) and constantly 1 on its complement.
Then g 6= h but g ◦ f = h ◦ f .

In the category of R-modules an epimorphism is a surjective homomorphism. In the
category of Hausdorff topological spaces, any continuous function f : X → Y is an epimor-
phism provided that f(X) is dense in Y : it need not be all of Y . Suppose that g : Y → Z
and h : Y → Z agree on f(X). We claim that they agree on all of Y . For suppose we have
y ∈ Y such that g(y) 6= h(y). Then g(y) and h(y) are contained in disjoint open sets, U
and V respectively, of Z. Then g−1(U) ∩ h−1(V ) is an open set in Y , and is non-empty,
since it contains y. It follows that it contains a point of f(X), since f(X) is dense in Y ,
say f(x), where x ∈ X. But then g

(
f(x)

)
∈ U , and h

(
f(x)

)
∈ V , a contradiction, since

g
(
f(x)

)
= h

(
f(x)

)
is in U ∩ V , while U and V were chosen disjoint.

The category of rings also provides some epimorphisms that are not surjective: both
surjective maps and localization maps R → S−1R are epimorphisms. We leave it as an
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exercise to verify that if two homomorphisms S−1R → T agree on the image of R, then
they agree on S−1T .

By the way, an epimorphism in Cop is called a monomorphism in C. Said directly,
f : X → Y is a monomorphism if whenever g, h : W → X are such that f ◦ g = f ◦ h then
g = h. We leave it as an exercise to verify that a monomorphism in the category of sets is
the same as an injective function. This is also true in the category of R-modules, and in
the category of rings.

An ideal of a ring R is prime if and only if its complement is a multiplicative system.
(Note that our multiplicative systems are required to be non-empty.) If P is a prime, the
localization of R at P is denoted RP . We shall soon see that RP has a unique maximal
ideal, which is generated by the image of P . A ring with a unique maximal ideal is called
a quasilocal ring. Some authors use the term local, but we shall reserve that term for a
Noetherian quasilocal ring. A major theme in commutative algebra is to use localization
at various primes to reduce problems to the case where the ring is quasilocal.

We want to make a detail comparison of the ideals of a ring R with the ideals of the
ring S−1R. But we first want to explain why rings with just one maximal ideal are called
“(quasi)local.”

Let X be a topological space and x a point of X. Consider the set of functions from an
open set containing x to R. We define two such functions to be equivalent if they agree
when restricted to a sufficiently small open set containing x. The equivalence classes are
referred to as germs of continuous functions at x, and they form a ring. In this ring, the
value of a germ of a function at a specific point is not well-defined, with the exception of
the point x. A germ that does not vanish at x will, in fact, not vanish on an open set
containing x, by continuity, and therefore has an inverse (given by taking the reciprocal
at each point) on an open set containing x. Thus, the germs that do not vanish at x are
all invertible, while the complementary set, consisting of germs that do vanish at x, is an
ideal. This ideal is clearly the unique maximal ideal in the ring of germs. The ring of
germs clearly reflects only geometry “near x.” It makes sense to think of this as a “local”
ring.

An entirely similar construction can be made for C∞ R-valued functions defined on an
open set containing a point x of a C∞ manifold. The rings of germs is again a ring with
a unique maximal ideal, which consists of the germs that vanish at x. One can make an
entirely analogous construction of a ring of germs at a point for other sorts of differentiable
manifolds, where a different level of differentiability is assumed. These are all quasilocal
rings.

If X is Cn (or an analytic manifold — there are also more general kinds of analytic sets)
the ring of germs of holomorphic C-valued functions on an open set containing x again has
a unique maximal ideal consisting of the functions that vanish at x. In the case of the origin
in Cn, the ring of germs of holomorphic functions may be identified with the convergent
power series in n variables, i.e., the power series that converge on a neighborhood of the
origin. This ring is even Noetherian (this is not obvious), and so is a local ring in our
terminology, not just a quasilocal ring.
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We now return to the problem of comparing ideals in R with those in S−1R. Given any
ring homomorphism f : R→ T we may make a comparison using two maps of ideals that
always exist. Given an ideal I ⊆ R, IT denotes the ideal of T generated by the image of
I, which is called the expansion of I to T . The image of I is not usually an ideal. One
must take T -linear combinations of images of elements of I. For example, if we consider
Z ⊆ Q, then 2Z is a proper ideal of Z, but it is not an ideal of Q: the expansion is the
unit ideal. The highly ambiguous notation Ie is used for the expansion of I to T . This is
sometimes problematic, since T is not specified and their may be more than one choice.
Also, if e might be denoting an integer, Ie might be taken for a power of I. Nonetheless,
it is traditional, and convenient if the choice of T is clear.

If J is an ideal of T , we have already mentioned, at least in the case of primes, that
f−1(J) = {r ∈ R : f(r) ∈ J} is denoted Jc and called the contraction of J to R. This
notation has the same sorts of flaws and merits as the notation above for expansions.
It is always the case that f induces an injection of R/Jc ↪→ T/J . It is trivial that
I ⊆ (Ie)c = Iec, the contracted expansion, and that Jce = (Jc)e ⊆ J .

We now want to consider what happens when T = S−1R. In this case, in general one
only knows that I ⊆ Iec, but one can characterize Iec as {r ∈ R : for some s ∈ S, sr ∈ I}.
We leave this as an exercise. On the other hand, if J ⊆ S is an ideal, J = Jce. That is,
every ideal of S−1R is the expansion of its contraction to R. The reason is quite simple:
if r/s ∈ J , then r/1 ∈ J , and r will be in the contraction of J . But then r(1/s) = r/s
will be in the expanded contraction. Call an ideal I ⊆ R contracted with respect to
the multiplicative system S if whenever s ∈ S and sr ∈ I then r ∈ I. Expansion and
contraction give a bijection between ideals of R contracted with respect to S and ideals of
S−1R.



25

Lecture of September 17

Notice that the algebra map R→ S−1R provides a simple way of getting from modules
over S−1R to R-modules: in fact, whenever one has any R-algebra T with structural
homomorphism f : R → T , a T -module M becomes an R-module if we define r · m =
f(r)m. This gives a covariant functor from T -modules to R-modules, and is referred to as
restriction of scalars. The functions that give homomorphisms literally do not change at
all, nor does the structure of each module as an abelian group under +.

A sequence of modules

· · · →M ′
α−→M

β−→M ′′ → · · ·

is said to be exact at M if the image of α is equal to the kernel of β. A functor from
R-modules to T -modules is called exact if it preserves exactness: the functor may be either
covariant or contravariant. Restriction of scalars is an exact functor. Later, we shall
consider the problem of making a transition (i.e., of defining a functor) from R-modules
to T -modules when T is an R-algebra. This is more difficult: one makes use of tensor
products, and the functor one gets is no longer exact.

It is easy to see that S−1R = 0 iff 0 ∈ S iff some nilpotent element is in S. The issue is
whether 1 becomes equal to 0 after localization, and this happens if and only if s · 1 = 0
for some s ∈ S.

Prime ideals of S−1R correspond bijectively, via expansion and contraction, with primes
of R that do not meet S. The key point is that if P is a prime not meeting S, it is
automatically contracted with respect to S: if su ∈ P with s ∈ S, then since s /∈ P , we
have that u ∈ P . The primes that do meet S all expand to the unit ideal.

In particular, when S = R − P , for P prime, the prime ideals of RP = (RP )−1R
correspond bijectively with the prime ideals of R that are contained in P (this is equivalent
to not meeting R − P ) under contraction and expansion. This implies that PRP is the
unique maximal ideal of RP , which was asserted earlier without proof. In particular, RP
is quasilocal.

It is straightforward to show that the map Spec (S−1R) to Spec (R) is a homeomorphism
of Spec (S−1R) with Y ⊆ Spec (R) where

Y = {P ∈ Spec (R) : S ∩ P = ∅}.

This has some similarities to the situation when one compares ideals of R and ideals
of R/I. Expansion and contraction give a bijection between ideals J of R that contain I
and ideals of R/I. The ideal J corresponds to J(R/I), which may be identified with J/I.
This bijection preserves the property of being prime, since R/J is a domain if and only if
(R/I)/(J/I) ∼= R/J is a domain. Thus, the map Spec (R/I) → Spec (R) is a bijection of
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the former onto V (I). It is easy to verify that it is, in fact, a homeomorphism of Spec (R/I)
with V (I).

The notation Ra is used for S−1R where S = {1, a, a2, . . . }, the multiplicative system
of all powers of a. If R is a domain we may think of this ring as R[1/a] ⊆ L, where L is
the field of fractions of R.

The notation RS for S−1R is in use in the literature, but we shall not use it in this
course.

Suppose that S and T are two multiplicative systems in S. Let ST be the multiplicative
system {st : s ∈ S, t ∈ T}. Note that the image of st has an inverse in an R-algebra if
and only if both the images of s and of t have inverses. Let S′ be the image of S in
T−1R and T ′ be the image of T in S−1R. Then T ′

−1(S−1R) ∼= (ST )−1R ∼= S′
−1(T−1R).

All three represent the functor from rings to sets whose value on a ring A is the set of
homomorphisms from R to A such that the images of the elements of both S and T are
invertible in A.

Let S be the image of S in R/I, and use bars over elements to indicate images modulo
I. Then S−1R/Ie ∼= S −1(R/I). The isomorphism takes the class of r/s to r/s. Both
represent the functor from rings to sets whose value on T is the set of ring homomorphisms
g : R→ T that kill I and such that for all s ∈ S, g(s) is invertible in T .

In the case of a prime ideal P , one has in particular that RP /PRP is the localization
of the domain R/P at the multiplicative system of all nonzero elements (this is the image
of R− P ), which is the same as the fraction field of the domain R/P .

If S is a multiplicative system that does not meet I, then S−1R/Ie has maximal ideals.
Their contractions to R are certainly prime: they are precisely the ideals of R that contain
I and are maximal with respect to not meeting S. Thus, if S does not meet I, there is a
prime ideal of R that contains I and does not meet S.

In particular, if a ∈ R is not nilpotent, then the multiplicative system of powers of a
does not contain 0, and there is a prime that does not meet this multiplicative system. In
particular, there is a prime ideal of R that does not contain a. From this we see at once:

Corollary. The intersection of the prime ideals of R is the ideal of all nilpotent elements
of R. �

Corollary. The intersection of all the prime ideals of R that contain I is the same as the
ideal {a ∈ R : for some n ≥ 1, an ∈ I}. This ideal is called the radical of I.

Proof. If an ∈ I and P is prime with I ⊆ P , then an ∈ P and so a ∈ P . If an /∈ I for
all n then the image of a is not nilpotent in R/I. Therefore some prime ideal P/I of R/I
does not contain a. But this means that P is a prime ideal of R that contains I but not
a. More briefly put, simply apply the immediately preceding Corollary to R/I. �

The radical of I is denoted Rad (I) or
√
I.

A ring is called reduced if the only nilpotent element is 0, i.e., if the radical of the ideal
(0) is the ideal (0). If N denotes the ideal of all nilpotent elements of R, then R/N is
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called R reduced, and denoted Rred. Notice that Spec (R/N)→ Spec (R) has image V (N),
i.e., the map is surjective as well as injective and is, in fact a homeomorphism.

The intersection of a nonempty chain of prime ideals is easily verified to be a prime
ideal (the same is true for the union, by the way). By Zorn’s lemma, every prime ideal
of R contains a minimal prime ideal of R, one that does not contain any strictly smaller
prime ideal. It follows that the intersection of all prime ideals of R is the same as the
intersection of the minimal prime ideals of R.

Corollary. The intersection of the minimal prime ideals of R is the ideal of all nilpotent
elements of R.

A prime that is minimal in the partially ordered set V (I) is called a minimal prime of
I. We also have:

Corollary. The intersection of the minimal primes of I is Rad (I).

Proof. Apply the preceding Corollary to R/I. �

Note that the ideal of nilpotents in R is not necessarily a prime ideal: R may have
many minimal primes. E.g., in R = Z/36Z, the ideal of nilpotents is generated by [6],
and Rred

∼= Z/6Z, which has two minimal primes, generated by the classes of 2 and 3
respectively.

More generally, suppose that T is a unique factorization domain and that f1, . . . , fn
are irreducible elements of T generating mutually distinct prime ideals fiT . Let g =
fk11 · · · fkn

n where the ki are positive integers, and let f = f1 · · · fn. Let R = T/gT .
Then Rred

∼= T/fT , and there are n minimal primes: they are generated by the respective
images of the fi.
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Lecture of September 19

I want to emphasize the difference between being finitely generated as an algebra and
being finitely generated as a module. When S is finitely generated as an R-algebra it
means that there are elements s1, . . . , sn ∈ S such that every element of S is an R-linear
combination of finitely many monomials in the elements si. Each monomial has the form
sk11 · · · skn

n . The monomials include 1S (when all the ki = 0). When S is generated as
an R-algebra by s1, . . . , sn there is no smaller ring that contains the image of R and all
of the si. It also means that the the R-linear ring homomorphism of the polynomial ring
R[x1, . . . , xn] to S that sends xi 7→ si for every i is surjective. Note that in the polynomial
ring R[x, y] the module generated by 1, x, y is just R+Rx+Ry: it is missing all monomials
of higher degree. If s1, . . . , sn generate S as an R-module, then every element of S can
be written in the form r1s1 + · · · + rnsn: there are no higher degree monomials in the sj
in the representation. When this happens, it is always true that the si generate R as an
S-algebra as well, i..e., generators of S as an R-module always generate S as an R-algebra.

The ring Z[1/2] is finitely generated as a Z-algebra by 1/2. It contains 1/2k for every
integer k. But it is not finitely generated as a Z-module: any finitely generated submodule
consists of fractions whose denominators can be simultaneously cleared by a single power
of 2.

The polynomial ring in infinitely many variables over R is not finitely generated over
R: any purported finite set of generators only involves finitely many of the variables, and
the other variables cannot be obtained.

The field of rational numbers Q is not finitely generated as a Z-algebra: any finitely
generated subalgebra contains fractions involving only finitely many primes in the denom-
inator (those occurring in the denominators of the generators), and will not contain the
reciprocals of other primes.

The ring Z[
√

2] is finitely generated over Z not only as an algebra but also as a Z-
module. Every element can be written in the form a + b

√
2, where a and b are integers,

and so 1,
√

2 generate it as a Z-module.

Let X be any non-empty set, let K be a field, and let R be the ring of functions from
X to K. We shall assume the result from the first problem set that asserts a bijection
of ideals of R with filters on X. We want to observe that every prime ideal of R is
maximal. Suppose that F is the filter corresponding to a prime ideal P . If Y and Y ′ are
complementary subsets of X, i.e., if Y ∩ Y ′ = ∅ while Y ∪ Y ′ = X, let f be the function
that is 1 on Y and 0 on Y ′ and and let g be the function 1R − f , which is 0 on Y and
1 on Y ′. Then fg = 0, so that either f ∈ P or g ∈ P . Thus, for every subset Y of X,
either Y or X − Y is already in F , but not both, since ∅ /∈ F . But this implies that F
is maximal: it cannot be contained in a larger filter that does not contain ∅, for if Y /∈ F
then X − Y ∈ F , and a filter that contains both Y and F must contain Y ∩ (X − Y ) = ∅.
This shows that every prime ideal of R is maximal. But then every prime ideal of R is
minimal! If X is infinite, the set of minimal primes is infinite — there is at least one for
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every point of X, the functions that vanish at that point. But further analysis of the case
where X is infinite shows that the number of minimal primes is uncountable, even when
X is countable: they correspond to the ultrafilters, which are the points of the Stone-Cech
compactification.

The following question is problem 14. on p. 308 in an undergraduate abstract algebra
text, Abstract Algebra by W. E. Deskins, MacMillan, New York, 1964. The first part of
the problem asks the reader to show that if R ∼= S as rings, then R[x] ∼= S[x], where these
are polynomial rings in one variable. This is easy. The second part of this question asks
whether the converse is true. (Deskins was a professor at Michigan State University, by
the way.) I have wondered on many occasions whether Deskins knew the answer. To avoid
mistakes it may be better to ask, if R[x] ∼= S[y] is R ∼= S? I have changed the letters to
emphasize that an isomorphism between R[x] and S[y] might not take x to y. If it does,
then one does immediately get an induced isomorphism R[x]/xR[x] ∼= S[y]/yS[y], and this
implies that R ∼= S. Without the extra hypothesis, the problem does not seem easy to me.
But I have sometimes been wrong about such things. What do you think? Can you prove
that R ∼= S or give a counterexample? The question remains difficult (I think) even if
both rings are assumed to be finitely generated algebras over a field, and the isomorphism
is assumed to preserve the field.

Now let R be any commutative ring. Let X = Spec (R). Then X−V (a) = X−V (Ra) =
D(a), the open set of primes not containing a. We have that

X − V (I) =
⋃
a∈I

D(a),

so that every open set is a union of sets D(a), i.e., the sets D(a) are a base for the Zariski
topology. (A family of sets is a base for the open sets of a topology if the open sets coincide
with the unions, finite and infinite, of the sets in the base.) Moreover, D(a)∩D(b) = D(ab),
so this base is closed under finite intersection. Since D(a) ≈ Spec (Ra), this means that the
quasicompact open subsets of X form a base. Each will be a union of sets D(a), and since
it is quasicompact, the union can be taken to be finite. A finite union of quasicompact sets
is quasicompact, and so the quasicompact open sets are precisely the sets that are finite
unions of sets of the form D(a). It follows that the intersection of two quasicompact open
subsets is quasicompact and open.

A non-empty topological space X is called irreducible if it is not the union of two proper
closed subsets, which is equivalent to the assumption that it is not the union of finitely
many proper closed subsets. Another equivalent statement is that any two nonempty open
sets meet, and this in turn is equivalent to the property that every nonempty open set is
dense. (Check all these equivalences.)

This does not happen much in Hausdorff spaces: an irreducible Hausdorff space has
exactly one point. If there were two, they would have disjoint open neighborhoods U and
V , and the complements would be proper closed sets whose union is the whole space. But
there are, typically, irreducible sets in Spec (R). A topological space X is said to have a
generic point x if there is a point x such that the closure of {x} is all of X. That is, {x}
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is dense! Said yet another way, every nonempty open set contains x. In a T0 space like
Spec (R), a generic point, if it exists, is unique. If X has a generic point, it is irreducible:
every non-empty open set contains the generic point, and is therefore dense.

The converse is true in Spec (R).

Proposition. Spec (R) is irreducible if and only if the ideal of all nilpotents N is prime,
in which case N is the unique minimal prime of R, and is consequently a generic point
for Spec (R). R is a domain if and only if it is reduced and Spec (R) is irreducible. In
Spec (R), V (I) is irreducible if and only if the radical P of I is prime, in which case
V (I) = V (P ) has a generic point, namely, P .

Proof. The issues raised in the first and second sentences are really the same, since killing
the ideal of nilpotents N does not affect the question: Spec (R/N) ≈ Spec (R). Likewise,
the statement about V (I) follows from applying the first two statements to R/I. We may
therefore assume that R is reduced. If R is a domain, then it is clear that (0) is the unique
minimal prime ideal of R. Now suppose instead that Spec (R) is irreducible, but that R
is not a domain. Choose nonzero elements a, b ∈ R such that ab = 0. Then every prime
ideal contains a or contains b, and so Spec (R) is the union of the closed sets V (a) and
V (b). Since neither a nor b is nilpotent, both of these closed sets are proper closed sets.
This contradicts the assumption that Spec (R) is irreducible. �

We note also that there is a bijection of Spec (R), the set of prime ideals of R, with
the irreducible closed subsets of Spec (R). The prime ideal P corresponds to V (P ). This
bijection is order-reversing. Likewise, there is an order-reversing bijection between the
radical ideals of R and the closed sets in Spec (R). Note that
V (I) = V (I ′) if and only if
I and I ′ are contained in all the same primes if and only if
the primes in V (I) have the same intersection as those in V (J) if and only if
the radical of I and the radical of J are equal.
Under the bijective correspondence the radical ideal I corresponds to V (I) and the

closed set Y to the intersection of the prime ideals in Y .

Putting all this together, we now know the following about Spec (R): it is a quasicom-
pact T0 space in which the quasicompact open sets are closed under finite intersection and
form a base for the topology. Moreover, every irreducible closed subset has a generic point.
The converse is true, i.e., every topological space with these properties occurs as Spec (R)
for some commutative ring R. See [M. Hochster, Prime ideal structure in commutative
rings, Trans. of the Amer. Math. Soc. 142 (1969) 43–60].
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Lecture of September 22

An infinite product indexed by a set may be thought of as functions from the index set
such that the value at an element u of the index set is taken in the factor corresponding to
u. When the product consists of rings, a ring structure is introduced using coordinate-wise
addition and multiplication.

Let Y denote either the set of all primes of R or the set of minimal primes of R. Suppose
that R is reduced, so that the intersection of the primes in Y is the zero ideal. There is
a ring homomorphism R →

∏
P∈Y

R/P that sends the element r ∈ R to the element in the

product whose P -coordinate is the image r + P of r in R/P for all P ∈ Y . Since the
intersection of the primes in Y is (0), this homomorphism is injective. We therefore have:

Corollary. R is reduced if and only if it is isomorphic with a subring of a product (which
may be infinite) of integral domains. �

Each of these integral domains R/P may be enlarged to field, frac (R/P ), where frac (D)
denotes the fraction field of the integral domain D. Thus, in the Corollary, we can replace
“integral domain” by “field.” A ring is reduced if and only if it is a subring of a product
of fields.

The partial ordering of the prime ideals of R can be recovered from the topology of
Spec (R), because P ⊆ Q if and only if Q is in the closure of {P} if and only if the closure
of P contains the closure of Q. We may also recover the partially ordered set of primes
under ⊆ as the poset of irreducible closed subsets under ⊇.

The next segment of the course will deal with the interactions between the notion of an
integral extension of a ring and the theory of Krull dimension.

We shall use ⊂ to indicate strict containment of sets. Let P0 ⊂ P1 ⊂ · · · ⊂ Pd be a
chain of primes in a ring R. By the length of the chain we mean the integer d. This is the
number of strict inclusions and is one smaller than the number of distinct prime ideals in
the chain. By the Krull dimension of the ring R we mean the supremum of lengths of finite
strictly ascending chains of prime ideals of R. Note that this is the same as the supremum
of lengths of finite strictly descending chains of irreducible closed sets in Spec (R). (This
is not so different from one characterization of dimension of a finite-dimensional vector
space: it is the supremum of lengths of chains of strictly descending vector subspaces.) It
may be +∞. We need a convention for the case where R is the 0 ring: in that case we
are taking the least upper bound of an empty set of integers. We make the convention
that the dimension is −1 in that case. Another possible convention would be to make the
dimension −∞.

Note that a ring has dimension 0 if it is nonzero and any two distinct prime ideals
are incomparable. The latter condition is equivalent to the condition that every prime
ideal is maximal, and also to the condition that every prime ideal is minimal. A field has
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dimension 0. A principal ideal domain that is not a field has dimension 1: the ideal (0) is
the unique minimal prime. All other prime ideals are maximal.

In exploring the notion of dimension, we shall prove that every ring that is finitely
generated over a field or a PID has finite dimension. We shall prove that every local ring
(Noetherian quasilocal ring) has finite dimension. In both these cases we shall characterize
dimension in other ways. We shall show that the polynomial ring in n variables over a
field has dimension n.

There exist Noetherian rings of infinite Krull dimension. They do not arise readily: one
has to work at giving an example.

An important tool in the study of dimension is the theory of integral ring extensions.
We shall also use this theory to prove Hilbert’s Nullstellensatz.

Let S be an R-algebra with structural homomorphism f : R→ S. An element s ∈ S is
called integral over R if for some positive integer d we have that

sd = rd−1s
d−1 + · · · + r1s+ r0 · 1S

for suitable elements rj of r, i.e., sd ∈ Rsd−1 + · · · + R1S . If we multiply by s, we see
that sd+1 is in the R-span of sd, . . . , 1S , and sd is not needed, because it is in the R-span
of its predecessors. Thus sd+1 is in the R-span of sd−1, . . . , 1S . We may continue in this
way to prove by a straightforward induction that st is in the R-span of sd−1, . . . , 1S for
all t.

Thus, the fact that s is integral over R is equivalent to the assertion that the R-
submodule of S spanned by the powers of s (included 1S as the 0 th power) is finitely
generated. (Note that any set of generators will involve only finitely many powers of s,
and that these powers of s will lie among the elements sd−1, . . . , 1 for any d� 0.) Let A
denote the image of R in S. Then another equivalent statement is that the ring A[s] is a
finitely generated A-module, and yet another is that s satisfies a monic polynomial (i.e.,
one with leading coefficient 1) with coefficients in A, say sd+ad−1s

d−1 + · · ·+a1s+a0 = 0
where every ai has the form f(ri) for some element ri ∈ R. From this definition, it is clear
that s is integral over R if and only if it is integral over the image A = f(R) of R in S.
Thus, questions about integrality reduce, for the most part, to the case where R ⊆ S, and
we usually assume this without much comment in the proofs.

Note that 1/2 is not integral over Z: its d th power is not a Z-linear combination of
lower powers for any d. On the other hand in Z[

√
2] the element

√
2 is integral over Z: it

satisfies the monic polynomial equation x2−2 = 0. Note that Z[
√

2] = Z+Z
√

2 is spanned
over Z by 1 and

√
2.

S is said to be integral over R if every element of S is integral over R. If R ⊆ S and S is
integral over R then S is called an integral extension of R. S is said to be module-finite over
R if S is finitely generated as an R-module. This is much stronger than the requirement
that S be finitely generated as an R-algebra. If R ⊆ S and S is module-finite over R, then
S is called a module-finite extension of R. We want to explore the connection between
module-finite extensions and integral extensions.
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We need to extend aspects of the theory of determinants to arbitrary commutative rings.
If (rij) is an n× n matrix with entries in R, we define

det (rij) =
∑
π∈Sn

sgn (π)r1,π(1)r2,π(2) · · · rn,π(n)

where Sn is the set of permutations of {1, 2, . . . , n} and sgn (π) is 1 if π is an even
permutation −1 if π is an odd permutation.

Certain facts about determinants follow from polynomial identities in the entries. To
prove them for any ring, it suffices to prove them for polynomial rings over the integers,
and since the problem remains the same if we think over the fraction field, we see that
it is enough to prove the result over a field of characteristic 0. For example, suppose
we want to prove that A and its transpose have the same determinant. If one knows
this when A is matrix of indeterminates over Z, one gets the general case by taking a
homomorphism from Z[xij ]→ R that maps xij to rij for all choices of i, j. The result that
det(AB) = det(A) det(B) can be proved similarly: one starts with the case where A and B
are two matrices of indeterminates. One can similarly prove that if two rows (or columns)
are identical the determinant is 0, and that switching two rows or columns reverses the
sign.

Let Aij denote the submatrix of A obtained by deleting the i th row and j th column.
The determinant of Aij is called the i, j minor of A, and (−1)i+j det(Aij) is called the i, j
cofactor. The classical adjoint of A is the matrix whose i, j entry is the j, i cofactor of A:
it is also referred to as the transpose of the cofactor matrix. We denote it adj(A). The
determinant of a matrix can be found by multiplying each element of the i th row by its
cofactor and summing: this called expansion by minors with respect to the i th row. There
is a similar expansion with respect to any column. Then A adj(A) = det(A)In, where In
is the n × n identity matrix. Each entry of the product on the left is the determinant of
a matrix obtained by expanding with respect to a row. If the entry is off diagonal, the
matrix whose determinant is being expanded has two rows equal. If the entry is on the
diagonal, one gets one of the expansions for det(A) by minors. A similar argument using
columns shows that adj(A) A = det(A)I.

These results are valid for any commutative ring R. If the case of a field of characteristic
0 is taken as known, they can be deduced from that case by the type of argument discussed
above, using maps of polynomial rings.

The fact that for an n × n matrix A over a commutative ring R one has adj(A) A =
det(A)In has the following consequence:

Lemma. Let A = (rij) be an n× n matrix over R and let V be an n× 1 column matrix
such that AV = 0. Then det(A) kills every entry of V , i.e., det(A)V = 0.

Proof. det(A)V = det(A)InV = adj(A)AV = adj(A)0 = 0. �

We note that if x is an indeterminate over the ring R and B is an n × n matrix over
R, then det(xIn − B) ∈ R[x] is a monic polynomial of degree n in x with coefficients in
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R. The product of the entries of the main diagonal provides a unique term of degree n
in x, namely, xn, while the product of any other n entries can involve x at most to the
n − 1 st power. As in the case of elementary linear algebra, this polynomial is called the
characteristic polynomial of the matrix B. We can now prove:

Theorem. Let S be module-finite over the ring R. Then every element of S is integral
over R.

Proof. We may replace R by its image in S, and so assume that R ⊆ S. Let s1, . . . , sn be
a finite set of generators for S as an R-module. Since we may enlarge this set of generators
as we please, we may assume that s1 = 1. Let s ∈ S be any element. Then for every i we
have an equation

ssi =
n∑
j=1

rijsj

with coefficients rij in R, simply because ssj is some element of S and so can be written
as an R-linear combination of elements of s1, . . . , sn. Let In be the n×n identity matrix,
let V be the n × 1 column vector whose entries are s1, . . . , sn, and let B = (rij). Then
these equations can be written in matrix form as sIV = BV or (sI −B)V = 0. Applying
the preceding Lemma with A = sI − B, we find that det(sI − B) kills all the entries of
V , one of which is s1 = 1, and so det(sI − B) = 0. This implies that s is a root of the
characteristic polynomial of B over R, and so s is integral over R. �

Proposition. Let R→ S → T be ring homomorphisms such that S is module-finite over
R with generators s1, . . . , sm and T is module-finite over S with generators t1, . . . , tn.
Then the composition R → T is module-finite with the mn generators sitj, 1 ≤ i ≤ m,
1 ≤ j ≤ n.

Proof. Every element of t can be written as
∑n
j=1 σjtj for suitable elements σj ∈ S, and

each σj can be written as
∑m
i=1 rijsi for suitable elements rij of R. Substituting in the

expression for t shows that the elements sitj span T as an R-module. �

Corollary. The elements of S integral over R form a subring of S.

Proof. Replace R by its image in S and so assume R ⊆ S. Let s, s′ be elements of S integral
over R. Then R[s] is module-finite over R and, since s′ is integral over R it is certainly
integral over R[s]: use the same monic polynomial to see this. Thus, (R[s])[s′] = R[s, s′]
is module-finite over R[s], and so, by the preceding Corollary, it is module-finite over R.
Thus, s± s′ and ss′, which are in R[s, s′], are integral over R. �

This depends on the characteristic polynomial method that was used to prove the Theo-
rem above. A bit of further analysis of the proof shows that if s, s′ satisfy monic polynomial
equations of degrees m and n over R, the every element of R[s, s′] satisfies a monic poly-
nomial equation of degree mn over R. It can be shown that, in general, one cannot do
better.

If F is a finite algebraic field extension of the rational numbers the elements of F that
are integral over Z are referred to as the algebraic integers of F , and form a ring o. The
study of such rings is the branch of mathematics known as algebraic number theory.
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Lecture of September 24

We next observe:

Theorem. Let S be an R-algebra. Then S is module-finite over R if and only if S is
finitely generated as an R-algebra and integral over R. For S to be module-finite over R,
it suffices if S is generated over R by finitely many elements each of which is integral over
R.

Proof. We have already seen that module-finite extensions are integral, and it is clear that
they are finitely generated as R-algebras.

For the other half, it suffices to prove the final statement, and we may suppose that R ⊆
S and that S = R[s1, . . . , sn]. R[s1] is module-finite over R by one of our characterizations
of when an element is integral, and S is module-finite over R[s1] by induction on n. The
result now follows because a module-finite extension of a module-finite extension of R is
module-finite over R. �

A union of a family of sets, subgroups, submodules, subrings or subalgebras is called a
directed union if any two of them are contained in a third. Then any finite union of them
is contained in one of them.

Corollary. S is integral over R if and only if it is a directed union of module-finite
extensions of R.

Proof. “If” is clear, since every element of S will be in one of the module-finite extensions
and therefore integral over R. For “only if,” note that S is the directed union of its finitely
generated R-subalgebras, each of which will be module-finite over R. �

Observe that Z[
√
p : p > 1 is prime] is integral over Z but not module-finite (and hence

not finitely generated as a Z-algebra). In fact, adjoining the square roots of the several
primes to even to Q does not introduce the square roots of any other primes. Similarly, if
K is a field and x is an indeterminate, the ring K[x1/2n

: n ∈ N] is integral over K[x] but
is neither module-finite nor finitely generated as an algebra over K[x].

If R ⊆ S are rings, a prime Q of S that contracts to a prime P of R is said to lie over
P .

Lemma. Let R ⊆ S be domains and let s ∈ S − {0} be integral over R. Then s has a
nonzero multiple in R.

Proof. Consider an equation of integral dependence for s on R of degree n. Since s 6= 0,
we must have that one of the lower coefficients ri is not 0: let h be the least value of i
such that rh 6= 0, so that ri = 0 for i < h < n. Then the equation can be rewritten
as sh(sn−h + · · · + rh+1s + rh) = 0. Since s 6= 0 and S is a domain, we have that
sn−h + · · ·+ rh+1s+ rh = 0, so that rh = s(−sn−h1 − · · · − rh+1), which shows that rh is
a nonzero multiple of s in R. �
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Theorem. Let S be an integral extension of R, I ⊆ R an ideal, and u ∈ IS. Then u
satisfies a monic polynomial equation un + i1u

n−1 + · · ·+ in−1u+ in = 0 where it ∈ It for
1 ≤ t ≤ n.

Proof. We have that u =
∑n
t=1 stit, with the st ∈ S and the it ∈ I. We may therefore

replace S by the smaller ring generated over R by u and the elements st. This ring is
module-finite over R. Thus, there is no loss of generality in assuming that S is module-finite
over R, with generators s1, . . . , sn, and, as earlier, we may enlarge the set of generators
so that we may assume that s1 = 1. It is easy to see that IS = Is1 + · · · + Isn, the set
of linear combinations of s1, . . . , sn with coefficients in I: each element is for i ∈ I and
s ∈ S has this form because each element of S is an R-linear combination of s1, . . . , sn.
If u ∈ IS, then every usj is in IS, and so there are n equations

usj =
n∑
t=1

ijksk.

Let V be the n× 1 column matrix with entries s1, . . . , sn and let B be the n× n matrix
(ijk). Then the same argument that we gave earlier shows that u satisfies the characteristic
polynomial of B, which has the form

xn + i1x
n−1 + i2x

n−2 + · · · + in

where it is in It ⊆ R for every t, 1 ≤ t ≤ n. �

Lying over theorem. Let S be an integral extension of R. Then for every prime P
of R, there are primes of S that contract to P , and they are mutually incomparable. In
particular, the map Spec (S) → Spec (R) is onto. For every ideal I of R, the contraction
of IS to R is contained in Rad I, and so if I is radical, IS ∩R = I.

Proof. We prove the last statement first. Let u ∈ IS ∩ R, Consider the monic equation
that u satisfies given by the preceding theorem. After we substitute u for x, the leftmost
term of the equation is un while the other terms are in I. This implies that un ∈ I and so
u ∈ Rad I, as required.

In particular, if I = P is prime then R−P is a multiplicative system in R ⊆ S, and PS
does not meet it, since PS ∩R = P . Therefore there is a prime ideal Q of S that contains
PS and is disjoint from R− P . Since P ⊆ PS, we see that Q ∩R = P .

It remains only to show that two primes lying over P ⊆ R cannot be comparable.
Suppose to the contrary that Q0 ⊂ Q both lie over P in R. The trick here is to pass to
R/P ⊆ S/Q0. This extension is still integral: given s ∈ S, it satisfies a monic equation
over R, and s+Q satisfies the same equation with coefficients considered mod P . Now the
nonzero prime ideal Q/Q0 lies over the prime ideal (0) in R/P . Thus, it suffices to show
that if R ⊆ S are domains, then a nonzero prime ideal Q of S cannot lie over (0) in R.
This is immediate from the preceding Lemma: any nonzero element of Q has a nonzero
multiple in R. �

Example. The ring of functions from an infinite set X to Z/2Z is integral over Z/2Z:
every element satisfies x2 − x = 0. It has uncountably minimal primes, mutually incom-
parable and all lying over (0) in Z/2Z.
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Lecture of September 26

We give another proof of the lying over theorem that does not involve the eigenvalue
trick. Suppose that R ⊆ S is integral and that P ∈ Spec (R). By Supplementary Problem
Set #2, 1. and 2., RP ⊆ (R − P )−1S = S1 and the extension is still integral. If Q1 is a
prime of S1 lying over PRP , then the contraction Q of Q1 to S will lie over P , since PRP
lies over P . Thus, we have reduced to the case where R is quasi-local with maximal ideal
P . It now suffices to show that PS 6= S, for then any maximal ideal of S containing PS
will be prime, and its contraction to R will contain the maximal ideal P but not 1, forcing
the contraction to be P . Consider the family of ideals of R contained in P whose expansion
to S is not all of S. This family contains (0), and the union of a chain in the family is
again in the family: if 1 ∈ S is a linear combination of finitely many elements from the
union, these elements will come from just finitely many of the ideals in the family, and will
all lie in the largest of them. Therefore this family has a maximal element I. Consider
IS ∩ R = J . Then I ⊆ J , and we must have J = I or else JS ⊆ IS 6= S contradicts the
maximality of I. Then R/I → S/IS is injective and still integral, and R/I is quasi-local.
Therefore we may replace R ⊆ S by R/I ⊆ S/IS. If P = (0) we are done. If not, then
choose a ∈ P −{0}. Then the maximality of I implies that aS = S (or else we could have
enlarged I ⊆ R using a preimage of a). This means that there is an element b of S such
that ab = 1. But b is integral over R, so that there is an equation

bn = rn−1b
n−1 + rn−2b

n−2 + · · ·+ r1b+ r0

Since b = a−1, when we multiply both sides by an−1 we get that

b = rn−1 + rn−2a+ · · ·+ r1a
n−2 + r0a

n−1

which shows that a−1 = b ∈ R. Thus, a has an inverse in R, contradicting the assumption
that a ∈ P − {0}. �

Corollary (Going up theorem). Let R ↪→ S be an integral extension and let

P0 ⊂ P1 ⊂ · · · ⊂ Pd

be a chain of prime ideals of R. Let Q0 be a prime ideal of S lying over P0. Then there is
a chain of prime ideals

Q0 ⊂ Q1 ⊂ · · · ⊂ Qd
of S such that for all t, Qt lies over Pt.

Proof. It suffices to construct Q1 ⊇ Q0 lying over Q1: the result then follows by a straight-
forward induction on d. Consider R/P0 ⊆ S/Q0. This is an integral extension, and P1/P0

is a prime ideal of R/P0, so there is a prime ideal of S/Q0 that lies over it: it will have
the form Q1/Q0 for some prime ideal Q1 of S. It is clear that Q0 ⊂ Q1, and it is easy to
verify that that Q1 lies over P1 in R. �
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Corollary. If R ↪→ S is an integral extension then dimR = dimS.

Proof. Let Q0 ⊂ · · · ⊂ Qd be a chain of prime ideals of S. Their contractions will give a
chain of prime ideals of the same length in R: they will be distinct, because comparable
primes cannot contract to the same prime ideal. This shows that dimS ≤ dimR.

On the other hand, given a finite chain of primes in R, the going up theorem implies the
existence of a chain of prime ideals of S of the same length, so that dimS ≥ dimR. �

Let f : R → S be a ring homomorphism, and let f∗ = Spec (f) : Spec (S) → Spec (R)
be the usual map given by contraction. Let Y = Spec (S) and X = Spec (R). Given a map
of sets g : Y → X, and a point x ∈ X, the set g−1(x) is called the fiber of g over x: it is
simply the set of points of Y that map to x. Thus, the fiber of the function f∗ = Spec (f)
over P ∈ Spec (R) is precisely the set of primes of S lying over P in R. This set of primes
is homeomorphic with Spec of

(R− P )−1S/P e ∼= (R− P )−1(S/PS),

where R− P is the image of R− P in S/PS. The ring (R− P )−1S/P e is called the fiber
of R → S over P . (This is really terminology from the theory of schemes, and the term
scheme-theoretic fiber is also used.) Alternatively, it may be defined as the canonically
isomorphic ring (R− P )−1(S/PS). Note that it is an S-algebra. Its primes correspond
exactly to primes of S that contain PS and are disjoint from R− P , which is exactly the
condition for them to lie over P in R. (R − P )−1S/P e is also an algebra over RP /PRP
(which may be identified with fraction field of the domain R/P ).

If R → S is integral (respectively, module-finite), then RP /PRP → (R − P )−1S/P e is
also integral (respectively, module-finite). Up to multiplication by elements coming from
units of R, every element of the (R − P )−1S/P e comes from S, and for the image of an
element of S we may use the same equation of integral dependence that it satisfied over
R, taking the images of the coefficients in RP /PRP . In the case where S is spanned over
R by s1, . . . , sn, the images of s1, . . . , sn span (R− P )−1S/P e over RP /PRP .

We want to obtain a bound for the number of primes lying over P in the case of a
module-finite extension.

We first prove two preliminary results.

Two ideals I, J of a ring R are called comaximal if I + J = R. Ideals I1, . . . , In of R
are called pairwise comaximal if for all j 6= k, Ij + Ik = R. Note that if m1, . . . ,mn are
mutually distinct maximal ideals of R, then they are pairwise comaximal.

We recall that the product ideal IJ is the ideal generated by all the elements ij for i ∈ I
and j ∈ J . Each element of IJ is a sum of the form i1j1 + · · · + ikjk for some positive
integer k and elements i1, . . . , ik ∈ I and j1, . . . , jk ∈ J .
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Lemma (Chinese remainder theorem). If I1, . . . , In are pairwise comaximal in the
ring R, then

I1 · · · In = I1 ∩ · · · ∩ In.

Let J = I1 · · · In. The ideals
I1I2, I3, . . . , In

are also pairwise comaximal. Moreover, the map

R/J → R/I1 × · · · ×R/In

that sends r + J to (r + I1, . . . , r + In) is a ring isomorphism.

Proof. First consider the case where n = 2. Choose i1 ∈ I1 and i2 ∈ I2 such that i1+i2 = 1.
If u ∈ I ∩ J then u = u · 1 = u(i1 + i2) = ui1 + ui2. But ui1 ∈ I1I2 because u ∈ I2, and
ui2 ∈ I1I2 because u ∈ I1. Thus, u ∈ I1I2. The map R → R/I1 × R/I2 that sends
r to (r + I1, r + I2) is a ring homomorphism that clearly has kernel I1 ∩ I2 = I1I2. It
therefore induces an injection R/I1I2 ↪→ R/I1×R2. To see that this map is surjective, let
(r1 + I1, r2 + I2) in the image be given. Then r1i2 + r2i1 maps to this element: mod I1,
r1i2 + r2i1 ≡ r1 · 1 + r2 · 0 ≡ r1, and the calculation mod I2 is exactly similar.

To prove the second statement, it clearly suffices to show that I1I2 is comaximal with
Ij for j ≥ 3. Choose i1 ∈ I1 and u ∈ Ij such i1 +u = 1, and choose i2 ∈ I2 and v ∈ Ij such
that i2 + v = 1. Multiply these equations. Then i1i2 + i1v + ui2 + uv = 1, and i1i2 ∈ I1I2
while i1v + ui2 + uv ∈ Ij .

The general case of the ring isomorphism now follows by induction on n. By the induc-
tion hypothesis,

R/J = R/
(
(I1I2)I3 · · · In

) ∼= (R/(I1I2)
)
×R/I3 × · · · ×R/In

and R/(I1I2) ∼= R/I1 ×R/I2 by the case n = 2 already established. �

If R = Z, the principal ideals a1Z, . . . anZ are pairwise comaximal if and only if the
integers a1, . . . , an are relatively prime in pairs, and we get the classical Chinese remainder
theorem.

Theorem. Let R be a reduced K-algebra that is module-finite over the field K. This
simply means that R is a finite-dimensional vector space over K. Then R is a product of
finite algebraic field extensions L1 × · · · × Ln of K. R has n maximal ideals, the kernels
of the n product projections R � Li, 1 ≤ i ≤ n, and n, the number of maximal ideals, is
at most the dimension of R as K-vector space.

Proof. Since K has dimension 0 and R is integral over K, R has dimension 0. Thus, every
prime ideal is maximal. Let m1, . . . ,mh be any subset of the maximal ideals of R. By the
Chinese remainder theorem, R/(m1 · · ·mh) ∼= R/m1 × · · · ×R/mh. Let Li = R/mi. Li is
a field and finite-dimensional as a K-vector space, and so it is a finite algebraic extension
of K. As a K-vector space, R/m1× · · · ×R/mh is the direct sum over K of the Li, which
shows that h is at most the K-vector space dimension of R/(m1 · · ·mh), and therefore is
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also at most the K-vector space dimension of R. This means that the number of maximal
ideals of R is at most the K-vector space dimension of R. Now suppose that m1, . . . ,mn

are all the maximal ideals of R. Since R is reduced, the intersection of the mi is (0). Thus,
R ∼= R/(0) ∼= R/m1 × · · · ×R/mn. �

Corollary. Let S be module-finite over R with n generators. The number of prime ideals
of S lying over a prime P of R is at most n.

Proof. By our earlier remarks, we may replace R→ S by RP /PRP → (RP )−1S/P e, and n
does not increase. But now R = K is a field, and S is a finite-dimensional K-vector space
of dimension at most n. Passing to Sred can only decrease its K-vector space dimension,
while the number of prime ideals (which are all maximal) does not change, and now we
may apply the preceding result. �
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Lecture of September 29

Note that the solution given for problem 4. in Supplementary Problem Set #1 estab-
lishes a bijection between the natural transformations from hX tohY and the morphisms
from Y to X, and it easy to check that it is compatible with composition, so that an
isomorphism of hX and hY implies an isomorphism of Y with X. A useful consequence
is that the object representing a functor is unique, up to isomorphism. This establishes
literally hundreds of isomorphisms. For example, if S is a multiplicative system in R with
image S in R/I, the isomorphism S−1R/IS−1R ∼= S

−1
(R/I) is a consequence of the fact

that both represent, in the category of rings, the functor that assigns to the ring T all
homomorphisms from R→ T such that I maps to 0 in T and S maps into the units of T .

If P is a prime ideal of R, by the height of P we mean the supremum of lengths of finite
strictly ascending chains of primes contained in P . It is immediate that the height of P
is the same as the Krull dimension of the quasilocal ring RP . It should be clear that the
dimension of R is the same as the supremum of heights of all prime ideals, and that this
will be the same as the supremum of heights of all maximal ideals.

Corollary. If R ⊆ S is an integral extension and Q is a prime ideal of S lying over a
prime P in R, then the height of P is bigger than or equal to the height of Q.

Proof. A chain of distinct primes contained in Q will contract to a chain of distinct primes
contained in P . �

A much harder problem is this: suppose that S is integral over R and we are given a
chain

Pn ⊃ Pn−1 ⊃ · · · ⊃ P0

of primes in R, and a prime Qn of S lying over Pn. Can we find a chain

Qn ⊃ Qn−1 ⊃ · · · ⊃ Q0

of S such that Qi lies over Pi for every i? This turns out to need additional hypotheses
even when R is a domain. In order to formulate the correct hypothesis on R needed here,
we must discuss the notion of an integrally closed domain.

The set of elements of S ⊇ R that are integral over R was shown earlier to be a ring.
This ring is called the integral closure of R in S.

We shall say that a domain R is integrally closed or normal if every element of the
fraction field of R that is integral over R is in R. The integral closure of a domain R in
its fraction field is called the the integral closure or normalization of R.

A unique factorization domain is normal. To see this, suppose that a/b is a fraction
integral over R but not in R. We may assume that it has been written in lowest terms, so
that a and b have no common divisor other than units, and b is not a unit. If it satisfies
the equation

(a/b)d + rn−1(a/b)d−1 + · · ·+ r0 = 0
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with the ri ∈ R we may multiply through by bd to get the equation

ad + rn−1a
d−1b+ · · ·+ r0b

d = 0.

Every term other than the leftmost is divisible by b, and so b | ad. Any prime factor of b
must divide ad and therefore a, a contradiction, since a/b is in lowest terms. �

In particular, any principal ideal domain, as well as any polynomial ring over a field or
a principal ideal domain, is normal.

If K is a field, R = K[x2, x3] is not normal. x = x3/x2 is in the fraction field, and is
integral over K[x2, x3], since z = x is a root of z2 − x2 = 0. The integral closure of R is
K[x].

The ring Z[
√

5] is not integrally closed. The element τ =
1 +
√

5
2

is in the fraction field,

and is integral, since it is a root of x2 − x − 1 = 0. It is not obvious but not difficult to
show that Z + Zτ is integrally closed, and is the integral closure of Z[

√
5]. (Suppose that

a+ b
√

5 is integral over Z[
√

5] and hence over Z, where a, b ∈ Q. It follows that a− b
√

5
will satisfy the same monic polynomial over Z that a + b

√
5 does, and so is also integral

over Z. Adding, we find that a+ b
√

5 + a− b
√

5 = 2a is integral over Z, and therefore in
Z. Thus, a is either k or k + 1/2, where k is an integer. By subtracting a suitable integer
linear combination of

√
5 and τ , we get an element of the form c

√
5, integral over Z, such

that c is an rational. It will therefore suffice to show that if c is rational and c
√

5 is integral
over Z, then c is an integer. Write c = m/n in lowest terms. Then 5c2 is rational and is
integral over Z and therefore is an integer, i.e., n2 | 5m2. If 5 |n then it does not divide m,
and this is impossible. If 5 does not divide n, then n2 |m2, so that c is a rational number
whose square is an integer, and it follows that c is an integer. �)

If R ⊆ S are domains and R is a direct summand of S as an R-module, then R is normal
whenever S is. For Suppose that a, b ∈ R, b 6= 0, but that a/b is integral over R. Then it
is integral over S, and therefore a/b = s ∈ S, i.e., a = bs. But there is an R-linear map f
from S = R⊕RW (where W is an R-submodule of S) that kills W and is the identity on
R. It follows that a = f(a) = f(bs) = bf(s), and so a/b = f(s) ∈ R.

Let K be a field. Then the ring R generated over K by all monomials of degree d
in S = K[x1, . . . , xn] is integrally closed: we shall show that it is a direct summand of
K[x1, . . . , xn]. Note that every monomial of degree divisible by d, say degree dk, is the
product of k monomials of degree d. Let W be the K-span of all monomials whose degree
is not divisible by d. The product of an element of R and an element of W is in W : when
we multiply and distribute in all possible ways, we get a sum of terms each of which is the
product of a monomial of degree divisible by d and a monomial of degree not divisible by
d, and that product is in W . Thus, S = R⊕RW . If the number of variables is greater than
one and d > 1, these rings are not unique factorization domains. For example, if n = 2
and d = 2, S = K[x1, x2] and R = K[x2

1, x1x2, x
2
2]. The fact that (x1x2)2 = (x2

1)(x2
2)

shows that R is not a UFD.

We can now state the result we aim to prove:
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Theorem (Going down theorem). Let R be a normal integral domain, and let S be
integral over R. Suppose that no nonzero element of R is a zerodivisor in S, i.e., that S
is torsion-free as an R-module. Let

Pn ⊃ Pn−1 ⊃ · · · ⊃ P0

be a chain of primes in R, and let Qn be a prime ideal of S lying over Pn. Then there is
a chain of primes

Qn ⊃ Qn−1 ⊃ · · · ⊃ Q0

of S such that Qi lies over Pi for every i.

We need some preliminaries before we can prove this.

Proposition. Let A be a ring and A[x] the polynomial ring in one variable over A.
(a) If f and g are nonzero polynomials of A[x] with degrees n and d and leading coefficients

a and b respectively, then if either a or b is not a zerodivisor in A, the degree of fg is
d+ n and its leading coefficient is ab. In particular, the conclusion holds if f or g is
monic.

(b) (Division algorithm) Let g be any polynomial and f a monic polynomial in R[x] of
degree d. Then one can write g = qf + r, where q, r ∈ A[x] and either r = 0 or the
degree of r is < d. This representation is unique.

(c) Let R ⊆ S be a ring extension and let f , g be as in (b), with f monic. Then g is a
multiple of f in R[x] if and only if it is a multiple of f in S[x].

Proof. It is clear that fg has at most one term of degree d + n, namely abxd+n, with all
other terms of lower degree, and that it has such a term provided that ab 6= 0, which is
true if either a or b is not a zerodivisor. This proves part (a).

To prove existence in part (b), we perform long division in the usual way. To make this
precise, first note that if g = 0 or has degree < d , we may take q = 0 and r = g. Otherwise,
let axn be the highest degree term in g, where a 6= 0 is in R. Then g1 = g − axn−dg has
smaller degree than f , and so can be written in the form q1g+r by induction on the degree
of f . But then f = (axn−d + q1)g + r, as required.

It remains to prove uniqueness. But if qf + r = q′f + r′ both satisfy the condition, then
(q − q′)f = r′ − r is 0 or has degree smaller than that of f , which is impossible from part
(a) unless q − q′ = 0, in which case r′ − r = 0 as well.

To prove part (c), note that we can perform the division algorithm thinking in R[x] or
in S[x]. By uniqueness, the result is the same. If g is a multiple of f in S[x] the remainder
must be zero, and then the same holds in R[x]. �

Note in connection with part (a) that if A = Z/(4) and 2 denotes the image of 2 in A,
then ( 2x+ 1)( 2x+ 1) = 1 in A[x].
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Lecture of October 1

Proposition. Let R be an integrally closed domain with fraction field K and let S be
a domain containing R. Suppose that s ∈ S is integral over R. Let f(x) ∈ K[x] be
the minimal monic polynomial of s over K. Then f(x) ∈ R[x], and for any polynomial
g(x) ∈ R[x] such that g(s) = 0, f(x) | g(x) in R[x].

Proof. Choose an algebraically closed field L that contains the fraction field of S. Thus,
K ⊆ L as well. s satisfies some monic polynomial h(x) with coefficients in R. It follows
that g(x) |h(x) in K[x]. Therefore, every root of g in L is a root of h(x). It follows that all
the roots of g are integral over R. The coefficients of g are elementary symmetric functions
of the roots of g. Therefore, the coefficients of g are elements of K that are integral over
R. Since R is normal, they are in R. Now suppose that g(x) is any polynomial of R[x]
such that g(s) = 0. We know that f(x) | g(x) in K[x]. The fact that f(x) | g(x) in R[x]
follows from part (c) of the preceding proposition. �

We are now ready for:

Proof of the going down theorem. We have an integrally closed domain R ⊆ S where S is
integral over R and the nonzero elements of R are not zerodivisors in S. We are given a
prime Q of S lying over P in R, and a prime P0 of R with P0 ⊂ P . We want to show that
there is a prime Q0 ⊂ Q such that Q0 lies over P0. The general case of the going down
theorem then follows by a straightforward induction.

We begin by showing that there is a prime ideal q ⊆ S such that q ⊂ Q and q lies over the
prime ideal (0) in R. To see this, consider the multipicative system W = (R−{0})(S−Q)
in S. Because the elements of R−{0} are not zerodivisors in S and the elements of S−Q
are not zero, the multiplicative system W does not contain 0. This means that there is a
prime ideal q of S disjoint from W . In particular, since R− {0} ⊆W , we must have that
q ∩ R = (0), and since S − Q ⊆ W , we must have that q ⊆ Q. Since Q lies over P and
P0 ⊂ P , P 6= (0), and this means that q ⊂ Q. We now replace S by S/q. Since q does not
meet R, we still have an injection R ↪→ S/q, and we may replace R by its image in S/q
and so assume that R ⊆ S/q. This extension is obviously still integral: the monic equation
over R satisfied by s ∈ S is also satisfied by its image in S/q. We replace Q by Q/q, which
still lies over P . If we can find a prime of S/q contained in Q/q that lies over P0, it will
have the form Q0/q for some prime Q0 of S with Q0 ⊆ Q. Then Q0 will lie over P0 in R
and we will also have Q0 ⊆ Q. Since P0 ⊂ P , we actually have that Q0 ⊂ Q.

Therefore, we may assume without loss of generality that R ⊆ S is an extension of
domains and that S is integral over R. This stronger condition replaces the assumption
that nonzero elements of R are not zerodivisors in S. Let A = R−P0 and B = S −Q. To
complete the proof, we shall show that the multiplicative system AB does not meet the
ideal P0S. This implies that there is a prime ideal Q0 of S containing P0S and disjoint
from AB ⊇ A ∪ B, so that P0 ⊆ Q0 and Q0 meets neither R − P0 nor S − Q. But this
means that Q0 lies over P0 and is contained in Q, as required.
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Suppose that a ∈ A and b ∈ B are such that ab ∈ P0S. The argument used in the
proof of the lying over theorem (see the lecture notes from September 24) shows that ab
satisfies a monic polynomial equation g1(x) in one variable x such that all coefficients of
the equation except the leading coefficient are in P0 (not just in P0S).

This means that b is a root of the polynomial g(x) = g1(ax) over b. Note that the
leading coefficient of g(x) is a power of a, and that all other coefficients are in P0.

Think of K = frac (R) as contained in frac (S) = L. Since b satisfies the algebraic
equation g(b) = 0, it is algebraic over K, and has a monic minimal polynomial f(x) with
coefficients in K that is irreducible in K[x]. By the preceding Lemma, this polynomial has
coefficients in R, since R is normal. It divides g(x) in K[x], because g(x) has coefficients
in R ⊆ K, and f(x) is the minimal polynomial of b.

Since f(x) is monic, our result on the division algorithm implies that f(x) divides g(x)
in R[x] as well: let us say that g(x) = f(x)q(x), where all three have coefficients in R. We
now consider coefficients mod P0, which means, in effect , that we are working in R[x],
where R = R/P0. Let a be the image of a in R: since a ∈ R − P , a 6= 0 in R/P . Then,
mod P0, g(x) has the form adxd, since all lower coefficents are in P0. This implies that
the monic polynomial f must become xk mod P0, where k is its degree. This means,
thinking over R, that f(x) is monic of degree k with all lower coefficients in P0: say
f(x) = xk + pk−1x

k−1 + · · ·+ p0, where the pj ∈ P0.

Since b is a root of f(x), we have that bk = −pk−1b
k−1 − · · · − p0 ∈ P0S ⊆ Q, and so

b ∈ Q, which is a contradiction! Thus, AB does not meet P0S, and we are done. �

Corollary. Let R be an integrally closed domain, S an integral extension of R that is
torsion free over R, and Q a prime ideal of S that lies over P in R. Then the height of Q
is equal to the height of P .

Proof. We have already seen that the height of Q is at most the height of P . Conversely,
given a chain of primes contained in P we may use the going down theorem, starting with
the largest prime in the chain, to construct a chain of primes in S that lies over it and
is contained in Q, and this shows that the height of Q is at least as big as the height of
P . �

Let’s look at two examples. Consider R = K[x] ⊆ K[x, y]/(y2 − y, xy) = S. This is
integral, since y satisfies a monic equation. It is an extension: we can map this larger
algebra back to K[x] by sending x 7→ x and y 7→ 0, and the composition is the identity on
K[x]. The element 1− y generates a minimal prime Q of the larger ring containing x and
not y: we can see that it is minimal, because a smaller prime cannot contain (1− y) and
cannot contain y either (or else Q would contain both y and 1− y), while y(1− y) = 0 in
the quotient. But (1− y)S contracts to xK[x], which has height one. The problem here is
that x is a zerodivisor in S, which shows that one cannot omit the hypothesis that S be
torsion-free over R in the statement of the going down theorem.

In the example above, R is normal. We next consider an example where both rings are
domains but R is not normal: in fact, S is the integral closure of R. Let K be a field, let
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S = K[x, y], and let
R = K[x(1− x), x2(1− x), y, xy] ⊆ S.

S is integral over R since it is generated over K[y] ⊆ R by x, and z = x satisfies the monic
polynomial z2 − z − x(1− x) = 0, which has coefficients in R. x is in the fraction field of
R, since it is equal to xy/y or x2(1− x)/

(
x(1− x)

)
. Let Q = (1− x, y)S, which is easily

seen to lie over
P =

(
x(1− x), x2(1− x), y, xy

)
R,

a maximal ideal of R, and let P0 be the contraction of xS to R. Then

P0 =
(
x(1− x), x2(1− x), xy

)
R.

We claim that no prime Q0 contained in Q lies over P0. For any prime of S contained in
Q cannot contain x, for x /∈ Q. But since Q0 must contain both x(1 − x) and xy (these
elements are in P0) and it does not contain x, it must contain both 1 − x and y, which
forces it to be equal to Q. But then it lies over P , not P0. This shows that one cannot
omit the hypothesis that R be normal in the statement of the going down theorem.
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Lecture of October 3

The following result implies that, after a change of variables, any nonzero polynomial in
R = K[x1, . . . , xn], the polynomial ring in in n variables over a field, becomes a nonzero
scalar times a polynomial that is monic in xn with coefficients in A = K[x1, . . . , xn−1] ⊆ R,
where we think of R as A[xn]. We may also do this with any one of the other variables. This
simple trick, or method, provides a wealth of information about algebras finitely generated
over a field. It will be the key to our proofs of the Noether normalization theorem and
Hilbert’s Nullstellensatz.

Consider this example: the polynomial x1x2 is not monic in either variable. But there
is an automorphism of the polynomial ring in two variables that fixes x2 and maps x1 to
x1 +x2. (Its inverse fixes x2 and maps x1 to x1−x2.) The image of x1x2 is (x1 +x2)x2 =
x2

2 + x1x2. As a polynomial in x2 over K[x1], this is monic. Note that we may also think
of the effect of applying an automorphism as a change of variables.

More generally, note that if g1(xn), . . . , gn−1(xn) are arbitrary elements of K[xn] ⊆ R,
then there is a K-automorphism φ of R such that xi 7→ yi = xi + gi(xn) for i < n and
while xn = yn is fixed. The inverse automorphism is such that xi 7→ xi − gi(xn) while xn
is again fixed. This means that the elements yi are algebraically independent and generate
k[x1, . . . , xn]. They are “just as good” as our original indeterminates.

Lemma. Let K be a field and let f ∈ K[x1, . . . , xn]. Let N ≥ 1 be an integer that bounds
all the exponents of the variables occurring in the terms of f . Let φ be the K-automorphism
of K[x1, . . . , xn] such that xi 7→ xi + xN

i

n for i < n and such that xn maps to itself. Then
the image of f under φ is a nonzero scalar of K times a monic polynomial.

Proof. Consider any nonzero term of f , which will have the form cαx
a1
1 xa2

2 · · ·xan
n , where

α = (a1, . . . , an) and cα is a nonzero scalar in K. The image of this term under φ is

cα(x1 + xNn )a1(x2 + xN
2

n )a2 · · · (xn−1 + xN
n−1

n )an−1xan
n ,

and this contains a unique highest degree term: it is the product of the highest degree
terms coming from all the factors, and it is

cα(xNn )a1(xN
2

n )a2 · · · (xN
n−1

n )an−1xan
n = cxan+a1N+a2N

2+···+an−1N
n−1

n .

The exponents that one gets on xn in these largest degree terms coming from distinct
terms of f are all distinct, because of uniqueness of representation of integers in base N .
Thus, no two exponents are the same, and no two of these terms can cancel. Therefore,
the degree m of the image of f is the same as the largest of the numbers

an + a1N + a2N
2 + · · ·+ an−1N

n−1

as α = (a1, . . . , an) runs through n-tuples of exponents occurring in nonzero terms of f ,
and for the choice α0 of α that yields m, cα0x

m
n occurs in φ(f), is the only term of degree
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m, and and cannot be canceled. It follows that c−1
α0
φ(f) is monic of degree m in xn when

viewed as a polynomial in A[xn], as required. �

Let R be an A-algebra and z1, . . . , zd ∈ R. We shall say that the elements z1, . . . , zd
are algebraically independent over A if the unique A-algebra homomorphism from the
polynomial ring A[x1, . . . , xd] → R that sends xi to zi for 1 ≤ i ≤ n is an isomorphism.
An equivalent statement is that the mononomials za1

1 · · · z
ad

d as (a1, . . . , ad) varies in Nd
are all distinct and span a free A-submodule of R: of course, this free A-submodule is
A[z1, . . . , zd]. The failure of the zj to be algebraically independent means precisely that
there is some nonzero polynomial f(x1, . . . , xd) ∈ A[x1, . . . , xd] such that f(z1, . . . , zd) =
0. The following is now easy:

Noether normalization theorem. Let K be a field and let R be any finitely generated
K-algebra. Then there are algebraically independent elements z1, . . . , zd in R such that R
is module-finite over its subring K[z1, . . . , zd], which is isomorphic to a polynomial ring (d
may be zero). That is, every finitely generated K-algebra is isomorphic with a module-finite
extension of a polynomial ring!

Proof. We use induction on the number n of generators of R over K. If n = 0 then R = K.
We may take d = 0. Now suppose that n ≥ 1 and that we know the result for algebras
generated by n− 1 or fewer elements. Suppose that R = K[θ1, . . . , θn] has n generators.
If the θi are algebraically independent over K then we are done: we may take d = n
and zi = θi, 1 ≤ i ≤ n. Therefore we may assume that we have a nonzero polynomial
f(x1, . . . , xn) ∈ K[x1, . . . , xn] such that f(θ1, . . . , θn) = 0. Instead of using the original
θj as generators of our K-algebra, note that we may use instead the elements

θ′1 = θ1 − θNn , θ′2 = θ2 − θN
2

n , . . . , θ′n−1 = θn−1 − θN
n−1

n , θ′n = θn

where N is chosen for f as in the preceding Lemma. With φ as in that Lemma, we
have that these new algebra generators satisfy φ(f) = f(x1 + xNn , . . . , xn−1 + xN

n−1

n , xn)
which we shall write as g. After multiplying by a scalar, we have that g is monic in xn with
coefficients in K[x1, . . . , xn−1]. This means that θ′n is integral over K[θ′1, . . . , θ

′
n−1] = R0,

and so R is module-finite over R0. Since R0 has n− 1 generators over K, we have by the
induction hypothesis that R0 is module-finite over a polynomial K[z1, . . . , zd] ⊆ R0, and
then R is module-finite over K[z1, . . . , zd] as well. �

Note that if K ⊆ L are fields, the statement that L is module-finite over K is equivalent
to the statement that L is a finite-dimensional vector space over K, and both are equivalent
to the statement that L is a finite algebraic extension of K.

Also notice that the polynomial ring R = K[x1, . . . , xd] for d ≥ 1 has dimension at
least d: (0) ⊂ (x1)R ⊂ (x1, x2)R ⊂ · · · ⊂ (x1, . . . , xd)R is a strictly increasing chain
of prime ideals of length d. Later we shall show that the dimension of K[x1, . . . , xd] is
exactly d. But for the moment, all we need is that K[x1, . . . , xd] has dimension at least
one for d ≥ 1.

Corollary. Let R be a finitely generated algebra over a field K, and suppose that R is a
field. Then R is a finite algebraic extension of K, i.e., R is module-finite over K.
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Proof. By the Noether normalization theorem, R is module-finite over some polynomial
subring K[z1, . . . , zd]. If d ≥ 1, the polynomial ring has dimension at least one, and then
R has dimension at least one, a contradiction. Thus, d = 0, and R is module-finite over
K. Since R is a field, this means precisely that R is a finite algebraic extension of K. �

Corollary. Let K be an algebraically closed field, let R be a finitely generated K-algebra,
and let m be a maximal ideal of R. Then the composite map K → R � R/m is an
isomorphism.

Proof. R/m is a finitely generated K-algebra, since R is, and it is a field. Thus, K → R/m
gives a finite algebraic extension of K. Since K is algebraically closed, it has no proper
algebraic extension, and so K → R/m must be an isomorphism.

Corollary (Hilbert’s Nullstellensatz, weak form). Let R = K[x1, . . . , xn] be a poly-
nomial ring over and algebraically closed field K. Then every maximal ideal m of R is
the kernel of a K-homomorphism K[x1, . . . , xn] → K, and so is determined by the el-
ements λ1, . . . , λn ∈ K to which x1, . . . , xn map. This maximal ideal is the kernel of
the evaluation map f(x1, . . . , xn) 7→ f(λ1, . . . , λn). It may also be described as the ideal
(x1 − λ1, . . . , xn − λn)R.

Proof. Since γ : K ∼= R/m, the K-algebra map R → R/m, composed with γ−1, gives a
map R � K whose kernel is m. �

Thus, when K is algebraically closed, we have a bijection between the points of Kn and
the maximal ideals of K[x1, . . . , xn].

Corollary (Hilbert’s Nullstellensatz, alternate weak form). Let f1, . . . , fn be poly-
nomials in K[x1, . . . , xn], where K is algebraically closed. Then then the fi generate the
unit ideal (i.e., we have 1 =

∑
t gtft for suitable polynomials gt) if and only if the polynomi-

als fi do not vanish simultaneously, i.e., if and only if the algebraic set V (f1, . . . , fn) = ∅.

Proof. If the fi do not generate the unit ideal, the ideal they generate is contained in some
maximal ideal of K[x1, . . . , xn]. But the functions in that maximal ideal all vanish at one
point of Kn, a contradiction. On the other hand, if the fi all vanish simultaneously at a
point of Kn, they are in the maximal ideal of polynomials that vanish at that point: this
direction does not need that K is algebraically closed. �

We have two uses of the notation V (S): one is for any subset S of any ring, and it is
the set of all primes containing S. The other use is for polynomial rings K[x1, . . . , xn],
and then it is the set of points where the given polynomials vanish. For clarity, suppose
that we use V for the second meaning. If we think of these points as corresponding to a
subset of the maximal ideals of the ring (it corresponds to all maximal ideals when the field
is algebraically closed), we have that V(S) is the intersection of V (S) with the maximal
ideals corresponding to points of Kn, thought of as a subset of Kn. Suppose that for every
y ∈ Kn we let my = {f ∈ K[x1, . . . , xn] : f(y) = 0}. Then my is a maximal ideal of
K[x1, . . . , xn] whether K is algebraically closed or not. When K is algebraically closed,
we know that all maximal ideals have this form. This gives an injection Kn → Spec (R)
that sends y to my. The closed algebraic sets of Kn are simply the closed sets of Spec (R)
intersected with the image of Kn, if we identify that image with Kn. Thus, the algebraic



50

sets are the closed sets of a topology on Kn, which is called the Zariski topology. It is the
inherited Zariski topology from Spec (R). Note that V(I) = {y ∈ Y : my ∈ V (I)}.

In this course, I will continue from here on to use the alternate notation V when dis-
cussing algebraic sets. However, people often use the same notation for both, depending
on the context to make clear which is meant.

Theorem (Hilbert’s Nullstellensatz, strong form. Let K be an algebraically closed
field and let R = K[x1, . . . , xn] be the polynomial ring in n variables over K. Suppose
that g, f1, . . . , fs ∈ R. Then g ∈ Rad (f1, . . . , fs) if and only if V(g) ⊇ V (f1, . . . , fs),
i.e., if and only if g vanishes at every point where the fi vanish simultaneously.

Proof. It is clear that gN =
∑s
i=1 gifi implies that g vanishes wherever the all of the fi

vanish: at such a point y, we have that g(y)N = 0 and so g(y) = 0.

The more interesting implication is the statement that if g does vanish whenever all
the fi vanish then g has a power that is in the ideal generated by the fi. The following
method of proof is called Rabinowitsch’s trick. Introduce an extra variable z and consider
the polynomials f1, . . . , fs, 1 − gz ∈ K[x1, . . . , xn, z]. There is no point of Kn+1 where
these all vanish: at any point where the fi vanish (this only depends on what the first
n coordinates of the point are), we have that g vanishes as well, and therefore 1 − gz is
1− 0 = 1. This means that f1, . . . , fs, 1− gz generate the unit ideal in K[x1, . . . , xn, z],
by the weak form of Hilbert’s Nullstellensatz that we have already established. This means
that there is an equation

1 = H1(z)f1 + · · ·+Hs(z)fs +H(z)(1− gz)

where H1(z), . . . , Hs(z) and H(z) are polynomials in K[x1, . . . , xn, z]: all of them may
involve all of the variables xj and z, but we have chosen a notation that emphasizes their
dependence on z. But note that f1, . . . , fs and g do not depend on z. We may assume
that g 6= 0 or the result is obvious. We now define a K[x1, . . . , xn]-algebra map φ from
K[x1, . . . , xn, z], which we think of as K[x1, . . . , xn][z], to the ring K[x1, . . . , xn][1/g] =
K[x1, . . . , xn]g, which we may think of as a subring of the fraction field of K[x1, . . . , xn].
This ring is also the localization of K[x1, . . . , xn] at the multiplicative system {1, g, g2, . . . }
consisting of all powers of g. Note that every element of K[x1, . . . , xn]g can be written
in the form u/gh, where u ∈ K[x1, . . . , xn] and h is some nonnegative integer. We define
the K[x1, . . . , xn]-algebra map φ simply by specifying that the value of z is to be 1/g.
Applying this homomorphism to the displayed equation, we find that

1 = H1(1/g)f1 + · · ·+Hs(1/g)fs +H(1/g)(1− 1)

or
1 = H1(1/g)f1 + · · ·+Hs(1/g)fs.

Since each of the Hi(1/g) is in K[x1, . . . , xn]g, we can choose a positive integer N so
large that each of the gi = gNHi(1/g) ∈ K[x1, . . . , xn]: there are only finitely many
denominators to clear. Multiplying the most recently displayed equation by gN gives the
equation gN = g1f1 + · · ·+gnfn with gi ∈ K[x1, . . . , xn], which is exactly what we wanted
to prove. �
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Corollary. Let R→ S be a homomorphism of finitely generated K-algebras. Then every
maximal ideal of S contracts to a maximal ideal of R.

Proof. Suppose that the maximal ideal n of S contracts to the prime P in R, so that
K ⊆ R/P ⊆ S/n. Then S/n is a finite algebraic extension of K, i.e., a finite dimensional
K-vector space, and so the domain R/P is a finite-dimensional K-vector space, i.e., it is
module-finite over K, and therefore it is a domain of dimension 0, which forces it to be a
field. �

An element x 6= 0 of a ring R is called prime if it generates a prime ideal. This means
that x is not a unit and if x | (rr′) with r, r′ ∈ R, then x | r or x | r′. An element x 6= 0 is
called irreducible if it is not a unit and cannot be written as the product of two elements
neither of which is a unit. In a domain, prime elements are always irreducible. (If x is
prime and x = fg, then x divides f or g, say f = xf1, and then x(1 − f1g) = 0 . Since
x 6= 0, g is a unit.) In a UFD, irreducible elements are prime, so that the two notions agree,
and every element factors uniquely as a product of finitely many primes, where “uniquely”
means up to the order of the factors and adjustments for multiplication by units: one may
alter a factorization by multiplying one of the factors by a unit and another by its inverse.
Thus if f = f1 · · · fn = g1 · · · gn then there is a permutation π of {1, . . . , n} and there are
units α1, . . . , αn of R such that gπ(j) = αjfj , 1 ≤ j ≤ n, and α1 · · ·αn = 1. Note also
that if a non-unit f divides an irreducible g, so that g = fu, then u must be a unit. In
particular, if one irreducible divides another, they are associates, i.e., each is a unit times
the other.

Proposition. Let R be a UFD. Then every nonzero prime ideal of R contains a prime
ideal generated by an irreducible element, and a prime ideal of R has height one if and
only if it is generated by an irreducible element.

Proof. Let Q be any nonzero prime ideal, and let f ∈ Q−{0}. The f can be factored into
irreducible factors, say f = f1 · · · fk, and since this product is in Q, at least one of the
factors, say fi, is in Q. Then fi generates a prime ideal contained in Q. This shows that a
prime ideal cannot possibly have height one unless it is generated by an irreducible element.
Finally, if P = fR is generated by an irreducible element but contains a smaller nonzero
prime ideal, that prime will in turn contain a prime generated by a nonzero irreducible
element g. But then f | g, which implies that they are the same, up to unit factors. �

In any ring R, a chain of prime ideals P0 ⊂ P1 ⊂ · · · ⊂ Pn is called saturated if for all i,
0 ≤ i < n, there is no prime strictly between Pi and Pi+1.

Theorem. Let R be a finitely generated integral domain over the field K. Choose z1, . . . , zd ∈
R such that R is module-finite over the polynomial ring K[z1, . . . , zd]. Then dim R = d.
In fact, the height of every maximal ideal of R is d. In particular, the height of every
maximal ideal in K[z1, . . . , zd] is d. Moreover, every saturated chain of primes in R from
(0) to a maximal ideal m has length d.
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Proof. We first prove that the dimension of R is d by induction on d. We know at once
that dimR = dimA, where A = K[z1, . . . , zd], and we have already seen that dimA ≥ d.
It will suffice to show that dimA ≤ d. Consider any chain of primes of A. We can assume
that the two smallest primes in it are P and 0, where P is a height one prime generated
by an irreducible element f . There will be a chain of length at most one less in A/P .
Therefore, it suffices to show that dimA/P = d− 1.

But after a change of variables we may assume that f is monic in zd overK[z1, . . . , zd−1],
and therefore A/P is integral over K[z1, . . . , zd−1].

Thus, the dimension of R is d. We can use almost the same argument to show by
induction that every saturated chain from (0) to a maximal ideal m of R has length d, but
we must make use of the going down theorem for this. Note that this statement evidently
implies that the height of m is d. Fix a maximal ideal m of R and consider a saturated
chain contained in m, say

(0) ⊂ Q1 ⊂ · · · ⊂ Qk = m.

We want to show that k = d. Since the chain is saturated, we know that Q1 has height
one in R. But the contraction of Q1 to A = K[z1, . . . , zd] must have height one as well
(this uses the going down theorem), and so must be generated by a single irreducible
polynomial f . As before, we may assume, after a change of variables, that f is monic in
zd over K[z1, . . . , zd−1]. Now,

(0) = Q1/Q1 ⊂ Q2/Q1 ⊂ · · ·Qk/Q1 = m/Q1

is a saturated chain of primes in the domain R/Q1 from (0) to the maximal ideal m/Q1.
But R/Q1 is module-finite over A/fA, which in turn is module-finite over K[z1, . . . , zd−1],
and so has dimension d − 1. It follows from the induction hypothesis that k − 1 = d − 1,
and so k = d. �

We review the notions of transcendence basis and transcendence degree. Let K ⊆ L
be fields. By Zorn’s lemma, any set of elements of L algebraically independent over K
can be enlarged to a maximal such set, which is called a transcendence basis for L over
K. Such a basis will be empty if and only if L is algebraic over K. If {xλ : λ ∈ Λ} is a
transcendence basis, then L contains a subring K[xλ : λ ∈ Λ] which is isomorphic with
a polynomial ring in variables corresponding to the xλ, and it also contains the fraction
field, denoted K(xλ : λ ∈ Λ) of that polynomial ring, which is called a pure transcendental
extension of K. It is easy to see that L is algebraic over K(xλ : λ ∈ Λ) (a transcendental
element could be used to enlarge the transcendence basis), and so every field extension
can be obtained in two steps: a pure transcendental extension followed by an algebraic
extension. Either step might just consist of a trivial field extension. The key fact that
we have not yet proved but will prove in the sequel is that any two transcendence bases
have the same cardinality, which is called the transcendence degree of L over K. We are
primarily interested in the case where the transcendence degree is finite, which it always
is when L is finitely generated as a field over K. However, we treat the general case.

An alternative characterization of a transcendence basis for the field L over its subfield
K is that it is a set of algebraically independent elements in L over K generating a subfield
L0 of L such that L is algebraic over L0.
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We sketch the proof that any two transcendence bases for L over K have the same
cardinality. (The reader already familiar with this material or not interested in the proof
may skip this and the next two paragraphs. ) It suffices to show that if X is a set of
algebraically independent elements of L and Y is a transcendence basis, then there is an
injection f : X ↪→ Y , such that X ∪

(
Y − f(X)

)
is a transcendence basis for L over K.

That is, one may replace a certain subset of Y with the same cardinality as X with the
elements of X and still have a transcendence basis. This will imply that the cardinality of
X is at most that of Y . Given two transcendence bases, it follows that the cardinality of
each is at most that of the other, so that they have the same cardinality.

Consider all injections g : X0 → Y , where X0 is a (possibly empty) subset of X, such
that X0 ∪

(
Y − g(X0)

)
is a transcendence basis for L. These are partially ordered by the

rule (X0, g0) ≤ (X1, g1) if X0 ⊆ X1 and the restriction of g1 to X0 is g0. Every chain
(Xi, gi)i∈I has an upper bound: there is a unique function g on X =

⋃
iXi which extends

all of the given functions. It is easy to see that one has algebraic independence for the
elements of X ∪

(
Y −g(X)

)
and that L is algebraic over the field that they generate. (Any

element of L is algebraic over a field generated by finitely many of the yj ∈ Y . Those
that get replaced by xk when we take the union have already been replaced for some
sufficiently large Xi in the union.) By Zorn’s Lemma, there is a maximal pair (X0, g) with
the specified property.

We want to see that X0 is all of X. If not, choose x ∈ X−X0. Then x is algebraic over
K
(
X0∪

(
Y − g(X0)

))
, and so satisfies a polynomial equation over this field. We may clear

denominators to obtain a polynomial F over K in x and finitely many of the variables in
X0 ∪

(
Y − g(X0)

)
such that x actually occurs in F . The polynomial F must involve at

least one element of Y − g(X0), or else X would not be an algebraically independent set.
This means that we can choose y ∈ Y −g(X0) that occurs in F . But then, using F , we see
that y is algebraic over the field generated over K by X0 ∪ {x} ∪

(
Y − g(X0)− y

)
, and we

extend g to g′ on X1 = X∪{x} by letting g′(x) = y. We still have algebraic independence:
if we omit x, that is clear, while if an algebraic relation involves x, then x is algebraic over
the field generated by the others, and that implies that y is as well, a contradiction. L is
algebraic over the field generated by these new elements, because y is. �

From the definition of transcendence degree and what we have already proved, we have
at once:

Corollary. Let R be a domain finitely generated over a field K. Then dimR is the
transcendence degree of frac (R) over K.

Proof. R is module-finite over a polynomial ring K[z1, . . . , zd] for some integer d, which
means that frac (R) is algebraic over the pure transcendental extension K(z1, . . . , zd) of
K. Thus, the transcendence degree is d, which we already know to be equal to dimR. �

It was an open question for a considerable time whether, in any commutative ring, there
could be saturated chains of distinct finite lengths joining two primes. M. Nagata gave
the first counter-example: he constructed a Noetherian domain of dimension 3 having a
unique maximal ideal m with saturated chains (0) ⊂ P1 ⊂ P2 ⊂ m of length 3 and also
0 ⊂ Q ⊂ m of length 2. Cf. [M. Nagata, Local rings, Interscience, New York, 1962],
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Appendix A1., Examples of bad Noetherian rings. In [M. Hochster, Prime ideal structure
in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43–60] it is shown that
the spectrum of a commutative ring can be any finite partially ordered set. However,
examples of such behavior in Noetherian rings are not easily come by. The Noetherian
rings that arise in algebraic geometry, number theory, and several complex variables all have
a property introduced by A. Grothendieck called excellence, which implies that saturated
chains joining P to Q when P ⊂ Q all have the same length.

However, one does not need to look at pathological examples to find instances where
maximal ideals have different heights: this happens in the polynomial ring in one variable
over a PID, if the PID has a unique maximal ideal. Such PIDs are of great importance,
and we digress briefly to discuss them.

Let V be a principal ideal domain with just one maximal ideal P . Such rings are called
discrete rank one valuation domains, but it is common practice to refer to them more
briefly as discrete valuation rings, and, unless otherwise specified, we shall do that here.
Note that if S is any principal ideal domain and Q is any nonzero prime ideal of S, then
SQ is a discrete valuation ring. The acronym DVR is used for discrete valuation ring. In
a DVR, the maximal ideal is principal. Let t be the generator. This is the only prime
element (up to multiplication by units). Thus, every nonzero element f can be written
uniquely as αtn, where α is a unit. The non-negative integer n is called the order of f ,
often written ord f . Note that if f, g 6= 0, then

(1) ord (fg) = ord f + ord g,

and that and if f + g is not zero as well, then

(2) ord (f + g) ≥ min {ord f, ord g}

with equality if ord f 6= ord g. Localizing V at any nonzero element in the maximal ideal
gets rid of the only nonzero prime in V , and produces the fraction field of V . In particular,
Vt is the fraction field. We can extend the order function from V −{0} to Vt−{0} by letting
ord (f/tn) = ord (f) − n. This is easily checked to be independent of the representation
of the element as a fraction, and the displayed properties (1), (2) of ord continue to hold.
The function ord from frac (V ) − {0} � Z is called the valuation associated to V . Note
that V is 0 together with the set of elements of frac (V ) of nonnegative order, and that the
maximal ideal of V is 0 together with the set of elements of positive order, while the set
of units of V coincides with the subset of frac (V ) of elements of order 0.

Conversely, given a field F and a surjective function ord : F − {0} � Z such that for
all f, g ∈ F − {0},

(1) ord (fg) = ord f + ord g,

and for all f, g ∈ F − {0} such that f + g 6= 0,

(2) ord (f + g) ≥ min {ord f, ord g}
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with equality if ord f 6= ord g, the set of elements in F on which ord is nonnegative together
with 0 is a subring of F . The elements of positive order together with 0 form a unique
maximal ideal, which is generated by any element of order 1, and every nonzero element
is a unit times a power of that generator. Thus, every such function determines a unique
DVR for which it is the associated valuation.

One can consider functions on a field with the properties displayed above taking values
in a totally ordered abelian group other than Z. When the set of values is the group Z⊕ r
(with a suitable order: we are not giving all the details here) one refers to a discrete rank r
valuation ring. When the set of values is, for example the rational numbers, the valuation
is no longer discrete. In these lectures, unless otherwise specified, we shall assume that
any given valuation has Z as the set of values, and that all given discrete valuation rings
are rank one discrete valuation domains.

The ring of formal power series K[[t]] in one variable over a field K is a discrete valuation
ring with maximal ideal generated by t. The key point is that a power series with a
nonzero constant term has an inverse. This comes down to the case where the constant
term is 1. The point is that if the power series is 1 + tf then the formal expression
1− tf + t2f2 − t3f3 + · · · can be given a meaning as a power series, because although the
sum looks infinite, there are only finitely many terms involving a given power of t, and
this gives the inverse of 1 + tf .

The localization of the integers at the prime ideal generated by p, where p is a prime
integer, is also a DVR, with maximal ideal generated by p. This ring is the set

{m/n : m, n ∈ Z, p - n} ⊆ Q.
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Examples. If V is a DVR with maximal ideal tV , then in V [x], which is a UFD, the element
tx− 1 generates a maximal ideal: V [x]/(tx− 1) ∼= V [1/t] = Vt = frac (V ), a field. On the
other hand, the chain (0) ⊂ (x)V [x] ⊂ (x, t)V [x] shows that (x, t)V [x] is a maximal ideal
of height at least 2 (and we shall see later that the height is exactly 2).

Also, consider R = K[x, y, z]/I, where I = (xy, xz) = (x) ∩ (y, z). In this ring, every
prime contains either the image x of x or both of the images y, z of y and z. Then P = (x)R
is a minimal prime of R with R/(x)R ∼= K[y, z], and P ′ = (y, z)R is a minimal prime
of R with R/(y, z)R ∼= K[x]. Saturated chains from P to a maximal ideal correspond
to saturated chains from (0) to a maximal ideal in K[y, z] and have length two while
saturated chains from P ′ to a maximal ideal correspond to saturated chains from (0) to a
maximal ideal in K[x], and have length one.

We do have the following:

Theorem. Let R be a finitely generated algebra over the field K.
(a) The dimension of R is the same as the cardinality of a maximal set of elements of R

algebraically independent over K.
(b) If P ⊆ Q are primes of R, all saturated chains of primes from P to Q have the same

length.
(c) Suppose that R is a domain. Then all saturated chains from 0 to a prime ideal P

have length equal to height P , and all saturated chains from P to a maximal ideal
have length equal to dim(R/P ). Moreover heightP + dim(R/P ) = dimR. For any
two primes P ⊆ Q, every saturated chain from P to Q has length heightQ−heightP .

Proof. We first prove (c). Choose any saturated chain from (0) to P : suppose that it
has length k. Also choose any saturated chain from P to a maximal ideal m: this
corresponds to a saturated chain from (0) = P/P to m/P in R/P , and so has length
dim(R/P ). Putting these two chains together gives a saturated chain in R from 0 to m
of length k + dim(R/P ), and this saturated chain has length equal to dim(R). Thus,
k + dim(R/P ) = dimR, and so all saturated chains from (0) to P have the same length,
dimR − dim(R/P ), which must be the same as the height of P . Finally, a saturated
chain from P to Q corresponds to a saturated chain from (0) = P/P to Q/P in R/P . Its
length is therefore dim(R/P ) − dim

(
(R/P )/(Q/P )

)
= dim(R/P ) − dim(R/Q) which we

may rewrite as
(
dimR−heightP )− (dimR−heightQ) = heightQ−heightP , as required.

(b) is obvious because saturated chains from P to Q in R correspond to saturated chains
from (0) = P/P to Q/P in the domain R/P .

Finally, to prove (a), first note that, by Noether normalization, R is module-finite over
a polynomial ring K[z1, . . . , zd], and then d = dimR. This shows that there exist dimR
algebraically independent elements in R. To see that there cannot be more, suppose
that K[x1, . . . , xh] ⊆ R, where x1, . . . , xh are algebraically independent. Then the set
K[x1, . . . , xh] − {0} is a multiplicative system of R not containing 0, and so there exists
a prime ideal P of R disjoint from it. This means that P ∩ K[x1, . . . , xh] = (0), and
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this implies that the composite map K[x1, . . . , xh] ↪→ R � R/P is injective. Then
dimR ≥ dim(R/P ), which is the transcendence degree of frac (R/P ) over K, and since
K[x1, . . . , xh] ↪→ R/P , the transcendence degree is ≥ h, which shows that dimR ≥ h, as
required. �

Because heightP = dimR − dim(R/P ) in a domain R that is a finitely generated K-
algebra, the height of a prime is also called its codimension.

Theorem. Let R be any finitely generated algebra over the field K. The every prime ideal
and, hence, every radical ideal is the intersection of the maximal ideals that contain it. It
follows at once that for any ideal I, the intersection of the maximal ideals containing I is
Rad (I).

Proof. Since every radical ideal is the intersection of the primes that contain it, it is clear
that we need only prove this for prime ideals P . Suppose that u /∈ P is in every maximal
ideal that contains P . Then the image of u in R/P is a nonzero element that is in every
maximal ideal. We therefore may reduce at once to the case where R is a domain, P = (0),
and we need only show that there is no element u that is in every maximal ideal. By
Noether normalization, R is then module-finite over a polynomial ring A = K[x1, . . . , xd].
The nonzero element u will have a nonzero multiple in A (this was shown in the course of
the proof of the lying over theorem), and so we may assume without loss of generality that
u ∈ A− {0}. Since every maximal ideal of R lies over a maximal ideal of A, it suffices to
show that a nonzero element u of a polynomial ring A cannot be in every maximal ideal.

If K is infinite we need only consider maximal ideals that arise as the set of polynomials
that vanish at a point of Kd: if u were in all of these, it would be a nonzero polynomial
that vanishes everywhere. (This does not happen. One can use induction on the number of
variables. In the case of one variable, the degree bounds the number of roots. In the case of
d variables, view the polynomial as a polynomial in xd with coefficients in K[x1, . . . , xd−1].
At least one coefficient is nonzero, and by the induction hypothesis will not vanish at some
point (λ1, . . . , λd−1) ∈ Kd−1. Substitute these λi for the xi, 1 ≤ i ≤ d− 1. This produces
a nonzero polynomial in xn, and there will be values for xn for which it does not vanish.)

If the field K is finite, pick a point (λ1, . . . , λd) of the algebraic closure L of K at
which u does not vanish: the algebraic closure is infinite. Then K[λ1, . . . , λd] is a finite
algebraic extension of K, and so a field, and evaluation at (λ1, . . . , λd) gives a surjection
K[x1, . . . , xd] � K[λ1, . . . , λd] that does not kill u. The kernel is a maximal ideal not
containing u. �

We noted earlier that when working with finitely generated K-algebras, maximal ideals
contract to maximal ideals. For any commutative ring R, we may let MaxSpec (R) denote
the space of maximal ideals of R in the inherited Zariski topology. This is not a functor, in
that maximal ideals need not contract to maximal ideals (the ideal (0) ⊆ Q is maximal, but
its contraction to Z is not). But when both rings are finitely generated K-algebras and one
has f : R→ S, the restriction of Spec (f) to MaxSpec (S) gives a map into MaxSpec (R).

It is worth noting that for a finitely generated K-algebra R, there is bijection of the
closed sets in Spec (R) with the closed sets in MaxSpec (R) that sends V (I) to its intersec-
tion with MaxSpec (R). The reason is that the set of maximal ideals in V (I) ∈ Spec (R)
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is dense, and so determines V (I). The closure of a set of primes {Pσ}σ∈Σ is the smallest
closed set V (J) that contains them all, which is given by the largest ideal J such that
J ⊆ Pσ for all σ, and thus the closure is V (

⋂
σ∈Σ Pσ). In a finitely generated K-algebra,

the intersection of the maximal ideals containing I is Rad (I), by the result we just proved,
and so the closure of the set of maximal ideals containing I is V

(
Rad (I)

)
= V (I).

Thus, Spec (R) and MaxSpec (R) are very closely related when R is a finitely generated
K-algebra. They have “the same” closed sets, but there are “extra points” thrown in when
one looks at Spec (R).

A partially ordered set is said to satisfy the ascending chain condition or ACC if, equiv-
alently:
(1) Every strictly ascending chain is finite.
(2) Every infinite non-decreasing chain is eventually constant.
(3) Every non-empty subset has a maximal element.

That (2) implies (1) is obvious, and (1) implies (2) because in a counter-example to (2)
one may omit the duplicated terms. (3) implies (1) is clear because because an infinite
strictly ascending chain is a non-empty subset with no maximal element. The fact that
(1) implies (3) is slightly more subtle, and actually uses a weak version of the axiom of
choice. If one has a non-empty subset with no maximal element one can construct a
strictly ascending sequence of elements recursively as follows. Let x1 be any element in
the set. Assume that x1, . . . , xn have been chosen and form a strictly ascending chain.
Then choose xn+1 to be any element of the subset strictly larger than xn. This must be
possible, or else xn would be a maximal element. Note that in this process we need to
make countably many choices.

A partially ordered set is said to satisfy the descending chain condition or DCC if,
equivalently:
(1) Every strictly descending chain is finite.
(2) Every infinite non-increasing chain is eventually constant.
(3) Every non-empty subset has a minimal element.

Of course, a poset satisfies DCC if and only if the poset obtained by reversing the order
has ACC. A linearly ordered set with DCC is the same thing as a well-ordered set.

A module M over a ring R is said to satisfy ACC or to be Noetherian (after Emmy
Noether) if its partially ordered set of submodules under ⊆ has ACC, and M is said to
have DCC or to be Artinian (after Emil Artin) if its partially order set of submodules
under ⊆ has DCC.
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Proposition. The following conditions on a module M over a ring R are equivalent:
(a) M has ACC, i.e., M is Noetherian.
(b) Every nonempty family of submodules of M has a maximal element
(c) Given any set S of elements of M spanning a submodule N of M , there is a finite

subset of S spanning N .
(d) Given any infinite sequence of elements of M spanning a submodule N , some finite

initial segment of the sequence spans N .
(e) Every submodule of M is finitely generated.

Proof. We already know that (a) and (b) are equivalent, while (c) follows from (b) applied
to the family of submodules generated by finite subsets of S (the empty subset spans 0),
for if N0 is spanned by the finite set S0 ⊆ S is maximal among these but different from N ,
we can choose s ∈ S not in N0 and then S ∪ {s} spans a larger submodule than N0. It is
clear that (c) implies (d), since any finite subset of the sequence is contained in some initial
segment. To see that (d) implies (e), let N ⊆M be any submodule, and suppose that it is
not finitely generated. We construct an infinite sequence recursively as follows. Choose a
nonzero element u1 ∈ N . If u1, . . . , un have been chosen such that for every i, 1 < i ≤ n,
ui is not in the span of its predecessors, note that since Ru1 + · · · + Run = Nn 6= N ,
we can choose un+1 ∈ N − Nn. We have now constructed a sequence that contradicts
condition (d). Finally, to see that (e) implies (a), note that if M has a non-decreasing
chain of submodules Ni, the union N is finitely generated. Then for all sufficiently large
i, all of the generators are in Ni, and so the sequence is constant from some point on. �

Recall that 0→ N →M → Q→ 0 is a short exact sequence of R-modules if N injects
into M and is the kernel of M → Q, which is surjective. In studying short exact sequences
we might as well replace N by its image and assume that N ⊆ M . The hypothesis then
means that the induced map M/N → Q is an isomorphism, so that one might as well
assume that Q = M/N . We may make this transition in a proof without comment.

Lemma. Let 0→ N →M → Q→ 0 be a short exact sequence of R-modules.
(a) Let M0 ⊆ M1 ⊆ M be submodules, and suppose that M1 ∩N = M0 ∩N and that the

images of M0 and M1 in Q are the same. Then M0 = M1,
(b) M is Noetherian if and only if both N and Q are.
(c) M is Artinian if and only if both N and Q are.
(d) A finite direct sum of Noetherian (respectively, Artinian) modules is Noetherian (re-

spectively, Artinian).

Proof. To prove (a), suppose that u ∈M1. Then some element v ∈M0 has the same image
as u in Q. It follows that v − u = w maps to 0 in Q, and so is in M1 ∩ N = M0. Thus,
u = v − w ∈M0, as required.

To prove (b), suppose first that M is Noetherian. An increasing chain in N is an
increasing chain in M , and so N is Noetherian. The inverse images in M of the modules in
an increasing chain in Q form an increasing chain in M , and so Q is Noetherian. Suppose,
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conversely, that N and Q are both Noetherian, and that one has an increasing chain in
M . The intersections of the modules in the chain with N are eventually constant, and
the images of the modules in Q are eventually constant. It follows from part (a) that the
chain in M is eventually constant.

The proof of (c) is exactly the same, with the word “increasing” replaced throughout
by the word “decreasing.” (d) follows by induction from the case of a direct sum of two
modules, which in turn follows from the (b) or (c) applied to the short exact sequence
0→M1 →M1 ⊕RM2 →M2 → 0. �

A ring R is called Noetherian (respectively, Artinian or Artin) if it has that property as
a module over itself. Since the R-submodules of R are the ideals of R, this is equivalent to
assuming that the ideals of R satisfy ACC (respectively, DCC). Also, a ring is Noetherian
iff every ideal is finitely generated.

Note that in part (a) of the Lemma, the condition that M0 ⊆ M1 is needed. To see
why, let K be an infinite field and consider the short exact sequence

0→ Ke1 → Ke1 ⊕Ke2 → Ke2 → 0

where Ke1 ⊕Ke2
∼= K2 is a two-dimensional vector space with basis e1, e2. Let Mλ be

the span of the vector e1 + λe2, where λ ∈ K − {0}. The Mλ are mutually distinct lines
in K2 (and they are mutually incomparable), but they all intersect Ke1 in 0 and they all
have image Ke2 in Ke2.

Proposition. A module M over a Noetherian ring R is Noetherian iff it is finitely gen-
erated. A module M over a ring R is Noetherian if and only if it is finitely generated and
R/AnnRM is a Noetherian ring.

Proof. If R is Noetherian then so is each finitely generated free module, since such a module
is a finite direct sum of copies of R, and every finitely generated module is a homomorphic
image of a finitely generated free module.

If M is finitely generated and R/AnnRM is Noetherian, we may think of M as a module
over R/AnnRM , and then it is clear from the first part that M is Noetherian.

Now suppose that M is Noetherian. It is obviously finitely generated: call the generators
m1, . . . ,mn. Then M⊕n is Noetherian, and we can map R → M⊕n by sending r ∈ R to
(rm1, . . . , rmn). The element r is in the kernel if and only if it kills all the generators of
M , which is equivalent to killing M . Thus, there is an injection of R/AnnRM into the
Noetherian module M⊕n, and so R/AnnRM is Noetherian, as required. �

We next want to prove that polynomial rings over a field are Noetherian. We shall give
two proofs: the first is not standard. We observe:

Lemma. If R is Noetherian and S is a module-finite extension of R, then every interme-
diate ring R ⊆ B ⊆ S is module-finite over R, and is a Noetherian ring.

Proof. S is a Noetherian R-module, and B is an R-submodule of S and therefore finitely
generated. It is a Noetherian R-module. Since any ideal of B is an R-submodule of B, the
fact that B has ACC for R-submodules implies that it has ACC for ideals. �
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Theorem (Hilbert basis theorem). The polynomial ring R in n variables over a field
K is Noetherian. Hence, every finitely generated K-algebra is Noetherian.

Proof. The second statement follows from the first because every finitely generated K-
algebra is a homomorphic image of a polynomial ring.

We use induction on n. Let I be a nonzero ideal of R and f ∈ I − {0}. To show
that I is finitely generated, it suffices to show that I/fR is finitely generated in R/fR:
if g1, . . . , gk are elements of I whose images gi in I/fR generate I/fR, then g1, . . . , gk
together with f generate I. But we may assume that f is monic in xn when viewed as
an element of K[x1, . . . , xn−1][xn], so that R/fR is module-finite over K[x1, . . . , xn−1],
which is Noetherian by the induction hypothesis. It follows that R/fR is Noetherian. �

Our second proof has the advantage that it works whenever K is a Noetherian ring, not
necessarily a field.

Theorem (Hilbert basis theorem). Let R be a Noetherian ring. Then every finitely
generated R-algebra is Noetherian.

Proof. Since the rings considered are homomorphic images of polynomial rings in finitely
many variables over R, we need only consider the case of a polynomial ring. By induction
on the number of variables, it suffices to prove that if R is Noetherian, then R[x] is
Noetherian.

Let J ⊆ R[x] be an ideal. For t ∈ N, let It ⊆ R be the set of elements of R that occur as
leading coefficient of a polynomial of degree t in J , together with 0. It is easy to see that
It is an ideal of R, and that It ⊆ It+1 since the leading coefficient of xf is the same as the
leading coefficient of f . Thus, we can choose k such that Ik = Ik+1 = · · · = Ik+m = · · · .
For each t, 0 ≤ t ≤ k, choose polynomials ft,1, . . . ft,ht ∈ J of degree t whose leading
coefficients generate It. We claim that the ft,s generate J . Let J0 be the ideal they
generate, and suppose that g ∈ J −J0 is of smallest possible degree. If g is of degree t ≤ k
we may subtract an R-linear combination j0 of the fts (thus, j0 ∈ J0), that will cancel
the leading term of g, and this will not introduce any terms of degree larger than t. Since
g − j0 ∈ J0 (since g has minimum degree for elements in J − J0), we have that g ∈ J0, a
contradiction.

If the degree of g is d > k, we can give essentially the same argument: now we subtract off
an R-linear combination of the polynomials xd−kfk,s to cancel the highest degree term. �
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Lecture of October 15

Note that while a monic polynomial of degree d over a field or domain has at most d
roots, nothing like this is true in rings with zerodivisors. For example, consider the ring
of functions from an arbitrary set X taking values in a field K. This ring is reduced: the
only nilpotent is the 0 function. But the functions on X taking on only the values 0 and
1 all satisfy the degree 2 monic equation z2 − z = 0. There is one such function for every
subset of X (the function that is 1 on that subset and 0 elsewhere). If X is countably
infinite, the number of solutions of z2 − z = 0 is uncountable.

From the Hilbert basis theorem (second version) we have at once:

Corollary. A finitely generated algebra over a PID is Noetherian. �

Proposition. A localization of a Noetherian ring at any multiplicative system is Noether-
ian.

Proof. The ideals of S−1R are in bijective order-preserving correspondence with the ideals
of R that are contracted with respect to S. �

Since fields and principal ideal domains are Noetherian and the class of Noetherian rings
is closed under taking homomorphic images, localizations, and finitely generated algebras,
we have quite a few examples. Later we shall see that formal power series rings in finitely
many variables over Noetherian rings are Noetherian.

Suppose that we want to prove a theorem about Noetherian modules (or Noetherian
rings). One can assume that one has a counter-example M . Consider the family of all
submodules N of M such that M/N is a counterexample, i.e., satisfies the hypothesis but
not the conclusion of the theorem. This family contains the 0 submodule, and so is non-
empty. Therefore it has a maximal element. One may therefore work with M/N instead
of N , and now one may assume that every proper quotient of M satisfies the theorem. In
case R is a ring, one is looking at quotients R/I and they are also rings. This method of
proof is called Noetherian induction. Here is an example:

Theorem. Every Noetherian ring has only finitely many minimal primes. Hence, every
ideal of a Noetherian ring has only finitely many minimal primes.

Proof. The second statement follows from the first by passing to the ring R/I. By Noe-
therian induction, we may assume that every proper quotient of R has only finitely many
minimal primes. If R is a domain, we are done: the only minimal prime is (0). If R is not
a domain we can choose nonzero elements x, y such that xy = 0. Every minimal prime of
R either contains x or contains y. If the former holds it corresponds to a minimal prime of
R/xR, and there are only finitely many of these by the hypothesis of Noetherian induction.
Likewise, if it contains y it corresponds to a minimal prime of R/yR, and again, there are
only finitely many minimal primes in R/yR by the hypothesis of Noetherian induction. �

We next return to the discussion of algebraic sets, and give another strong form of
Hilbert’s Nullstellensatz.



63

We now have available the theorem that the polynomial ring K[x1, . . . , xn] is Noether-
ian. For every set of polynomials S ⊆ K[x1, . . . , xn], V(S) = V(I), where I is the ideal
generated by S, and V(I) = V(Rad I), since V(fn) = V(f), always. Since every ideal is
finitely generated, we may choose finitely many elements f1, . . . , fm that generate I, or
any ideal with the same radical as I, and then V(S) = V(f1, . . . , fm) = V(f1)∩· · ·∩V(fm).
We are now ready to prove another strong form of Hilbert’s Nullstellensatz. If X is any
subset of Kn, we write I(X) = {f ∈ K[x1, . . . , xn] : for all x ∈ X, f(x) = 0}. Note that
if X = {x} has one point, then I({x}) = mx, the maximal ideal consisting of all functions
that vanish at x. Also note that I(X) = ∩x∈Xmx, and is always a radical ideal. These
statements are all valid even without the assumption that K is algebraically closed. When
K is algebraically closed, we can also state the following:

Theorem (Hilbert’s Nullstellensatz, second strong form). Let K be an algebraically
closed field, and consider the polynomial ring R = K[x1, . . . , xn] and algebraic sets in Kn.
The functions V and I give a bijective order-reversing correspondence between radical ideals
of R and closed algebraic sets in Kn.

Proof. Let I be a radical ideal. We may write I = (f1, . . . , fm)R for suitable fj . We
must show that I

(
V(I)

)
= I. The left hand side consists of all polynomials that vanish

everywhere that the fi vanish, and the earlier strong form of Hilbert’s Nullstellensatz that
we proved says precisely that if g vanishes on V(f1, . . . , fm), then g ∈ Rad (f1, . . . , fm) =
(f1, . . . , fm) in this case, since we assumed that I = (f1, . . . , fm) is radical.

What remains to be shown is that if X is an algebraic set then V
(
I(X)

)
= X. But

since X is an algebraic set, we have that X = V(I) for some radical ideal I. Consequently,
V
(
I(X)

)
= V

(
I
(
V(I)

))
= V(I), since I

(
V(I)

)
= I, by what we proved just above, and

V(I) = X. �
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Lecture of October 17

Proposition. In X = Spec (R) where R is Noetherian, every closed set Z has finitely
many maximal closed irreducible subsets, and it is the union of these. This union is
irredundant, i.e., none of the maximal closed irreducible sets can be omitted. The maximal
closed irreducible subsets of Z are the same as the maximal irreducible subsets of Z.

If K is an algebraically closed field, the same statements apply to the closed algebraic
sets in Kn.

Proof. The maximal irreducible closed subsets of Z correspond to the minimal primes
P1, . . . , Pn of the radical ideal I such that V (I) = Z, and this shows that Z is the union
of the maximal irreducible closed sets Zi = V (Pi) contained in Z.

On the other hand, if Z is a finite union of mutually incomparable irreducible closed
sets Zi, then every irreducible subset W of Z is contained in one of them, for W is the
union of the closed subsets W ∩Zi, and so we must have W = W ∩Zi for some i, and thus
W ⊆ Zi. This proves that the Zi are maximal irreducible subsets, and that none of them
can be omitted from the union: if Zj could be omitted it would be contained in the union
of the others and therefore contained in one of the others.

The proof for the case of algebraic sets in Kn is the same. �

In both contexts, the maximal irreducible closed subsets in Z are called the irreducible
components of Z.

Irreducible closed algebraic sets in Kn, when K is algebraically closed, are called alge-
braic varieties. (To be precise, they are called affine algebraic varieties, but we shall not be
dealing in this course with the other kinds. These include the irreducible closed algebraic
sets in a projective space over K, which are called projective varieties, irreducible open
sets in an affine variety, which are called quasi-affine varieties, and irreducible open sets
in a projective variety, which are called quasi-projective varieties. The last type includes
the others already mentioned. There is also an abstract notion of variety which is more
general, but the most important examples are quasi-projective.)

The notation AnK is used for Kn to emphasize that is being thought of as an algebraic
set (rather than as, say, a vector space).

Examples. In A2
K , V(x1x2) = V(x1) ∩ V(x2) gives the representation of the algebraic set

which is the union of the axes as an irredundant union of irreducible algebraic sets. This
corresponds to the fact that in K[x, y], (xy) = (x)∩ (y). Now consider A6

K where the vari-
ables are x1, x2, x3, y1, y2, y3, so that our polynomial ring is R = K[x1, x2, x3, y1, y2, y3].
Instead of thinking of algebraic sets as lying in A6

K , we shall think instead of them as sets
of 2×3 matrices, where the values of the variables xi and yj are used to create a matrix as

shown:
(
x1 x2 x3

y1 y2 y3

)
. Let ∆1 = x2y3 − x3y2, ∆2 = x1y3 − x3y1 and ∆3 = x1y2 − x2y1

be the three 2 × 2 minors of this matrix. Consider the algebraic set V(∆2,∆3). We may
think of this as the algebraic set of 2×3 matrices such that the minor formed from the first
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two columns and the minor formed from the first and third columns vanish. If a matrix is
in this set, there are two possibilities. One is that the first column is zero, in which case
the two minors involved do vanish. The second case is that the first column is not zero. In
this case, the second and third columns are multiples of the first column, and this implies
that ∆1 vanishes. From this we obtain that V(∆2, ∆3) = V(x1, y1)∪V(∆1, ∆2, ∆3). This
does turn out to be the decomposition of V(∆2, ∆3) as an irredundant union of irreducible
components. The hardest part here is to show that V(∆1, ∆2, ∆3) is irreducible.

A topological space is called Noetherian if it satisfies DCC on closed sets. Thus, Spec (R)
is Noetherian iff the radical ideals ofR have ACC, which is, of course true ifR is Noetherian.

Proposition. A subspace Y of a Noetherian topological space X is Noetherian. A Noe-
therian space is quasi-compact. A topological space X is Noetherian if and only if every
open subspace is quasi-compact, in which case every subspace is quasi-compact. In a Noe-
therian topological space, every closed subset is the finite irredundant union of its maximal
closed irreducible subsets, which are the same as its irreducible subsets.

Proof. For the first statement, it suffices to show that a non-increasing sequence of closed
sets Yi in Y is stable, and we can write Yi = Zi ∩ Y , where Zi is closed in X. Then the
sequence Z1, Z1∩Z2, . . . , Z1∩· · ·∩Zn, . . . is eventually stable in X, and the intersection
of the n th term with Y is Y1 ∩ · · · ∩ Yn = Yn.

Consider next a family of closed sets in X with FIP. We must show the intersection
is non-empty. We may assume without loss of generality that the family is closed under
intersection. But it has a minimal element, and this must be contained in all of the sets,
or we could intersect further, contradicting minimality.

Clearly, if X is Noetherian, then every subset is Noetherian and hence quasi-compact,
and so is every open subset. It suffices to show that if every open subset is quasi-compact,
then X is Noetherian. If not, let Z1 ⊃ Z2 ⊃ · · · ⊃ Zn ⊃ · · · be a strictly decreasing
sequence of closed sets. Call the intersection Z. Then X − Z is open, and is the strictly
increasing union of the open sets X−Zn. This gives an open cover with no finite sub-cover,
contradicting the quasi-compactness of X.

Finally, let Z be any closed set in X. If it is not a finite union of irreducibles, take a
minimal counter-example. If Z itself is irreducible, we are done. If not then Z = Z1 ∪ Z2,
where these are proper closed subsets, and hence each is a finite union of irreducibles,
since Z is a minimal counterexample. Once we have Z as a finite union of irreducibles,
we can omit terms until we have Z as an irredundant finite union of irreducibles, say
Z = Z1 ∪ · · · ∪ Zn. Now, if Y is an irreducible set contained in Z, it must be contained
in one of Zi, since it is the union of its intersections with the Zi, which shows that the Zi
are the maximal irreducible sets contained in Z, as well as the maximal irreducible closed
sets contained in Z. �

We next want to make the closed algebraic sets over an algebraically closed field K
into a category. Suppose we are given X ⊆ Kn and Y ⊆ Km. We could write AnK
instead of Kn and AmK instead of Km. We define a function f : X → Y to be regular
if it there exist polynomials g1, . . . , gm ∈ K[x1, . . . , xn] such that for all points x ∈ X,
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f(x) =
(
g1(x), . . . , gm(x)

)
. Thus, the function f can be given by a polynomial formula

in the coordinates. It is easy to verify that the identity function is regular and that the
composition of two regular functions is regular. The closed algebraic sets over K become
a category if we define Mor (X, Y ) to be the set of regular functions from X to Y .

It may seem a bit artificial to require that a map of X ⊆ AnK to Y ⊆ AmK be induced by
a map from AnK to AmK (the polynomials gj in the definition of regular map actually give
a map Kn → Km that happens to take X into Y ). However, this is not much different
from the situation in topology.

Most of the objects of interest in topology (compact manifolds or compact manifolds
with boundary) are embeddable as closed sets in Rn for some n. If X ⊆ Rn and Y ⊆ Rm,
then every continuous function from X to Y is the restriction of a continuous function
from Rn → Rm. To see this, think about the composition X → Y ⊆ Rm. The function
X → Rm is given by an m-tuple of continuous functions from X to R. But a continuous
function from a closed set X ⊆ Rn to R does extend to a continuous function from Rn
to R: this is the Tietze extension theorem, and uses only that Rn is a normal topological
space.

We now enlarge the category of algebraic sets slightly. Given an algebraic set X and
mutually inverse set bijections α : X ′ → X and β : X → X ′ we shall think of these maps
as giving X ′ the structure of an algebraic set. We define a map f : X ′ → Y to be regular
if f ◦ β is regular, and a map g : Y → X ′ to be regular if α ◦ g is regular.

Of course if we have also given, say, Y ′, the structure of an algebraic set via mutually
inverse set isomorphisms γ : Y ′ → Y and δ : Y → Y ′ with an algebraic set Y , then
f : X ′ → Y ′ is regular if γ ◦ f ◦ β is a regular function from X to Y , while g : Y ′ → X ′ is
regular if α ◦ g ◦ δ is a regular function from Y to X.

More generally, given any category in which the objects have underlying sets and the
morphisms are functions on the underlying sets with, possibly, some further restrictive
property (groups and group homomorphisms, rings and ring homomorphisms, and topo-
logical spaces and continuous maps are examples), one can make an entirely similar con-
struction: given a bijection α : X ′ → X one can introduce an object with underlying set
X ′ into the category in such a way that α is an isomorphism of that new object with X.
In the case of rings, one uses the bijection to introduce addition and multiplication on X ′:
one adds elements of X ′ by taking the images of the elements in X, adding them in X, and
then applying the inverse bijection to the sum to get an element of X ′. One introduces
multiplication in X ′ in an entirely similar way.

Given a closed algebraic set X ⊆ AnK , the regular functions to K (i.e., to A1
K) have

the structure of a K-algebra: the restrictions of polynomials g1 and g2 to X have a sum
(respectively, a product) that is regular because it is the restriction of g1 +g2 (respectively,
g1g2). This ring is called the coordinate ring of X and is denoted K[X]. It is a reduced
finitely generated K-algebra: if a power of a function is 0, all of its values are nilpotent
in K and therefore 0 in K, so that the function is identically zero. The coordinate ring is
generated over K by the images of the n functions represented by the variables x1, . . . , xn.
The function xi assigns to a point in X its i th coordinate, and so the functions xi are
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referred to as coordinate functions, which explains why the K-algebra they generate is
called the coordinate ring.

K[X] is a homomorphic image of K[x1, . . . , xn] under the K-algebra homomorphism
that sends the function given by a polynomial g ∈ K[x1, . . . , xn] to its restriction to X.
The kernel of this K-algebra homomorphism is the ideal I(X) of all polynomial functions
that vanish on X, and so we have a K-algebra isomorphism K[x1, . . . , xn]/I(X) ∼= K[X].

In fact, Mor ( , A1
K) is a contravariant functor from algebraic sets to reduced finitely

generated K-algebras. Given a map of algebraic sets f : X → Y there is a K-algebra
homomorphism f∗ : K[Y ] → K[X] induced by composition; for each g : Y → A1

K , we let
f∗(g) = g ◦ f : X → A1

K .

Now consider the functor HomK-alg( , K) from reduced finitely generated K-algebras
to algebraic sets. Here the subscript indicates that we are dealing with K-algebra homo-
morphisms. For this to make sense, we have to give HomK-alg(R, K) the structure of an
algebraic set: we do this by choosing a finite set of algebra generators vectrn for R over K,
and then mapping HomK-alg(R, K) to AnK by sending φ ∈ HomK-alg(R, K) to the n-tuple(
φ(r1), . . . , φ(rn)

)
∈ AnK . We shall see below that the set of values of this map is a closed

algebraic set in AnK , and that, up to isomorphism, this algebraic set is independent of the
choice of a finite set of generators for R over K. Thus, HomK-alg(R, K) has the structure
of an algebraic set. Moreover, HomK-alg( , K) is a contravariant functor: if h : R → S
is a K-algebra homomorphism, we get a map h∗ : HomK-alg(S, K) to HomK-alg(R, K)
induced by composition: h∗(θ) = θ ◦h. We shall see that this makes F = HomK-alg( ,K)
into a contravariant functor from reduced finitely generated K-algebras to closed algebraic
sets over K.

Note that the elements of HomK-alg(R, K) correspond bijectively with the maximal
ideals of R: the maximal ideal is recovered from a given homomorphism as its kernel. On
the other hand, we have already seen that for any maximal ideal m, K → R/m is an
isomorphism µ when K is algebraically closed, and we may compose R→ R/m with µ−1

to obtain a K-algebra homomorphism R � K whose kernel is the specified maximal ideal
m. Note that if we have θ : S � K and we compose with f : R → S, the kernel of the
composition R→ S � K is the same as the contraction of the kernel of θ to R. Thus, the
functor MaxSpec is isomorphic with G = HomK-alg( ,K), and so we could have worked
with this functor instead of G. In particular, we can give every MaxSpec (R) the structure
of an algebraic set.

Our main result in this direction is:

Theorem. The procedure for giving HomK-alg(R, K) the structure of an algebraic set
described above does produce a bijection with an algebraic set, and changing the choice
of the finite set of generators for R produces an isomorphic algebraic set. F and G as
described above are contravariant functors such that F ◦ G is isomorphic with the identity
functor on closed algebraic sets over K, and G ◦ F is isomorphic with the identity functor
on reduced finitely generated K-algebras. Thus, the category of closed algebraic sets and
regular functions over the algebraically closed field K is anti-equivalent to the category of
reduced finitely generated K-algebras.
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Lecture of October 20

Proof. We first note that the points of the closed algebraic set X correspond bijectively in
an obvious way with the elements of HomK-alg(K[X], K), and, likewise, with the maximal
ideals of K[X]. Think of K[X], as usual, as K[x1, . . . , xn]/I(X). The maximal ideals
of this ring correspond to maximal ideals of K[x1, . . . , xn] containing I(X). Each such
maximal ideal has the form my for some y ∈ AnK , and the condition that y must satisfy
is that I(X) ⊆ my , i.e., that all functions in I(X) vanish at y, which says that y ∈
V
(
I(X)

)
. By our second strong version of Hilbert’s Nullstellensatz (Lecture of October

15), V
(
I(X)

)
= X.

We next note that our procedure for assigning the structure of an algebraic set to
HomK-alg(R, K) really does give an algebraic set, which is independent, up to isomorphism,
of the choice of the set of generators of R as a K-algebra. To see this, let r1, . . . , rn be one
set of generators of R. Map K[x1, . . . , xn] � R using the unique K-algebra homomor-
phism that sends xi 7→ ri, 1 ≤ i ≤ n. Let I be the radical ideal which is the kernel of this
homomorphism, so that R ∼= K[x1, . . . , xn]/I. The set we assigned to HomK-alg(R, K) is
{
(
h(r1), . . . , h(rn)

)
: h ∈ HomK-alg(R, K)}. Each K-homomorphism h is uniquely deter-

mined by its values on the generators r1, . . . , rn. An n-tuple (λ1, . . . , λn) can be used to
define a K-homomorphism if and only if the elements of I vanish on (λ1, . . . , λn), i.e., if
and only if (λ1, . . . , λn) ∈ V(I). This shows that our map from HomK-alg(R, K)} to Kn

gives a bijection of HomK-alg(R, K)} with the algebraic set V(I).

Now suppose that r′1, . . . , r
′
m are additional elements of R. For every r′j we can choose

gj ∈ K[x1, . . . , xn] such that r′j = gj(r1, . . . , rn). The new algebraic set that we get by
evaluating every element h ∈ HomK-alg(R, K)} on r1, . . . , rm , r

′
1, . . . , r

′
m is preciselyX ′ =

{
(
λ1, . . . , λn, g1(λ), . . . , gm(λ)

)
: λ ∈ X}, where λ = (λ1, . . . , λn). The map X → X ′

that sends λ = (λ1, . . . , λn) to
(
λ1, . . . , λn, g1(λ), . . . , gm(λ)

)
is given in coordinates by

the polynomials x1, . . . , xn, g1, . . . , gm , and so is a morphism in the category of algebraic
sets. Likewise, the map X ′ → X which is simply projection on the first n coordinates
is given by polynomials in the coordinates, and these are mutually inverse morphisms of
algebraic sets. Thus, X ∼= X ′, as required.

This handles the case where one set of generators is contained in another. But now, if
r1, . . . , rn and r′1, . . . , r

′
m are two sets of generators, we may compare the algebraic set

given by r1, . . . , rn with that given by r1, . . . , rn, r
′
1, . . . , r

′
m, and then the latter with

the algebraic set given by r′1, . . . , r
′
m. This completes the proof of the independence of

the algebraic set structure that we are assigning to HomK-alg(R, K) from the choice of
K-algebra generators for R.

If R = K[X] and we choose as generators ri the restrictions of the coordinate functions
xi to R, then the algebraic set we get from HomK-alg(K[X], K) is X itself, and this is the
same identification of X with HomK-alg(K[X], K) that we made in the first paragraph.
Thus, if we let SX : X → HomK-alg(K[X], K) as in that paragraph, we get an isomorphism
of algebraic sets, for we may use the restricted coordinate functions as the generators to
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place the algebraic set structure on HomK-alg(K[X], K) = (G ◦F)(X). We claim that SX
is a natural transformation from the identity functor on the category of algebraic sets over
K to G◦F . We need to see that if θ : X → Y is a morphism of algebraic sets, then (G◦F)(θ)
is the same as θ once we identify HomK-alg(K[X], K) with X and HomK-alg(K[X], K)
with Y . Let φx (resp., φ′y) denote evaluation as at x ∈ X (resp., y ∈ Y ). We need to show
that

(
(G ◦ F)(θ)

)
(φx) = φ′θ(x) for all x ∈ X. Now, F(θ) acting on v ∈ K[Y ] is v ◦ θ, and G

applied to F(θ) acts by composition as well, so that its value on φx is the map that sends
v ∈ K[Y ] to (v ◦ θ)(x) = v

(
θ(x)

)
, which is evaluation at θ(x), as required.

Finally, we need to see that F ◦G is isomorphic to the identity functor on finitely gener-
ated reduced K-algebras. The map sends R to K[HomK-alg(R, K)] where HomK-alg(R, K)
is viewed as a closed algebraic set as discussed above. Each element r of R maps to a func-
tion fr on the set HomK-alg(R, K) by the rule fr(u) = u(r). It is immediate that this is a
K-algebra homomorphism: call it TR. We shall show that the TR give an isomorphism of
the identity functor with F◦G. We first need to show that every TR is an isomorphism. We
use the fact that R ∼= K[x1, . . . , xn]/I for some radical ideal I, with the coordinate func-
tions as generators, and it suffices to consider the case where R = K[x1, . . . , xn]/I. This
identifies HomK-alg(R, K) with V(I), and the needed isomorphism follows from the fact
that K[V(I)] ∼= K[x1, . . . , xn]/I

(
V(I)

)
= K[x1, . . . , xn]/I, again by the second strong

version of Hilbert’s Nullstellensatz (Lecture of October 15).

The last step is to check that T is a natural transformation. Consider a K-algebra
homomorphism α : R → S. Choose a K-algebra homomorphism γ of polynomial ring
A = K[y1, . . . , ym] onto R with kernel I and a K-algebra homomorphism δ of a polynomial
ring B = K[x1, . . . , xn] onto S with kernel J . Without loss of generality, we may assume
that R = A/I, S = B/J . Choose g1, . . . , gm ∈ K[x1, . . . , xn] such that the image
of yj in R maps to the image of gj in B, 1 ≤ j ≤ m, so that α is induced by the
K-algebra map A → B that sends yj to gj , 1 ≤ j ≤ m. The corresponding map of
algebraic sets V(J) → V(I) is given in coordinates by the gj . Finally, the induced map
K[V (I)] ∼= A/I

(
V(I)

)
= A/I to K[V (J)] ∼= B/I

(
V(J)

)
= B/J is induced by composition

with the map given by the polynomials g1, . . . , gm. This means that the image of an
element of A/I represented by P (y1, . . . , ym) ∈ A is represented by the coset in B/J of
P (g1, . . . , gm) ∈ B, and this shows that with the identifications we are making, F ◦ G(α)
is α, which is exactly what we need. �

Given an algebraic set X over an algebraically closed field K, we define dim(X) to be
the same as dim(K[X]). The dimension of a ring is the supremum of the dimensions of its
quotients by minimal primes. Thus, dim(X) is the same as the supremum of the dimensions
of the irreducible components of X. Evidently, dim(X) is also the same as the supremum
of lengths of chains of irreducible closed subsets of X. We define the dimension of X near
a point x ∈ X to the be the supremum of the dimensions of the irreducible components of
X that contain x. If the corresponding maximal ideal of R = K[X] is m = mx, this is also
the dimension of Rm: it has minimal primes P corresponding precisely to the irreducible
components V (P ) that contain x, and the length of any saturated chain from P to m
= dim(Rm/PRm) = dim(R/P ) = the dimension of the irreducible component V (P ), from
which the result follows.
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There are at least three ways to think of an algebra R over a commutative ring ring K.
It is worth considering all three points of view. One is purely algebraic: R is an abstract
algebraic environment in which one may perform certain sorts of algebraic manipulations.

A second point of view is to think of R, or rather some topological space associated
with R, as a geometric object. We have seen explicitly how to do this when R is a finitely
generated reduced K-algebra and K is an algebraically closed field. But a geometric point
of view, introduced by A. Grothendieck, can be taken in great generality, when R is any
commutative ring. In Grothendieck’s theory of schemes, a geometric object Spec (R), is
introduced that has more structure than just the topological space of prime ideals of R
that we have talked about here. The geometric point of view has been very effective as a
tool in commutative algebra, even if one is only interested in seemingly purely algebraic
properties of rings.

The third point of view is simplest when R is a finitely generated algebra over a Noe-
therian ring K (and it simplest of all when K is a field). In this case one has that
R = K[x1, . . . , xn]/(f1, . . . , fm). Now let S be any K-algebra. Then HomK-alg(R, S) is
in bijective correspondence with the set of solutions of the set of m simultaneous equations

f1(x1, . . . , xn) = 0
· · ·

(∗) · · ·
· · ·

fm(x1, . . . , xn) = 0
in Sn, for to give a K-homomorphism from R to S is the same as to give an n-tuple
of elements of S (which will serve as the values of the homomorphism on the images
of the variables x1, . . . , xn) that satisfy these equations. The set of homomorphisms
HomK-alg(R, S) is called the set of S-valued points of the scheme Spec (R) in scheme
theory: since we don’t have that theory available, we shall simply refer to it as the set of
S-valued points of R. Recall again that K can be any Noetherian ring here. This point
of view can be extended: we do not need to assume that R is finitely generated over K,
nor that K is Noetherian, if we allow infinitely many variables in our polynomial ring, and
infinite families of polynomial equations to solve. Thus, very generally, a K-algebra may
be thought of as an encoded system of equations. When one takes homomorphisms into
S, one is solving the equations in S. A different way to say this is the following: suppose
that we start with a system of equations over K, and define a functor from K-algebras to
sets that assigns to every K-algebra S the set of solutions of the family of equations such
that the values of the variables are in S. If one forms the polynomial ring in the variables
occurring and then the quotient by the ideal generated by the polynomials set equal to 0
in the equations, the resulting K-algebra represents this functor.

Here is an example. Let B = R[X, Y, Z]/(X2 + Y 2 + Z2 − 1) = R[x, y, z], and let
S = B[U, V, W ]/(xU + yV + zW ) = R[x, y, z, u, v, w]. We can also form B in a single
step as R[X, Y, Z, U, V, W ]]/(X2 +Y 2 +Z2−1, XU+Y V +ZW ). The R-homomorphisms
from B or R-valued points of B correspond to the set {(a, b, c) ∈ R3 : a2 + b2 + c2 = 1}:
the real 2-sphere of radius one centered at the origin in R3. The R-valued points of S
correspond to pairs (a, b, c), (d, e, f) such that (a, b, c) ∈ S2 and (a, b, c) · (d, e, f) = 0,
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which means that the vector (d, e, f) represents a tangent vector to the sphere at the
point (a, b, c). That is, the R-valued points of S correspond to the points of the tangent
bundle to the real 2-sphere. It turns out that if T is a new indeterminate over S and
T1, T2, T3 are three new indeterminates over A, then S[T ] ∼= A[T1, T2, T3], but that S is
not isomorphic with A[T1, T2]. This answers the question raised by the exercise in the
book of Deskins discussed during the Lecture of September 19. One key point is that
the direct sum of the tangent bundle to the 2-sphere and a trivial line bundle is a trivial
vector bundle of rank 3, but that the tangent bundle to the 2-sphere is non-trivial: in
fact, it has no non-vanishing section. This last statement amounts to the assertion that
there is no non-vanishing continuous field of tangent vectors on a 2-sphere. Sometimes
this is expressed by saying “You can’t comb the hair on a billiard ball.” The question as
to whether S[T ] ∼= S′[T ′] implies S ∼= S′ appears to be purely algebraic. There may be a
moral in the fact that the simplest counter-example requires some substantial knowledge
from topology. See also the Lecture of October 29 and 6. in Supplementary Problem Set
#7

We next want to explore the notion of a (formal) power series ring in finitely many
variables over a ring R, and show that it is Noetherian when R is. But we begin with a
definition in much greater generality.

Let S be a commutative semigroup (which will have identity 1S = 1) written multi-
plicatively. We shall assume that S has the following property:

(#) For all s ∈ S, {(s1, s2) ∈ S × S : s1s2 = s} is finite.
Thus, each element of S has only finitely many factorizations as a product of two

elements. For example, we may take S to be the set of all monomials {xk11 · · · xkn
n :

(k1, . . . , kn) ∈ Nn} in n variables. We construct a ring denoted R[[S]]: we may think of
this ring formally as consisting of all functions from S to R, but we shall indicate elements
of the ring notationally as (possibly infinite) formal sums

∑
s∈S rss, where the function

corresponding to this formal sum maps s to rs for all s ∈ S. Addition is performed by
adding corresponding coefficients, while (

∑
s∈S rss)(

∑
s′∈S rs′s

′) is defined to be∑
t∈S

( ∑
s,s′∈S,ss′=t

rsrs′
)
t.

Heuristically, this is what one would get by distributing the product in all possible ways,
and then “collecting terms”: this is possible because, by (#), only finitely many terms
rsrs′ss

′ occur for any particular t = ss′. The ring has identity corresponding to the sum
in which 1S has coefficient 1 = 1R and all other coefficients are 0. It is straightforward
to verify all the ring laws and the commutativity of multiplication. R[S], the semigroup
ring defined earlier, is a subring: it may be identified with the formal sums in which all
but finitely many coefficients are 0. One frequently omits terms with coefficient 0 from the
notation. If S = {xk11 · · · xkn

n : (k1, . . . , kn) ∈ NN}, the notation R[[x1, . . . , xn]] is used
instead of R[[S]]: one writes generators for S inside the double brackets instead of S itself.

If S and S′ both satisfy (#), so does the product semigroup S × S′, and one has
the isomorphism (R[[S]])[[S′]] ∼= R[[S × S′]]. If the coefficient of s′ in an element of
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the former is
∑
s∈S rs,s′s for every s′ ∈ S′, one identifies

∑
s′∈S′(

∑
s∈S rs,s′s)s

′ with∑
(s,s′)∈S×S′ rs,s′(ss

′). It is straightforward to check that this is an isomorphism.
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Lecture of October 22

The ring R[[x1, . . . , xn]] is referred to as a (formal) power series ring over R, and the
xi are called formal or analytic indeterminates to indicate that two power series agree if
and only if their corresponding coefficients are all identical.

In the case of two finite semigroups of monomials, the fact that R[[S×S′]] ∼= (R[[S]])[[S′]]
implies that

(R[[x1, . . . , xn]])[[y1, . . . , ym]] ∼= R[[x1, . . . , xn, y1, . . . , ym]].

In particular, for n ≥ 2,

R[[x1, . . . , xn]] ∼= (R[[x1, . . . , xn−1]])[[xn]].

Of course, there is a completely analogous statement for polynomial rings, with single
brackets replacing double brackets. However, note that while

(R[[x1, . . . , xn]])[y1, . . . , ym] ↪→ (R[y1, . . . , ym])[[x1, . . . , xn]],

the opposite inclusion always fails when R is not 0 and m, n ≥ 1. First, to see the inclusion,
note that if one has a homomorphism h : R → T there is an induced homomorphism
R[[x1, . . . , xn]] → T [[x1, . . . , xn]]: apply h to every coefficient. Let T = R[y1, . . . , ym]
and h be the inclusion R ⊆ T to get an injection

R[[x1, . . . , xn]]→ (R[y1, . . . , ym])[[x1, . . . , xn]].

Now extend this homomorphism of R[[x1, . . . , xn]]-algebras to the polynomial ring

(R[[x1, . . . , xn]])[y1, . . . , ym]

by letting yi map to yi ∈ (R[y1, . . . , ym])[[x1, . . . , xn]]. To see that the inclusion is typi-
cally strict, note that

∑∞
t=0 y

t
1x
t
1 is an element of (R[y1, . . . , ym])[[x1, . . . , xn]] but is not

in (R[[x1, . . . , xn]])[y1, . . . , ym], where every element has bounded degree in the yj . Both
rings inject into R[[x1, . . . , xn, y1, . . . , ym]].

Theorem. If R is Noetherian ring then the formal power series ring R[[x1, . . . , xn]] is
Noetherian.

Proof. By induction on the number of variables one reduces at once to proving that S =
R[[x]] is Noetherian. Let J ⊆ R[[x]] be an ideal. Let It denote the set of elements r of
R such that rxn is the term of least degree in an element of J , together with 0. This
is easily verified to be an ideal of R. If f ∈ J is not zero, and rxn is the least degree
term in f , then rxn+1 is the least degree term in xf ∈ J . This shows that {It}t≥0 is
a non-decreasing sequence of ideals of R. Since R is Noetherian, we may choose k ∈ N
such that Ik = Ik+1 = · · · = Ik+m = · · · , and then for 0 ≤ t ≤ k we may choose
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f1,t, . . . , fht, t ∈ J such that each fi,t has smallest degree term of the form ri,tx
t and the

elements ri,t, . . . , rht,t are a finite set of generators of It. We claim that the finite set of
power series fi,t, 0 ≤ t ≤ k, 1 ≤ i ≤ ht, generates J . Let J0 be the ideal they generate, and
let u ∈ J be given. We may subtract an R-linear combination of the fi,0 from u to get an
element of J whose lowest degree term is in degree at least one (or such that the difference
is 0). We continue in this way so long as we have a lowest degree term of degree less than
k: if the degree is t < k, we may increase it by subtracting an R-linear combination of
the fi, t. Thus, after subtracting an element of J0 from u, we may assume without loss of
generality that the lowest degree term in u occurs in degree ≥ k (or else u is 0, but then
there is nothing to prove). It will suffice to prove that this new choice of u is in J0. We
claim more: we shall show that in this case, u is in the ideal generated by the fi,k = fi.
Let h = hk. We recursively construct the partial sums (which are polynomials) of power
series gi such that u =

∑h
i=1 gifi.

Put slightly differently and more precisely, we shall construct, for every i, 1 ≤ i ≤ h,
by induction on m ∈ N, a sequence of polynomials gi,m(x) ∈ R[x] with the following
properties:
(1) Every gi,m has degree at most m.
(2) If m1 < m2 then gi,m1 is the sum of the terms of degree at most m1 that occur in

gi,m2 . Given (1), this is equivalent to the condition that for all m ≥ 0, gi,m+1 − gi,m
has the form rxm+1 for some r ∈ R, which may be 0.

(3) For every m, the lowest degree term in u−
∑h
i=1 gi,mfi has degree at least k+m+ 1

(or else the difference is 0).
Notice that conditions (1) and (2) together imply that for every i, the gi,m are the partial

sums of a formal power series, where the m th partial sum of a power series
∑∞
j=0 rjx

j is
defined to be

∑m
j=0 rjx

j .

To begin the induction, note that the least degree term of u occurs in degree k or higher.
Therefore the coefficient of xk in u is in the ideal generated by the lowest degree coefficients
of f1, . . . , fh, and it follows that there are elements r1,0, . . . , rh,0 of R such that the lowest
degree term of u−

∑h
i=1 ri,0fi occurs in degree at least k + 1 (or the difference is 0). We

take gi,0 = ri,0, 1 ≤ i ≤ h.

Now suppose that the gi,s have been constructed for 1 ≤ i ≤ h, 0 ≤ s ≤ m such that
conditions (1), (2), and (3) are satisfied. We shall show that we can construct gi,m+1 so that
(1), (2), and (3) are satisfied. Since u′ = u−

∑h
i=1 gi,mfi has lowest degree term of degree

at least m+k+ 1, the coefficient of xm+k+1 is in the R-span of the coefficients of xk in the
polynomials fi, and so we can choose elements ri,m+1 ∈ R so that u′−

∑h
i=1 ri,m+1x

m+1fi
has lowest degree term in degree at least m + k + 2 (or is 0). It follows that if we take
gi,m+1 = gi,m + ri,m+1x

m+1 for 1 ≤ i ≤ h, then (1) and (2) are satisfied, and (3) is as well
because u−

∑h
i=1 gi,m+1fi = u′ −

∑h
i=1 ri,m+1x

m+1fi has lowest degree term in degree at
least m + k + 2 (or the difference is 0). For each i, 1 ≤ i ≤ h, let gi be the formal power
series whose partial sums are the gi,m.

We claim that u =
∑h
i=1 gifi. It suffices to show that the coefficients on corresponding

powers of x are the same on both sides. Neither side has a nonzero term involving xt for
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t < k. On the other hand, for all m ≥ 0, the coefficient of xk+m on the right will not
change if we replace every gi on the right by gi,m, since gi − gi,m involves only terms of
degree strictly bigger than m + k + 1. Thus, it suffices to show that for all m ≥ 0, the
difference u−

∑h
i=1 gi,mfi has coefficient 0 on xm+k, and this is true by part (3). But the

fi = fi,k are in J0, so that u ∈ J0, as required. �

It is also true that the subring of C[[x1, . . . , xn]] (respectively, R[[x1, . . . , xn]]) consist-
ing of power series that converge on a neighborhood of the origin in Cn (respectively, Rn)
is a Noetherian ring with a unique maximal ideal, generated by x1, . . . , xn. These rings
are denoted C〈〈x1, . . . , xn〉〉 and R〈〈x1, . . . , xn〉〉, respectively.

The Noetherian property of the ring C〈〈x1, . . . , xn〉〉 is of considerable usefulness in
studying functions of several complex variables: this is the ring of germs of holomorphic
functions at a point in Cn. We shall not give the proof of the Noetherian property for
convergent power series rings here: proofs may be found in [O. Zariski and P. Samuel,
Commutative Algebra, Vol. II, Van Nostrand, Princeton, 1960], pp. 142–148 or [M. Nagata,
Local Rings, Interscience, New York, 1962], pp. 190–194.

The operations of taking quotients, localization, forming polynomial rings in finitely
many variables, and forming formal power series rings in finitely many variables have
immensely increased the class of examples of Noetherian rings available to us. We may
perform several iterations of these operations on a known Noetherian ring to create new
examples, and the order in which the operations are done usually matters, although two
operations of the same kind can be combined into one, and localization commutes with
formation of quotient rings.

Here is a simple example of a ring that we have not looked at yet: Vp = Z[[x]]/(x− p),
where p is a positive prime integer. We shall see later that this ring is a PID with a unique
maximal ideal, i.e., a discrete valuation ring, in which p generates the maximal ideal. In
this ring, we can make sense of a formal power series in p with integer coefficients: the
same power series can be written down with x replacing p, and so has a meaning in Z[[x]],
and it therefore represents an element of the quotient. For example, 1 + p+ p2 + p3 + · · ·
can be interpreted as the image of 1 + x+ x2 + x3 + · · · in the quotient. It turns out that
the value of 1 + p + p2 + p3 + · · · is an inverse for 1 − p, just as if p were a small real
number and we were using the formula for the sum of an infinite geometric progression.
The ring Vp is called the ring of p-adic integers: these rings have considerable importance
in number theory. It turns out that every element of Vp can be represented uniquely in
the form

∑∞
t=0 atp

t where where every ai is an integer satisfying 0 ≤ ai ≤ p− 1. We shall
return to this example later when we study complete local rings.

In the problem dealing with Cohen’s theorem, it is useful to consider colon ideals. We
give the definition here. Let I ⊆ R be an ideal in the ring R, and let S be an arbitrary
subset of R. Then I :R S (or simply I : S) is, by definition, {r ∈ R : for all s ∈ S, rs ∈ I},
which is easily verified to be an ideal of R. If J is the ideal of R generated by the set S,
it is straightforward to verify that I : J = I : S. We shall make use of colon ideals later
when we study primary decomposition of ideals.
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We next want to review the basic facts about tensor products of modules over a ring
R. We shall use tensor products for several purposes. When S is an R-algebra and M is
an R-module, then S ⊗RM is an S-module, and is finitely generated if M is. This gives
us a method of passing from R-modules to S-modules that is called extension of scalars.
When S is a localization of R, this gives a method of localizing modules as well, although
there are alternative constructions of the localization of a module.

If S and T are both R-modules it turns out that S ⊗R T has the structure of an R-
algebra, and is a coproduct for S and T in the category of R-algebras! Both extension
of scalars and this method of constructing coproducts are of great importance, both in
commutative algebra and in algebraic geometry.

We first recall the notion of a bilinear map. If M , N and W are R-modules, a bilinear
map B : M ×N →W is a function such that for each fixed v ∈ N , the map Bv : M →W
via Bv(u) = B(u, v) is R-linear, and for each fixed u ∈ M , the map Bu : N → W via
Bu(v) = B(u, v) is R-linear. We can express all this at once by the requirement that for
all u1, u2 ∈M , for all v1, v2 ∈ N , and for all r1, r2, s1, s2 ∈ R, we have that

B(r1u1 + r2u2, s1v1 + s2v2) =

r1s1B(u1, v1) + r1s2B(u1, v2) + r2s1B(u2, v1) + r2s2B(u2, v2).

One of the simplest and most important examples of a bilinear map is the map from
R × R → R that sends (r, r′) to rr′: bilinearity is a consequence of the left and right
distributive laws in R (which, of course, imply each other in a commutative ring R).

The composition T ◦B of a bilinear map M×N →W and an R-linear map T : W →W ′

is easily verified to be a bilinear map M×N →W ′. For fixed R-modules M,N this enables
us to define a covariant functor from R-modules to sets whose value Bil(M,N ;W ) on the
R-module W is the set of bilinear maps from M ×N to W . Given T : W → W ′ the map
Bil(M,N ;W )→ Bil(M,N ;W ′) is induced by composition with T , as just described.

It will turn out that the tensor product M ⊗R N is an R-module that represents this
functor, so that for all W we get a bijection HomR(M ⊗R N, W ) ∼= Bil(M,N ;W ): these
bijections give an isomorphism of functors of W . We have not yet shown the existence
and uniqueness of the tensor product, but we want to state first the key property that
it has in somewhat greater detail. We shall show that there is an R-module M ⊗R N
together with a bilinear map β : M × N → M ⊗R N with the following property: for
every R-module W and bilinear map B : M × N → W there is a unique linear map
T : M ⊗R N → W such that B = T ◦ β. The tensor product M ⊗R N together with the
bilinear map β : M × N → M ⊗R N give a universal bilinear map from M × N , in the
sense that every other bilinear map from M × N arises from β uniquely, by composition
of a linear map with β.

We shall show next that tensor products exist, and are unique up to isomorphism that
is also unique if the universal bilinear map β is taken into account.
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Lecture of October 24

Let M and N be any two R-modules. To construct β and M ⊗R N , take the free
module F on a basis bm,n indexed by the elements of M ×N . Let G be the submodule of
F spanned by the elements of the following forms as u, u′ vary in M , v, v′ vary in N , and
r varies in R:

(1) bu+u′,v − bu,v − bu′,v
(2) bru,v − rbu,v
(3) bu,v+v′ − bu,v − bu,v′
(4) bu,rv − rbu,v
We define M ⊗R N to be F/G, and the map β by the rule β(u, v) = [bu,v], where the

brackets [ ] indicate images mod G. The four types of elements that we killed by placing
them in G precisely guarantee that β is bilinear.

Proposition. For any bilinear map B : M × N → W , there is a unique linear map
f : M ⊗R N →W such that B = f ◦ β.

If γ : M ×N → T is another bilinear map with the same universal property, there is are
unique isomorphism φ : M ⊗R N → T such that γ = φ ◦ β (and, of course, β = φ−1 ◦ γ).

Proof. In order that B = f ◦β, we must have f([bu,v]) = f
(
β(u, v)

)
= B(u, v), which shows

that f is unique. To show that it exists, define f0 on F by the rule f0(bu,v) = B(u, v).
Then f0 kills G, simply because B is bilinear: this is a straightforward check. Thus, f0

induces an R-linear map f : F/G→W with the required properties.

If γ : M × N → T also has this property, then there is a unique linear map ψ : T →
M⊗RN such that β = ψ ◦γ and a unique linear map φ : M⊗RN → T such that γ = φ◦β
because of the property just proved for M ⊗R N . The composition ψ ◦ φ : T → T has the
property that its composition with γ is φ◦ψ◦γ = φ◦β = γ, and the identity map on T has
the same property. By the uniqueness property asserted for T and γ, φ ◦ ψ is the identity
map on T . By an exactly similar argument, ψ ◦ φ is the identity map on M ⊗R N . �

The image of (u, v) in M⊗RN is denoted u⊗v. This symbol has the following properties:
(1) (u+ u′)⊗ v = u⊗ v + u′ ⊗ v.
(2) u⊗ (v + v′) = u⊗ v + u⊗ v′.
(3) (ru)⊗ v = r(u⊗ v) = u⊗ (rv),
These properties are implied by the bilinearity of the map β.

Since the bu,v span F over R, the elements u⊗ v span M ⊗R N over R. However, not
every element has this form. It is however true that if two R-linear maps on M ⊗N to W
agree on all elements of the form u⊗ v, then they are equal.

Proposition. If {ui : i ∈ I} spans M and {vj : j ∈ J} spans N , then {ui ⊗ vj : (i, j) ∈
I × J} spans M ⊗N . Hence, if M and N are finitely generated, so is M ⊗N .

Proof. M ⊗N is spanned by the elements u⊗ v and u =
∑h
s=1 rsuis while v =

∑k
t=1 r

′
tvjt .

But then u⊗ v = (
∑h
s=1 rsuis)⊗ (

∑k
t=1 r

′
tvjt) =

∑
s,t(rsr

′
t)(uis ⊗ vjt). �
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Maps from tensor products are almost always constructed by giving a bilinear map first.
The proofs of the following results give examples:

Proposition. Let M,M ′ and N,N ′ be modules over the ring R.
(a) There is a unique isomorphism M ⊗ N ∼= N ⊗M under which u ⊗ v is mapped to

v ⊗ u for all u ∈M , v ∈M .
(b) There is an isomorphism M ∼= R ⊗M that maps u to 1⊗ u; its inverse maps r ⊗m

to rm.
(c) If f : M → M ′ and g : N → N ′ are R-linear, there is a unique R-linear map,

f ⊗ g : M ⊗M ′ → N ⊗N ′ such that (f ⊗ g)(u⊗ u′) = f(u)⊗ g(u′).
(d) There is a unique isomorphism (M ⊕M ′) ⊗ N ∼= (M ⊗ N) ⊕ (M ′ ⊗ N) that sends

(u⊕u′)⊗ v ∼= (u⊗ v)⊕ (u′⊗ v). This extends at once, by induction, to direct sums of
finitely many modules, and there is a corresponding fact when the second module is a
direct sum.

(e) If M =
⊕

i∈IMi and N =
⊕

j∈J Nj are arbitrary direct sums, then

M ⊗N =
⊕

(i,j)∈I×J

Mi ⊗Nj .

(f) If F is free over R on the free basis bi, i ∈ I and F ′ is free on the free basis b′j, j ∈ J ,
then F ⊗ F ′ is free on the the free basis bi ⊗ b′j, (i, j) ∈ I × J .

Proof. (a) follows from the fact that there is a bilinear map M × N → N ⊗M taking
(u, v) to v ⊗ u: the check of bilinearity is straightforward. The construction of the map
N ⊗M →M ⊗N is the same. Since the maps interchange u⊗ v and v⊗u, it is clear that
each composition is the relevant identity map, since that is true on a spanning set.

(b) The check that the specified map M → R ⊗M is linear is easy, and it is likewise
easy to check that there is a bilinear map R×M →M sending (r,m) to rm, and hence a
linear map R ⊗M →M sending r ⊗m to rm. One of the compositions is sending r ⊗m
first to rm and then to 1⊗rm = r(1)⊗m, and so is the identity. The other check is easier.

(c) A linear map as specified exists because the map M × N → M ′ ⊗ N ′ that sends
(u, v)→ f(u)⊗ g(v) is readily checked to be bilinear.

(d) There is a bilinear map (M ⊕M ′)×N → (M ⊗N)⊕ (M ′⊗N) that sends (u⊕u′, n)
to (u⊗ v)⊕ (u′ ⊗ v). By (c), the injections ι : M ↪→ M ⊕M ′, ι′ : M ′ ↪→ M ⊕M ′ induce
maps ι ⊗ 1N : M ⊗ N → (M ⊕M ′) ⊗ N and ι′ ⊗ 1N : M ′ → (M ⊕M ′) ⊗ N . These
together give a map (ι ⊗ 1N ) ⊕ (ι′ ⊗ 1N ) : (M ⊗N) ⊕ (M ′ ⊗N) → (M ⊕M ′) ⊗N . It is
completely straightforward to check that the compositions are the relevant identity maps,
working with elements of the form (u⊕u′)⊗ v in one case, and with elements of the forms
(u⊗ v)⊕ 0 and 0⊕ (u′ ⊗ v) in the other case.

(e) We first consider the case where there is just one module N on the right. Consider
any finite number of the summands on the left: call them Mi1 , . . . ,Min , and let M ′ be the
direct sum of all the others. Then by part (d), we have M ⊗N ∼=

⊕n
t=1Mt⊗N ⊕M ′⊗N .

It follows that all of the modules Mi ⊗ N inject into M ⊗ N (as direct summands) and
that any one of them is disjoint from a finite sum of the others. Since the Mi span M ,



79

it follows that the Mi ⊗ N have sum M ⊗ N , and thus we have the required direct sum
decomposition of M⊗N . Obviously, there is a similar result for direct sum decompositions
of N . Thus,

M ⊗N ∼= (
⊕

Mi)⊗N ∼=
⊕
i

(Mi ⊗N) ∼=
⊕
i

(
Mi ⊗ (

⊕
j

Nj)
) ∼= ⊕

i

(⊕
j

Mi ⊗Nj)
)
,

and the result follows.

(f) F (respectively, G) has the form
⊕

iRbi (respectively,
⊕

j Rb
′
j), where each Rbi ∼= R

(respectively, Rb′j ∼= R), and the result now follows from (e) and (b) in the special case
M ∼= R. �

Given two categories C and D one may define a product carry C ×D whose objects are
pairs of objects (X, Y ) where X is an object of C and Y is an object of D. The morphisms
of (X,Y ) to (X ′, Y ′) are pairs of morphisms (f, g) where f : X → X ′, g : Y → Y ′.
Composition is performed coordinate-wise. From part (c) we deduce that ⊗R is a covariant
functor of two variables, i.e., if C is the category of R-modules, it is a functor C × C → C.
One frequently considers this functor when one of the modules is fixed: thus, there is a
functor ⊗R N from R modules to R-modules that maps M to M ⊗R N : it takes the
map f : M →M ′ to the map f ⊗ 1N , so that u⊗ v maps to f(u)⊗ v.

Proposition. If 0 → M ′
f−→ M

g−→ M ′′ → 0 is a short exact sequence of modules, then
M ′ ⊗N → M ⊗N → M ′′ ⊗N → 0 is exact, i.e., g ⊗ 1N is surjective, and the image of
f ⊗ 1N is the kernel of g ⊗ 1N . The latter fact implies, when M ′ ⊆M and M ′′ = M/M ′,
that (M/M ′)⊗N ∼= (M ⊗N)/Im (M ′ ⊗N).

The conclusion remains correct if one only has that M ′
f−→M

g−→M ′′ → 0 is exact.

Proof. Since M ′′ ⊗ N is spanned by elements u′′ ⊗ v for u′′ ∈ M ′′ and v ∈ N , to prove
that g ⊗ 1N is surjective it suffices to observe that each such element is the image of
u ⊗ v , where u ∈ M is chosen so that g(u) = u′′. We clearly have a surjection of
M ⊗N/Im (M ′ ⊗N) onto M ′′ ⊗N mapping u⊗ v to g(u)⊗ v. To complete the proof, we
show that this is an isomorphism by constructing an inverse map h. There is a bilinear
map M ′′×N →M ⊗N/Im (M ′⊗N) sends (u′′, v) to the class of (u, v), where g(u) = u′′.
This must be checked to be independent of the choice of u. But if we choose a different
element u1 that maps to u′′, it differs from u by an element in the image of M ′, from
which it follows that u ⊗ v − u1 ⊗ v = (u − u1) ⊗ v is in the image of M ′ ⊗N . Once the
map is known to be well-defined, it is straightforward to check that it is bilinear, and it
is clear the the compositions of h and g ⊗ 1N give the appropriate identity map in either
order, since one need only check what happens on the spanning elements such as [u ⊗ v]
and g(u)⊗ v, and each maps to the other. �

The result of the preceding Proposition is referred to as the right exactness of tensor.

Applying ⊗ N does not preserve injectivity in general. For example, consider the
injection 2Z ⊆ Z of Z-modules and apply ⊗ Z/2Z. We have that 2Z ∼= Z, and so the
first module becomes 2Z ⊗Z Z/2Z ∼= Z/2Z but the induced map Z/2Z → Z/2Z is 0. It
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might be better to think of the left hand copy of Z/2Z as 2Z/4Z. Note that when we look
at the element 2⊗ [1] in 2Z⊗ Z/2Z, we may not move the 2 that occurs to the left of the
tensor symbol across the tensor symbol, because the element 1 is “missing” from 2Z.

Similarly, if a is a nonzero element of the domain A, we have aA ⊆ A, but applying
⊗A/aA gives the zero map from aA/a2A ∼= A/aA to A/aA.

Corollary. If M ′ ⊆ M and N ′ ⊆ N are submodules of the R-modules M , N , then
(M/M ′)⊗ (N/N ′) ∼= (M ⊗N)/

(
Im (M ⊗N ′) + Im (M ′ ⊗N)

)
.

Proof. By the preceding result, this is (M/M ′)⊗N mod the image of (M/M ′)⊗N ′, and
the former may be identified with (M ⊗N)/Im (M ′ ⊗N). The image of (M/M ′)⊗N ′ in
this module is the same as the image of M ⊗N ′, and the result follows. �

Corollary. (R/I)⊗M ∼= M/IM while (R/I)⊗ (R/J) ∼= R/(I + J).

Proof. The image of I ⊗M in R⊗M ∼= M under the map that sends r⊗m to rM is IM .
This proves the first statement. The second statement is immediate from the preceding
Corollary. �
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Lecture of October 27

Notice that if K is a field, V has finite basis v1, . . . , vm, and and W has finite basis
w1, . . . , wm, then V ⊗K W has finite basis vi ⊗Wj , and so every vector in V ⊗W can
be written uniquely in the form

∑
i,j aij(vi ⊗ wj) where 1 ≤ i ≤ m and 1 ≤ j ≤ n. This

gives a vector space isomorphism of V ⊗W with m × n matrices (aij) over K which is
not canonical: it depends on the choices of basis for V and for W . But it is useful. For
example, an element of the form v ⊗ w in V ⊗W can be written as

(
m∑
i=1

bivi)⊗ (
n∑
j=1

cjwj) =
∑
i,j

(bicj)(vi ⊗ wj),

so that the corresponding matrix (bicj) factors as the product of the m × 1 matrix with
entries bi and the 1 × n row matrix (c1 . . . cn). A matrix has such a factorization if and
only if it has rank at most one. Thus, an element of V ⊗W is decomposable as v ⊗ w if
and only if the corresponding matrix has rank at most one. This condition is independent
of the choices of basis. Such matrices are rather special among all m× n matrices (unless
m ≤ 1 or n ≤ 1).

If M1, . . . ,Mk, W are R-modules a map M1 × · · · ×Mk → W is called k-multilinear
or simply multilinear over R if, for every i, it becomes an R-linear function of ui when all
the other entries u1, . . . , ui−1, ui+1, . . . uk of u1, . . . , uk are held fixed. An example is
the map R × R × · · · × R → R that sends (r1, . . . , rk) → r1r2 · · · rk. As a function of k
variables it is a polynomial of degree k, but it is linear in each variable if all of the others
are held fixed. If k = 2, this means that the map is bilinear. When k = 3 we may use the
term trilinear.

We next note that the map τ on M1 ×M2 ×M3 sending (u1, u2, u3) to (u1 ⊗ u2)⊗ u3

in (M1 ⊗M2) ⊗M3 is trilinear, and in fact is universal, in the sense that any trilinear
map T : M1 ×M2 ×M3 →W factors uniquely as the composition of τ with a linear map
f : (M1⊗M2)⊗M3 →W . Uniqueness is clear, since given T , the value of f on (u1⊗u2)⊗u3

must be T (u1, u2, u3). To show that such a map f exists, note that for each fixed u3,
T defines a bilinear map Bu3 : M1 ×M2 → W such that Bu3(u1, u2) = T (u1, u2, u3),
and therefore a linear map gu3 : (M1 ×M2) → W . We can then define a bilinear map
B : (M1 ⊗M2)×M3 →W by the rule by the rule B(v, u3) = gu3(v). It is straightforward
to check bilinearity, and that the map f : (M1 ⊗M2) ⊗M3 → W induced by B satisfies
f
(
(u1 ⊗ u2)⊗ u3

)
= T (u1, u2, u3) for all ui ∈Mi.

An entirely similar argument shows that we could have used M1 ⊗ (M2 ⊗M3) instead,
i.e., that the map M1×M2×M3 →M1⊗(M2⊗M3) that sends (u1, u2, u3) to u1⊗(u2⊗u3)
is also a universal trilinear map. This gives a map (M1 ⊗M2)⊗M3 → M1 ⊗ (M2 ⊗M3)
and also a map in the other direction such that the first takes every (u1 ⊗ u2) ⊗ u3 to
u1 ⊗ (u2 ⊗ u3) while the second takes every u1 ⊗ (u2 ⊗ u3) to (u1 ⊗ u2) ⊗ u3. These are
evidently mutually inverse maps, and the isomorphism (M1⊗M2)⊗M3

∼= M1⊗(M2⊗M3)
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just described is referred to as the associativity of tensor, although we shall also soon see
that there is a stronger version.

It then follows that M1⊗M2⊗ · · · ⊗Mk has a meaning independent of how one inserts
parentheses, and that the map µ : M1 × · · · ×Mk → M1 ⊗M2 ⊗ · · · ⊗Mk that sends
(u1, · · · , uk) to u1 ⊗ · · · ⊗ uk is a universal k-multilinear map: every k-multilinear map
from M1 × · · · ×Mk arises from µ by composing it with a linear map, and the linear map
that can be used is unique. The only step of interest in the proof is to show that given a k-
multilinear map T : M1⊗M2⊗· · ·⊗Mk →W there is a map f : M1⊗M2⊗· · ·⊗Mk →W
such that f(u1 ⊗ · · · ⊗ uk) = T (u1, . . . , uk) for all (u1, . . . , uk) ∈ M1 × · · ·Mk. One
uses induction. Again, for each fixed uk ∈ Mk, T yields a (k − 1)-multilinear map guk

of
the first k − 1 variables to W , which in turn, by the induction hypothesis, induces a map
guk

: M1⊗· · ·Mk−1 →W . The map (M1⊗· · ·Mk−1)×Mk whose value on (u1⊗· · ·uk−1, uk)
is guk

(u1 ⊗ · · ·uk−1) may be easily checked to be bilinear, and this induces the map we
want.

We next want to show that if M1 is an S-module and M2 is an R-module, then M1⊗RM2

(where M1 is regarded as an R-module via restriction of scalars) is an S-module in such
a way that for all s ∈ S, u1 ∈ M1 and u2 ∈ M2, s(u1 ⊗ u2) = (su1) ⊗ u2. First note
that we have an R-trilinear map S × M1 × M2 → M1 ⊗R M2 that sends (s, u1, u2) to
(su1) ⊗ u2. This yields an R-linear map S ⊗R (M1 ⊗R M2) → M1 ⊗R M2 and therefore
an R-bilinear map S × (M1 ⊗R M2) → M1 ⊗R M2. This is the map we shall use for
multiplication by s: for z ∈ M1 ⊗M2, sz is the image of (s, z) under this map. This has
the stated property that s(u1 ⊗ u2) = (su1) ⊗ u2. The R-bilinearity also implies most of
the conditions that we need for this action of S to make M1 ⊗R M2 into an S-module.
However, we still need to check that for all u ∈ M1 ⊗RM2 and s, s′ ∈ S, (ss′)u = s(s′u).
Since multiplication by an element of S is R-linear, it suffices to check this for elements u
that generate M1 ⊗RM2 as an R-module, and so we may assume that u = u1 ⊗ u2. But
then (ss′)(u1⊗u2) =

(
(ss′)u1

)
⊗u2 =

(
s(s′u)1

)
⊗u2 == s

(
(s′u)1⊗u2

)
= ss′(u1⊗u2), as

required.

Similarly, if M1 is an R-module and M2 is an S-module, we can give an S-module
structure to M1 ⊗RM2 such that s(m1 ×m2) = m1 ⊗ (sm2).

A word of caution: if M1 and M2 are both S-modules, then M1 ⊗R M2 has two S-
module structures, one that comes from M1, and one that comes from M2, and these are
almost always different. The point is that when we tensor over R, scalars from S cannot
be “passed through” the tensor symbol (although scalars from R can), and so sm1 ⊗m2

and m1 ⊗ sm2 are usually distinct.

Something analogous happens with HomR(M1, M2) when S is an R-algebra. If M2 is
an S-module, then HomR(M1, M2) becomes an S-module if one defines sf by the rule
(sf)(u1) = s

(
f(u1)

)
. Likewise, if M1 is an S-module then HomR(M1, M2) becomes an

S-module if one uses the rule (sf)(u1) = f(su1). However, when M1 and M2 are both
S-modules, these two S-module structures are usually different: we do not have f(su1) =
sf(u1) because f is being assumed R-linear but not necessarily S-linear.
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If M,N are S-modules and Q is an R-module then (M ⊗S N)⊗RQ ∼= M ⊗S (N ⊗RQ)
as S-modules: this is also called associativity of tensor: it strengthens our previous result,
which was the case where S = R. As before, (u ⊗ v) ⊗ w and u ⊗ (v ⊗ w) correspond
under the two isomorphisms. We construct maps as follows. For each fixed w ∈ Q there
is an S-bilinear map Bw : M ×N →M ⊗S (N ⊗R Q) by the rule Bw(u, v) = u⊗ (v ⊗w).
This gives an S-linear map gv : M ⊗ N → W . We can then define an R-bilinear map
(M ⊗SN)×SQ→M ⊗S (N ⊗RQ) that sends (y, v) to gv(y), and this induces an R-linear
map (M ⊗S N) ⊗S Q → M ⊗S (N ⊗R Q) that is easily checked to send (u ⊗ v) ⊗ w to
u⊗ (v⊗w). This map turns out to be S-linear: we need only check this on the generators
(u⊗ v)⊗w, and s

(
(u⊗ v)⊗w)

)
= (su⊗ v)⊗w has image (su)⊗ (v⊗w) = s

(
u⊗ (v⊗w)

)
,

as required.

To get a map in the other direction, for each fixed u ∈ M define an R-bilinear map
B′u : N × Q → (M ⊗S N) ⊗R Q by the rule B′u(v, w) = (u ⊗ v) ⊗ w, which yields an
R-linear map g′u : N ⊗R M → (M ⊗S N) ⊗R Q. It is easy to check that this map is
actually S-linear, because (u ⊗ sv) ⊗ w = s

(
u ⊗ (v ⊗ w)

)
. We then define an S-bilinear

map M × (N ⊗R Q)→ (M ⊗S N)⊗R Q that sends (u, z) to g′u(z). We now have S-linear
maps in both directions that on generators interchange (u ⊗ v) ⊗ w and u ⊗ (v ⊗ w), as
required.

By these remarks, if S is an R-algebra we have a covariant right exact functor from
R-modules to S-modules given by S ⊗R . This operation is referred to as extension of
scalars or base change, because the “base ring” R is being replaced by the base ring S.
R-modules get converted to S-modules. This turns out to be an extraordinarily useful
technique. The method of studying real vector spaces and real matrices by enlarging
the field to the complex numbers and taking complex linear combinations and so forth is
actually an example of this method being used in a tacit way.

Note that since S⊗RM is an S-module, it is also an R-module by restriction of scalars.
The map M → S⊗M that takes u to 1⊗u is R-linear. In general, it need not be injective,
however.

Because of the canonical isomorphism S ⊗R R ∼= S as S-modules, and the fact that
tensor product commutes with direct sum, base change converts free R modules with free
basis {bi}i∈I to free S-modules with free basis {1⊗ bi}i∈I . If f : R → S is the structural
homomorphism for S as an R-algebra, the map R → R given by multiplication by r ∈ R
becomes the map R→ S given by multiplication by f(r) ∈ S.

To understand what base change does to an arbitrary module it may be helpful to think
in terms of presentations. Given an R-module M one may choose generators {ui}i∈I where
I is a suitable index set (I may be infinite), and then form a free module R⊕I with free
basis {bi}i∈I indexed by I. We then have a surjection R⊕I � M that sends bi to ui for
every i. We may then choose generators for the kernel M ′ ⊆ R⊕I , and so construct another
surjection R⊕J � M ′. This then yields an exact sequence R⊕J → R⊕I � M → 0, and
the map R⊕J → R⊕I determines M . We may think of the map as given by a matrix
indexed by I × J such that each column has only finitely many nonzero entries. Thus, the
columns represent vectors in R⊕I that span M ′, and we get M by killing the R-span of
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these columns. In other words, M is simply the cokernel of the map R⊕J → R⊕I . The
sequence R⊕J → R⊕I � M → 0 is called a presentation of M .

This is all more standard when M is finitely generated and the module M ′ is also finitely
generated. Then I and J are finite sets, and M is said to be finitely presented. If R is
Noetherian, every finitely generated module has a finite presentation: if I is finite, R⊕I is
finitely generated, and, hence Noetherian. This implies that M ′ is finitely generated.

In this case, where I and J are finite, we can think of the presentation sequence as
having the form Rn → Rm � M → 0, where we think of Rm as m × 1 column vectors.
The matrix of the map is then an m×n matrix (rij) over R. M is the cokernel of the map,
which is the same as the quotient of Rm by the submodule spanned by the n columns.
When we apply S ⊗R , we get an exact sequence Sn → Sm � S ⊗R M → 0, and so
we get a presentation of the module S ⊗R M . The new matrix

(
f(rij)

)
is obtained by

applying f to the entries of the original matrix. One corollary of this point of view is that
if M is finitely generated by, say, u1, . . . , um, then S ⊗R M is finitely generated by the
elements 1 ⊗ u1, . . . , 1 ⊗ um. The same remark applies to arbitrary sets of generators of
M .

We can think essentially the same way even when I and J are infinite: we still have a
matrix in the form of an R-valued function on I × J (subject to the additional condition
that for every j ∈ J it is nonzero for only finitely many i ∈ I), and the new matrix for the
map S⊕J → S⊕I in the presentation sequence S⊕J → S⊕I � S ⊗RM → 0 is obtained by
applying f to each entry of the original matrix.

We next note that the module S ⊗RM has a certain universal mapping property, and
can be thought of as representing a functor:

Theorem. If S is an R-algebra, M is an R-module, and N is an S-module, there is a
canonical isomorphism θN : HomR(M, N) ∼= HomS(S⊗RM, N). This isomorphism takes
f : M → N to the map S⊗M → N induced by the R-bilinear map S×M → N that sends
(s,m) to sf(m) for all s ∈ S and m ∈M . The inverse σN of θN is obtained by composing
g : S ⊗R M → N with the map M → S ⊗R M described earlier (which maps m ∈ M
to 1 ⊗ m). The isomorphisms θN together give an isomorphism between the covariant
functors HomR(M, ) and HomS(S ⊗RM, ) viewed as functors to sets (or as functors
to S-modules). Thus, S ⊗RM represents HomR(M, ) in the category of S-modules.

Proof. There are only a few things to check. One is that the maps θN and σN are inverses.
Given f : M → N , θN (f) maps s ⊗ u to sf(u), and so composing with M → S ⊗M
gives a map that takes u to 1 · f(u) = f(u), as required. On the other hand, given a map
g : S ⊗M → N that is S-linear, it suffices to see that when we apply θN ◦ σN we get a
map that agrees with g on elements of the form s⊗ g. The effect of applying σN is to give
a map M → N that sends u to g(1⊗ u), and then the further effect of applying θN gives
a map that sends s⊗ u to sg(1⊗ u) = g(s⊗ u), as required. All other checks needed are
at least as easy. �

We shall next use base change to develop a theory of localization of modules, although
it will prove useful to have an alternative characterization of localization of a module.
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Lecture of October 29

We give one construction for localization of R-modules with respect to a multiplicative
system, and then show that it is really an instance of base change.

Suppose that S = W−1R, where W is a multiplicative system in R. Given an R-module
M we can construct an S-module W−1M as follows. Define an equivalence relation on
M × W via (u,w) ∼ (u′, w′) iff there exists w′′ ∈ W such that w′′(w′u − wu′) = 0.
The equivalence classes form an abelian group with the addition [(u,w)] + [(u′, w′)] =
[(w′u + wu′, ww′)], and an S-module via the multiplication (r/w)[(u,w′)] = [(ru,ww′)].
These operations are easily checked to be independent of the choices of equivalence class
representatives. The class [(u, w)] is often denoted u/w. W−1M also remains anR-module,
by restriction of scalars. In fact, r(u/w) = (ru)/w. There is a map M →W−1M that is R-
linear, sending u to [(u, 1)]. The kernel of this map is {u ∈M : for some w ∈W,wu = 0}.
This is easily checked because, by the definition of the equivalence relation, [(u, 1)] ∼ [(0, 1)]
if and only if for some w ∈W , w(1 · u− 1 · 0) = 0, i.e., wu = 0.

This localization operation can also be defined on maps: given an R-linear map M → N
there is a unique S-linear map W−1f : W−1M →W−1N such that the diagram

W−1M
W−1f−−−−→ W−1Nx x

M
f−−−−→ N

commutes. This map is defined to take [(u,w)] to [f(u)/w], i.e., to take u/w to f(u)/w.
It is easily checked that the equivalence class of the value is independent of the choice of
representative of the equivalence class [(u,w)], and that the map is S-linear. It is clear
that it does make the diagram commute. Uniqueness follows, because the value of the map
on w(u/w) = u/1 must be f(u) for the diagram to commute, and if we multiply by 1/w
we see that the map must take u/w to f(u)/w.

The map M → W−1M induces a unique map S ⊗M → W−1R such that (r/w) ⊗ u
maps to ru/w for all r ∈ R, w ∈ W , and u ∈ M . This map is clearly surjective, and is
an isomorphism: to give a map in the other direction, simply send [(u,w)] to (1/w) ⊗ u,
which is easily checked to be independent of the choice of representatives and to be a
ring homomorphism. All of the elements s ⊗ u for s = r/w ∈ S can be rewritten as
(1/w) ⊗ ru. Therefore to see that the two maps are mutually inverse it suffices to note
that they interchange (1/w)⊗ u and u/w for all w ∈W and u ∈M .

The identification reconfirms that localization at W gives a covariant functor from R-
modules to S-modules: we have already described it directly.

A module M over R is called flat if M ⊗R is an exact functor, i.e., if whenever
N ⊆ Q are R-modules the map M ⊗ N → M ⊗ Q is injective. Then all exact sequences
are preserved. An R-algebra S is called flat if it is flat as an R-module. If S is flat over
R, base change from R-modules to S-modules is an exact covariant functor.



86

Theorem. If R is a ring and W a multiplicative system, W−1R is R-flat.

Proof. This comes down to the assertion that if N ⊆M then the induced map W−1N →
W−1M is injective. But n/w maps to 0 if and only if n/w thought of in W−1M is 0, and
the definition of the equivalence relation tells us that n/w is 0 if and only if w′n = 0 for
some w′ ∈W . But this condition implies that n/w is already 0 in W−1N . �

It is a straightforward exercise to show that a direct sum of modules is flat if and only
if all the summands are flat. R itself is obviously flat, since R ⊗R is isomorphic to the
identity functor, and it follows that free modules are flat. Thus, when R is a field, every
R-module is flat.

Direct summands of free modules are called projective modules. They need not be free,
but they are flat.

We recall some facts about splitting. Suppose that we have an R-linear surjection
f : M � P with kernel Q. If there is an R-linear map g : P → M such that f ◦ g is the
identity map on P , then it is clear that g is injective, with image P ′ ⊆M that is isomorphic
to P . Moreover, M is the internal direct sum of P and Q. Give u ∈M , p′ = g(f(u)) ∈ P ′,
and f(u − p′) = f(u) − (f ◦ g)

(
f(u)

)
= f(u) − f(u) = 0, so that u − p′ ∈ Q. Thus,

M = P ′+Q. If u ∈ P ′ ∩Q then f(u) = 0, since u ∈ Q. But u = g(p) for some p ∈ P , and
so 0 = f(u) = (fg)(p) = p, and then u = g(p) = g(0) = 0. Thus, M = P ′ ⊕R Q internally,
and M ∼= P ⊕R Q. With this in mind, we give some examples of projective modules that
are not free.

Examples. If R has a non-trivial idempotent e, then R is the direct sum of eR and (1−e)R
as R-modules. These are projective R-modules that are not free (each is the annihilator
of the other, while a nonzero free module has annihilator (0) ).

Here is a much more intriguing example. Let T = R[X, Y, Z]/(X2 + Y 2 + Z2 − 1) =
R[x, y, z]. The elements of this ring are represented by polynomials and these may be
restricted, as R-valued functions, to the unit 2-sphere centered at the origin in R3, and so
give continuous functions on the 2-sphere S2. Different representatives of the same class
give the same function, since they differ by a multiple of X2 +Y 2 +Z2−1, which vanishes
on S2. Consider the T -linear map f : T 3 → T with matrix (x y z). We have a map
g : T → T 3 given by the 3 × 1 column matrix u with entries x, y, z. The composition
f ◦ g is given by the 1 × 1 matrix whose single entry is x2 + y2 + z2 = 1, and so f ◦ g is
the identity on T . The image of g is the free module Tu with the generator u. By the
discussion just preceding these examples, T 3 = Tu⊕T Q where Q is the kernel of the map.
Thus, Q is a projective module.

If we make a base change by tensoring over T with the fraction field K of T , we see that
K3 ∼= K⊕K (K⊗T Q). It follows that if Q is free over T , it must be free on two generators.
But Q is not ∼= T 2. To see this, suppose Q has a free basis consisting of column vectors
v and w. Then u, v and w give the columns of a 3× 3 matrix A. Since u, v, and w span
T 3, there cannot be any linear relation on them, for then they will span K3 over K, and so
they are a vector space basis for K3 over K and have no linear relation even over K. Thus,
they give a new free basis for T 3. It follows that the map given by the matrix A is an
automorphism of T 3, and its inverse will be given by a matrix B such that AB = BA = I,
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the 3× 3 identity matrix over T . We then have that det(A) det(B) = 1, and so det(A) is a
unit α of T , and we can multiply the second (or third) column of A by α−1. We therefore
see that u is part of free basis for T 3 if and only if it is the first column of a 3× 3 matrix
over T with determinant one (we only proved one direction, which is the direction that we
are using, but the other direction is quite straightforward). However, it is impossible to
give such a matrix even if the entries are allowed to be arbitrary continuous functions on
the 2-sphere!

Suppose that the second column of the matrix A is (f, g, h)tr , where we are using the
superscript tr to indicate the transpose of a matrix. We may think of both the first and
second columns as continuous vector-valued functions on S2: the value of the first column
is a unit vector that is the position vector of the point of S2 that we are considering. At
each point (a, b, c) of S2 the vectors which are the values of the first and second columns are
linearly independent, because the determinant of the matrix A, when evaluated at (a, b, c),
is constantly 1. We can subtract off the component of the second column in the direction
of the unit vector (a, b, c): we obtain a continuous non-vanishing vector-valued function
that gives a non-vanishing vector field of tangent vectors to the 2-sphere, a contradiction.
More explicitly, consider V = (f, g, h)tr − (xf + yg + zh)(x, y, z)tr . This is a continuous
vector-valued function on S2. It does not vanish on S2, because at each point the values of
(f, g, h)tr and (x, y, z)tr are linearly independent. At every point (a, b, c) ∈ S2, the value
of V is orthogonal to the unit vector (a, b, c): the dot product vanishes. Thus, as already
asserted, we have constructed a non-vanishing vector-valued function whose value at every
point of S2 is a tangent vector of S2. This completes the proof that Q is not free! � (See
also 6. in Supplementary Problem Set #7.)

We next note the following exactness properties of Hom:

Proposition. Let 0 → M ′
α−→ M

β−→ M ′′ be an exact sequence of R-modules, and let N
be any R-module. Then 0 → HomR(N, M ′) → HomR(N,M) → HomR(N, M ′′) is exact,
and so Hom(N, ) is a left exact covariant functor from R-modules to R-modules.

What is more, if M ′ α−→ M
β−→ M ′′ → 0 is an exact sequence of R-modules, then

0 → HomR(M ′′, N) → HomR(M, N) → Hom(M ′, N) is exact. Thus, HomR( , N) is a
contravariant left exact functor from R-modules to R-modules.

Proof. For the statement in the first paragraph, note that α obviously induces an injection,
and a map from N to M is killed if and only if all its values are, which means that it is
taking values in the image of M ′.

For the statement in the second paragraph, note that the map induced by β is obviously
injective: if f(u′′) 6= 0, there exists u ∈ M such that β(u) = u′′, and then (f ◦ β)(u) 6= 0.
A map from M to N is killed if and only if its restriction to M ′ is the zero map, i.e., if
and only if it induces a map from M ′′ to N , and it will be the image of this map. �

Note that 0→ 2Z ⊆ Z � Z/2Z→ 0 is exact, but that if we apply HomZ(Z/2Z, ) the
map HomZ(Z/2Z, Z) = 0 to HomZ(Z/2Z, Z/2Z) ∼= Z/2Z is not onto, while if we apply
HomZ( , Z) the map HomZ(Z, Z) → HomZ(2Z, Z) is not onto: the map 2Z → Z that
sends 2 7→ 1 does not extend to Z.
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Lecture of October 31

It is worth noting that HomR(R, M) ∼= M for all R-modules M : to give an R-linear
map R→M is the same as to specify its value on the generator 1 of R as an R-module, and
so we have a map HomR(R, M) → M sending f 7→ f(1) and a map M → HomR(R, M)
sending u ∈ M to the map whose value on r is ru for all r ∈ R. These mutually inverse
isomorphisms establish an isomorphism of HomR(R, ) with the identity functor on R-
modules. Also note that we have a similar isomorphism HomR(R/I, M) ∼= AnnMI, the set
of all elements of M that are killed by I. We use a bar to indicate classes mod I. Giving
a map from R/I is the same as specifying its value on 1, but the fact that r(1) = r = 0
for r ∈ I implies that rf(1) = f(r) = f(0) = 0 implies that only elements of AnnMI are
available as values for f(1).

We note the following alternative characterization of projective modules: an R-module
P is projective if and only if (∗) HomR(P, ) is an exact functor, which means that for
every surjective map M � M ′′, HomR(P, M) → HomR(P, M ′′) is surjective. If P = R
one gets the identity functor, so that R has property (∗) , and a direct sum of modules has
property (∗) if and only if they all do, so that free modules have it and direct summands
of free modules also have it. But if P has property (∗) we can map a free module F onto
it, say f : F � P , and then HomR(P, F ) → HomR(P, P ) is onto, and so there is a map
g : P → F whose composition with surjection f : F � P is the identity on P . This implies
that P is isomorphic with a direct summand of F : F is the internal direct sum of the
kernel Q of f and g(P ), which is isomorphic with P .

We next want to construct coproducts in the category of A-algebras for any arbitrary
commutative ringA: the category of all commutative rings is included, since this is identical
with the category of Z-algebras.

If R and S are A-algebras then there is a A-bilinear map (R⊗AS)×(R⊗AS)→ (R⊗AS)
such that (r ⊗ s)(r′ ⊗ s′) = (rr′) ⊗ (ss′). To give this map is the same as giving a linear
map (R ⊗A S) ⊗A (R ⊗A S) → (R ⊗A S) → R ⊗A S. But this in turn is the same as
giving a 4-multilinear map R × S × R × S → R ⊗A S and we can simply send (r, s, r′, s′)
to (rr′) ⊗ (ss′). One needs to check that the multiplication one gets is commutative and
associative and that 1 ⊗ 1 is an identity. It suffices to check this on the A-generators,
e.g., for associativity that

(
(r ⊗ s)(r′ ⊗ s′)

)
(r′′ ⊗ s′′) = (r ⊗ s)

(
(r′ ⊗ s′)(r′′ ⊗ s′′)

)
. This

comes down to
(
(rr′)r′′

)
⊗
(
(ss′)s′′

)
=
(
r(r′r′′)

)
⊗
(
s(s′s′′)

)
, which is immediate from the

associativity of the respective multiplications in R and S. The other checks are equally
easy. Notice that R → R ⊗A S sending r → r ⊗ 1 is an A-algebra homomorphism, and
S → R⊗A S sending s to 1⊗ s is as well.

Theorem. R ⊗A S together with the maps µ : R → R ⊗A S and ν : S → R ⊗A S
is a coproduct for R and S in the category of A-algebras: for every A-algebra T there
is a bijection HomA-alg(R ⊗A S, T ) ∼= HomA-alg(R, T ) × HomA-alg(S, T ) that sends f to
(f ◦ µ, f ◦ ν).
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Proof. Because R ⊗A S is generated by the images of R and S over A (note that r ⊗ s =
(r ⊗ 1)(1 ⊗ s) ), it is obvious that any A-algebra homomorphism f : R ⊗A S → T is
determined by f ◦ µ and f ◦ ν. Therefore, the specified map is one-to-one. To show that
it is onto we need to show that given g : R → T and h : S → T as A-algebras we can
construct an A-algebra homomorphism f : R ⊗A S → T such that f(r ⊗ 1) = g(r) and
f(1 ⊗ s) = h(s) for all r ∈ R and s ∈ S, and for this it suffices to construct f such that
f(r ⊗ s) = f(r)g(s) for all r ∈ R and s ∈ S. That there is such a map of R ⊗A S → T
simply as a map of A-modules follows from the A-bilinearity of the map R × S → T
that sends (r, s) to g(r)h(s). To check that the induced A-linear map from R ⊗A S → T
is a ring homomorphism, we only need to check that it preserves multiplication. Since
the elements r ⊗ s span over A, by virtue of the distributive law it suffices to check that
f
(
(r ⊗ s)(r′ ⊗ s′)

)
= f(r ⊗ s)g(r′ ⊗ s′). The left side is f

(
(rr′) ⊗ (ss′)

)
= g(rr′)h(ss′) =

g(r)g(r′)h(s)h(s′) =
(
g(r)h(s)

)(
g(r′)h(s′)

)
= f(r ⊗ s)f(r′ ⊗ s′), as required. �

Consider the coproduct of two polynomial rings R = A[xi : i ∈ I] and B = A[yj : j ∈ J ]
over A, where I and J are (possibly infinite) index sets. The monomials in the xi are a
free basis for R over A, and the monomials in the yj are a free basis for S over A. Thus,
the set of elements M⊗M′ where M is a monomial in the xi and M′ is a monomial
in the yj is a free basis for R ⊗A S over A, and monomials are multiplied by the rule
(M1 ⊗ M′1)(M2 ⊗ M′2) = (M1M2 ⊗ M′1M′2). It follows that the ring R ⊗A S is a
polynomial in ring in variables indexed by the disjoint union of I and J .

This may seem odd at first when the sets of variables overlap or are even equal: however,
because the variables cannot pass through the tensor symbol, in the tensor product they
have become disjoint sets of variables.

Thus, A[x] ⊗A A[x] is a polynomial ring in two variables over A: the elements x ⊗ 1
and 1⊗x have no algebraic relation over A in the tensor product, because x does not pass
through the tensor symbol. This can be a bit confusing. Note, however, that if we tensor
over A[x], we have instead that A[x]⊗A[x] A[x] ∼= A[x].

One can give an alternative description of the coproduct of R and S over A. Map a
polynomial ring A[xσ : σ ∈ Σ] onto R (one can even introduce one indeterminate for every
element of R, and map that indeterminate to the specified element of R), and call the
kernel I. Map a polynomial ring A[yτ : τ ∈ T ] onto S, and call the kernel J . Assume for
simplicity that the indeterminates are all mutually distinct, and that the union of the two
sets of indeterminates is an algebraically independent set. If we form the polynomial ring
in the union of the two sets of indeterminates, then a coproduct may be constructed as
the quotient of the polynomial ring in all the variables mod the sum of the expansions of
I and J .

The map M ⊗R N � M ⊗S N , defined whenever S is an R-algebra and M and N are
S-modules, is not, in general, an isomorphism. For example, for any choice of the ring A,
A[x]⊗AA[x] � A[x]⊗A[x]A[x] ∼= A[x] is a surjection of a polynomial ring in two variables,
x⊗ 1 and 1⊗ x, onto the polynomial ring in one variable.

However, there are two important cases where the two tensor products are the same:
one is when S = R/I is a homomorphic image of R, and the other is when S = W−1R
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is a localization of R. In the first case, the point is that any scalar in R/I is the image
of a scalar in r which can be passed through the tensor symbol: if r ∈ R maps to r in
R/I, we have that ru ⊗ v = ru ⊗ v = u ⊗ rv = u ⊗ rv. In the case where S = W−1R,
the scalars have the form r/w with r ∈ R and w ∈W . Because N is an S-module we can
write v = w(1/w)v, and in M ⊗RN , (r/w)u⊗v = (r/w)u⊗w(1/w)v = w(r/w)u⊗ (1/w)v
(since we may pass w through the tensor symbol) = ru⊗(1/w)v = u⊗(r/w)v, as required,
because we can pass r through the tensor symbol.

Note that base change from R to R/I sends M to (R/I) ⊗RM ∼= R/IM , which is, of
course, an (R/I)-module. This is particularly useful when m is a maximal ideal of R, for
then M/mM is a vector space over the field K = R/m. If M and N are R-modules and m
is a maximal ideal of R, we have surjections f : M � M/mM and N � N/mN , and, hence
a surjection f ⊗ g : M ⊗RN � (M/mM)⊗R (N/mN) ∼= (M/mM)⊗K (N/mN), which is
the tensor product of two vector spaces over a field, and is more readily understood than
a tensor product over a base ring that is not a field: in particular, we can get a K-basis
for this last tensor product by tensoring together pairs from a K-basis for M/mM and a
K-basis for N/mN , and this makes it easy to understand whether an element of the tensor
product either is or is not zero.

In particular, if R = K[x, y] and m = (x, y) thought of as an R-module, it is clear
that no nonzero K-linear combination of x and y is in m2, from which it follows that the
images of x and y are a K-basis for m/m2, which yields information about when elements
of (m/m2)⊗K (m/m2) are zero.

In trying to understand the tensor product of two finitely presented modules over R,
one can use the fact that M/N ⊗RM ′/N ′ ∼= (M ⊗RM ′)/

(
Im (N ⊗RM ′) + Im (M ⊗RN ′)

)
to give a finite presentation of the tensor product. Suppose that M is free on a free basis
{vi}i, that M ′ is free on a free basis {wj}j , that N is the span of vectors {yh}h and that N ′

is the span of vectors {zk}k. Then the tensor product (M/N)⊗R (M ′/N ′) is the quotient
of the free R-module with free basis {vi ⊗ wj}i,j by the R-span of all the vectors yh ⊗ wj
together with all the vectors vi ⊗ zk.

We next want to consider what happens to intersections of submodules when we tensor
with a flat R-module F . Let N1 and N2 be any two R-submodules of M . Then F ⊗R N1,
F ⊗RN2 and F ⊗R (N1∩N2) all inject canonically into F ⊗RM . We identify each of these
modules with its image in F ⊗RM . We claim that F ⊗R (N1∩N2) = (F ⊗N1)∩ (F ⊗N2).
A priori, we only have an inclusion. Consider the exact sequence of modules

0→ N1 ∩N2
α−→ N1 ⊕N2

β−→M

where α(u) = u⊕ u and β(u1 ⊕ u2) = u1 − u2. It is quite easy to see that this sequence is
exact. The key point here is that when we apply F ⊗R , this exactness is preserved, so
that we get an exact sequence:

0→ F ⊗R (N1 ∩N2) 1F⊗α−−−−→ F ⊗R N1 ⊕ F ⊗R N2
1F⊗β−−−→ F ⊗M

and the map 1F ⊗ β sends v1 ⊕ v2 to v1 − v2. It follows that the kernel of 1F ⊗ β is the
image of (F ⊗ N1) ∩ (F ⊗ N2) under 1F ⊗ α, but because F is R-flat, we also that the
kernel is the image of F ⊗R (N1 ∩N2) under 1F ⊗ α. �
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Of course, this result extends by a straightforward induction to intersections involving
finitely many submodules Ni of M , and it applies to flat base change when F = S is a flat
R-algebra. An important special case is when S = W−1R, and we see that localization
commutes with finite intersection of submodules.
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Lecture of November 3

Note that if I ⊆ R and S is an R-flat algebra then I ⊗R S injects into R⊗S S ∼= S with
image IS: that means that I ⊗R S may be identified with IS.

Recall that if I and J are ideals of R then I :R J = {r ∈ R : rJ ⊆ I}. If J is finitely
generated, this colon operation commutes with flat base change:

Proposition. If S is a flat R-algebra, and I, J are ideals of R with J finitely generated,
then (I :R J)S = IS :S JS. In particular, this holds when S is a localization of R.

Proof. If J = fR is principal, we have an exact sequence

0→ (I :R fR)/I → R/I
f−→ R/I → 0.

When we tensor with S and make obvious identifications, we get an an exact sequence

0→
(
(I :R fR)S

)
/IS → S/IS

f−→ S/IS → 0.

But the kernel of multiplication by f on S/IS (this is the same as multiplication by
the image of f in S) is (IS :S fS)/IS, from which we can conclude that IS :S fS =
(I :R fR)S. In the general case, where J = (f1, . . . , fh)R, we use the obvious fact that
I :R J =

⋂
t(I :R ftR), and the fact that flat base change commutes with finite intersection.

But we then have

(I :R J)S = (I :R J)⊗R S = (
h⋂
t=1

I :R ftR)⊗R S =
h⋂
t=1

(
(I :R ftR)S

)
and by the case where J = fR, which we have already done, this becomes

h⋂
t=1

(IS :S ftS) = IS :S JS,

as required. �

Example. This fails even for localization when J is not finitely generated. Let

S = K[y, x1, x2, x3, . . . ]

be the polynomial ring in countably many variables over the field K. Let W be the
multiplicative system of all powers of y. Let I be the ideal (xtyt : t = 1, 2, 3, . . . )S, and let
J = (xt : t = 1, 2, 3, . . . ). Then before localization at W , I :R J is an ideal not containing
any power of y, since yt fails to multiply xt+1 into I. Thus, with S = W−1R = Ry, we
have that (I :R J)S is a proper ideal. But IS = JS, and so IS :S JS = S.

There are many simple examples where localization fails to commute with infinite in-
tersection, even when the ring is Noetherian. E.g., If R = Z or R = K[x] where K is a
field, and I is generated by a prime element, then the intersection of the ideals In is (0).
But if we localize at a generator of I, then all the ideals In expand to the unit ideal, and
their intersection is the unit ideal.
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Theorem. Let R be a ring, M , M ′ be R-modules, let f : M →M ′ be R-linear, let u ∈M ,
and let N and various Ni be submodules of M . The statements below hold when the phrase
“for all P” is interpreted either to mean “for all prime ideals P of R” or “for all maximal
ideals P of R.”
(a) Let f : M → M ′ be R-linear. Then for all P , the formation of the kernel, cokernel

and image of f commute with localization. E.g.,
(
Ker (f)

)
P
∼= Ker (fP ), where fP :

MP →M ′P is the map induced by f .
(b) u/1 ∈MP is nonzero if and only if P ⊇ I = AnnRu. The element u = 0 in M if and

only if u/1 ∈MP is 0 for all P .
(c) M = 0 iff MP = 0 for all P .
(d) f : M → M ′ is injective (respectively, surjective, respectively bijective) if and only if

fP is for all P .
(e) u ∈M is in N if and only if u/1 ∈MP is in NP for all P .
(f) N1 ⊆ N2 (respectively, N1 = N2) if and only if (N1)P ⊆ (N2)P for all P .
(g) 0→M ′ →M →M ′′ → 0 is exact if and only if 0→M ′P →MP →M ′′P → 0 is exact

for all P , and M ′ → M → M ′′ is exact if and only if M ′P → MP → M ′′P is exact for
all P .

Proof. (a) follows from the exactness of localization at P , and is also valid for localization
at an arbitrary multiplicative system and, in fact, for arbitrary flat base change.

To prove (b), note that the surjection R → Ru sending r to ru has kernel I, so that
Ru ∼= R/I. Now (R/I)P 6= 0 iff I is disjoint from the multiplicative system R− P , which
is equivalent to P ⊇ I. The last statement follows because if u 6= 0 then I is proper and we
can choose P maximal containing I. Part (c) is immediate: if u 6= 0 in M , then Ru ↪→M ,
and this is preserved when we localize at P containing I = AnnRu.

(d) follows from parts (a) and (c): f is injective iff Ker f = 0 iff
(
Ker (f)

)
P

= 0 for all
P iff Ker (fP ) = 0 for all P iff fP is injective for all P . The argument for surjective is the
same with the cokernel replacing the kernel. A map is bijective if and only if it is both
injective and surjective.

(e) follows from (b) applied to the class of u in M/N .

For (f), note that N1 ⊆ N2 iff N1/(N1 ∩ N2) = 0. Now use the fact that localization
commutes with intersection coupled with (c). The second part follows since N1 = N2 iff
N1 ⊆ N2 and N2 ⊆ N1 (an alternative is to use the fact that N1 = N2 iff the module
(N1 +N2)/(N1 ∩N2) = 0.

The first statement in part (g) follows from the second (applied repeatedly), and the
second statement follows from the fact that the calculations of image and kernel commute
with localization, which is part (a), together with the fact that exactness holds iff the
image of M ′ →M is equal to the kernel of M →M ′′, together with part (f). �

Next note that given an R-algebra S there is an S-linear map

θM : S ⊗R HomR(M, N)→ HomS(S ⊗RM, S ⊗R N)
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that sends s ⊗ f to s(1S ⊗ f): the map is well-defined because (s, f) 7→ s(1S ⊗ f) is
R-bilinear, and S-linear because the image of s′(s ⊗ f) = (s′s) ⊗ f is (s′s)(1S ⊗ f) =
s′
(
s(1S ⊗ f)

)
. Moreover, given a map g : M →M ′ there is a commutative diagram:

S ⊗R HomR(M, N) θM−−−−→ HomS(S ⊗RM, S ⊗R N)

1S⊗g∗
x x(1S⊗g)∗

S ⊗R HomR(M ′, N) −−−−→
θ′

M

HomS(S ⊗RM ′, S ⊗R N)

so that the θM taken together give a natural transformation of contravariant functors from
S ⊗R HomR( , N) to HomS(S ⊗R , S ⊗R N). The commutativity of the diagram may
be checked on elements of the form s ⊗ f , where f : M → M ′. Applying the map in the
leftmost column first and then the map in the top row, we get first s ⊗ (f ◦ g) and then
s(1S ⊗ (f ◦ g)) = s

(
(1S ⊗ f) ◦ (1S ⊗ g)

)
, while going around the square the other way one

first gets s(1S ⊗ f) and then
(
s(1S ⊗ f)

)
◦ (1S ⊗ g) �

Proposition (Hom commutes with flat base change). If S is a flat R-algebra and
M , N are R-modules such that M is finitely presented over R, then the canonical homo-
morphism

θM :S ⊗R HomR(M,N)→ HomS(S ⊗RM,S ⊗R N)

sending s⊗ f to s(1S ⊗ f) is an isomorphism.

Proof. It is easy to see that θR is an isomorphism and that θM1⊕M2 may be identified with
θM1⊕θM2 , so that θG is an isomorphism whenever G is a finitely generated free R-module.

Since M is finitely presented, we have an exact sequence H → G � M → 0 where G, H
are finitely generated free R-modules. In the diagram below the right column is obtained
by first applying S⊗R (exactness is preserved since ⊗ is right exact, and then applying
HomS( , S⊗RN), so that the right column is exact. The left column is obtained by first
applying HomR( , N), and then S⊗R (exactness is preserved because of the hypothesis
that S is R-flat). The squares commute because the θM give a natural transformation.

S ⊗R HomR(H,N) θH−−−−→ HomS(S ⊗R H,S ⊗R N)x x
S ⊗R HomR(G,N) θG−−−−→ HomS(S ⊗R G,S ⊗R N)x x
S ⊗R HomR(M,N) θM−−−−→ HomS(S ⊗RM,S ⊗R N)x x

0 −−−−→ 0
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From the fact, established in the first paragraph, that θG and θH are isomorphisms and
the exactness of the two columns, it follows that θM is an isomorphism as well (kernels of
isomorphic maps are isomorphic). �

Corollary. If W is a multiplicative system in R and M is finitely presented, we have that
W−1HomR(M,N) ∼= HomW−1R(W−1M,W−1N). �

The result fails when M is not finitely generated, even if it is free. Let M be the
free Z-module on countably many generators bi, and let N = Z. Giving an element of
HomZ(M, Z) is equivalent to specifying its values on the free generators, i.e., to giving
a sequence of integers ni, where ni is the value of the homomorphism on bi. Let S =
Z[1/p]. Any element of S ⊗Z HomZ(M, Z) then corresponds to a sequence of elements in
S such that the denominators are bounded: in this module, we can clear denominators.
However, HomS(S ⊗M, S) is larger: elements correspond to arbitrary sequences in S. In
particular, the homomorphism whose value on bi/1 is 1/pi for all i is not in the image
of S ⊗Z HomZ(M, Z). When M is finitely generated, even cyclic, the result still fails if
M is not finitely presented. Let R, I, and J be as in the example immediately following
the Proposition at the beginning of this lecture, let M = R/J let N = R/I, let W =
{yt : t ∈ N} and S = W−1R = Ry. Then HomR(M, N) ∼= AnnNJ ∼= (I :R J)/I, while,
similarly, HomS(W−1M, W−1N) ∼= (IS :S JS)/IS. Thus, the issue becomes whether
S⊗R

(
(I :R J)/I

) ∼= (IS :S JS)/IS, and since the left hand side is (I :R J)S/IS, the issue
is simply whether (I :R J)S = IS :S JS. We have seen in the earlier Example following
the Proposition about expansions of colon ideals to flat algebras that this is false.

Finally, the result also fails without flatness. For example, let R = Z and S = Z/pZ for
some prime integer p. Then HomZ(Z/pZ, Z) = 0, and so (Z/pZ)⊗Z HomZ(Z/pZ, Z) = 0,
while HomZ/pZ(Z/pZ, Z/pZ) ∼= Z/pZ 6= 0. We next note:

Proposition. If Q = M/N is finitely presented over R, then the short exact sequence of

R-modules 0→ N →M
f−→ Q→ 0 splits (i.e. there exists g : Q→M such that g◦f = 1Q)

if and only if 0→ NP →MP → QP → 0 splits for all prime (respectively, maximal) ideals
P in R.

Proof. The sequence splits if and only if HomR(Q, M) → HomR(Q,Q) is onto. (If M
is N ⊕ Q then HomR(V, M) ∼= HomR(V, N) ⊕ HomR(V, Q) for all R-modules V , which
implies the surjectivity. On the other hand if the map is surjective then 1Q is the image
of some g : Q → M , and this means that f ◦ g = 1Q.) It is clear that if the map splits it
continues to do so after localization (or any base change, whether flat or not). If the map
does not split, then the map HomR(Q,M) → HomR(Q,Q) is not onto, and this will be
preserved when we localize at a suitable P . By the theorem, flat base change commutes
with Hom in this case, and so we have that HomRP

(QP , MP )→ HomRP
(QP , QP ) is not

onto as well. �

We next note that if R→ S → T are homomorphisms of rings and M is any R-module,
then there is a bijective S-linear map T ⊗S (S ⊗R M) → T ⊗R M : the left side may
be identified with (T ⊗S S) ⊗R M by the second form of the associativity of tensor, and
T ⊗S S ∼= T . These isomorphisms are easily checked to be isomorphisms of T -modules, and
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together these isomorphisms give a natural transformation, showing that T ⊗S (S ⊗R )
and T ⊗R are isomorphic functors from R-modules to T -modules. Put more briefly, an
iterated base change can be done instead with a single base change.

Corollary. If S is flat over R and T is flat over S, then T is flat over R.

Proof. Given an injection N ↪→ M we have an injection S ⊗R N ↪→ S ⊗R M , since S is
R-flat, and then an injection T ⊗S (S⊗RN) ↪→ T ⊗S (S⊗RM), since T is S-flat, and this
is the same map as T ⊗R N → T ⊗R N . �

We also note:

Proposition. If F is flat, free or projective over R, then S ⊗RM has the corresponding
property over S.

Proof. We know this for free modules G, and if G = P ⊕Q, then S ⊗R G = (S ⊗R P ) ⊕
(S⊗RQ). Now suppose that F is R-flat. The fact that S⊗R F is S-flat is immediate from
the fact that tensoring with this module over S is isomorphic as functor with tensoring
with F over R: the identification (S⊗R F )⊗SM ∼= F ⊗RM follows from the associativity
of tensor if we rearrange the terms: M ⊗S (S ⊗R F ) ∼= (M ⊗S S)⊗R F = M ⊗R F . �

Lemma. If A and B are any two R-modules, W is a multiplicative system in R, and
S = W−1R, then W−1(A ⊗R B) ∼= W−1A ⊗S W−1B in such a way that (a ⊗ b)/1 maps
to (a/1)⊗ (b/1).

Proof. We have already seen that if U , V are S-modules, then U ⊗R V ∼= U ⊗S V , so that
S⊗R S ∼= S⊗S S ∼= S. Thus, W−1(A⊗RB) ∼= S⊗R (A⊗RB) ∼= (S⊗R S)⊗R (A⊗RB) ∼=
(S ⊗R A)⊗R (S ⊗R B) ∼= W−1A⊗RW−1B ∼= W−1A⊗S W−1B �

Proposition. F is R-flat if and only if FP is RP -flat for all prime (respectively, maximal
ideals) P .

Proof. We have already seen “only if.” Now suppose that MP is RP -flat for all maximal
ideals P . Suppose that N ⊆ M but that F ⊗R N → F ⊗R M has a nonzero kernel V .
We can choose P maximal such that VP is not 0. Then (F ⊗R N)P → (F ⊗RM)P is not
injective. By the preceding Lemma, this may be identified with FP⊗RP

NP → FP⊗RP
MP .

Since N → M is injective, so is NP → MP , and this contradicts the flatness of FP over
RP . �

We define the support of the module M to be {P ∈ Spec (R) : MP 6= 0}. We have seen
earlier that every nonzero module has nonempty support. If M is finitely generated, we
can say a lot more.

Proposition. Let M be a finitely generated R-module with annihilator I in R. Then the
support of M is closed, and is equal to V (I).

Proof. Let u1, . . . , uh generate M , and let It be the annihilator of ut. An element kills
M if and only if it kills all the generators of M , and so I =

⋂
t It. Since M is the sum

of the Rut, and each Rut injects into M , we have that MP 6= 0 if and only if some
(Rut)P 6= 0, i.e., if and only if P ⊇ It for some t. This shows that the support of M is⋃
t V (It) = V (

⋂
t It) = V (I), as required. �
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Lecture of November 5

If R is reduced, note that W−1R is reduced: if r/w is nilpotent, then rn/wn = 0
for some n, and then rn/1 = 0 so that w′rn = 0 for some w′ ∈ W , which implies that
(w′r)n = 0. Since R is reduced, this yields that w′r = 0, and so r/1 = 0 and r/w = 0.

Note also that if R is a domain with fraction field F , and W is a multiplicative system
in R − {0}, then W−1R ∼= R[1/w : w ∈ W ] ⊆ F , and so W−1R ⊆ F is a domain. The
following theorem allows us to check certain properties of R locally.

Proposition. Let R be a ring. The statements below are valid if “for all P” is interpreted
to mean either “for all prime ideals P of R” or “for all maximal ideals P of R.”
(a) R is reduced iff RP is reduced for all P .
(b) If R is a domain, then R is normal if and only if RP is normal for all P .
(c) If R is Noetherian, or, more generally, if R has only finitely many minimal primes,

then R is a domain if and only if Spec (R) is connected and RP is a domain for all
P .

Proof. (a) We have already seen that if R is reduced then so are all of its localizations.
But if R is not reduced and r 6= 0 is a nilpotent, we can choose P so that r/1 ∈ RP is not
0, and it will still be nilpotent.

(b) Let D′ indicate the integral closure of the domain D in its fraction field. Let F
be the fraction field of R, which is also the fraction field of W−1R for any multiplicative
system W ⊆ R−{0}. By problems 1. and 2. of Supplementary Problem Set #2, we know
that the integral closure of W−1R in W−1F = F is W−1R′. In particular, it follows that
for all P , (RP )′ = (R′)P . But R is normal iff R′ = R iff R′/R = 0 (as an R-module) iff
(R′/R)P = 0 for all P , and (R′/R)P ∼= (R′)P /RP = (RP )′/RP , so that R′ is normal if
and only if (RP )′ = RP for all P , i.e., every RP is normal.

(c) It is clear that if R is a domain then every RP is and Spec (R) is connected: Spec (R)
is not connected iff R is a product in a non-trivial way iff R contains an idempotent e
other than 0, 1, and the equation e(1 − e) = 0 in a domain implies e = 0 or e = 1. Now
suppose that Spec (R) is connected and that RP is a domain for all P . By part (a), R is
reduced. Let P1, . . . , Pk be the minimal primes of R. The union of the closed sets V (Pt)
is Spec (R), since every prime contains a minimal prime, and they are mutually disjoint,
for if Q contains both Pi and Pj (we may assume that Q is maximal, replacing it by a
maximal ideal that contains it if necessary), we have that RQ has at least two minimal
primes, corresponding to Pi and Pj , contradicting the assumption that RQ is a domain.
But then these sets are all open as well as closed, and since Spec (R) is connected it follows
that there is a unique minimal prime P . But in any commutative ring, the intersection
of the minimal primes is the same as the intersection of all primes: it is the ideal of all
nilpotents. Thus, if there is a unique minimal prime, all of its elements are 0, since R is
reduced. But this means that (0) is prime, so that R is a domain. �

The statement that (R,m) is quasilocal means that R has unique maximal ideal m.
The statement that (R,m,K) is quasilocal means that R is quasilocal with maximal ideal
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m and residue class field K ∼= R/m. If R is Noetherian and quasilocal one says that
R, or (R, m) or (R, m, K) is local instead. Let M be an R-module. Then M/mM ∼=
(R/m)⊗RM ∼= K⊗M is a K-vector space. In a quasilocal ring, if r ∈ m, then 1− r /∈ m.
which implies that 1− r is a unit: otherwise it would generate a proper ideal, which then
must be contained in the unique maximal ideal m.

Theorem (Nakayama’s lemma). . Let M be a finitely generated module over the
quasilocal ring R = (R, m, K). If M = mM , i.e., if K ⊗RM = 0, then M = 0.

Proof. We use induction on the number of generators n of M . If M = Ru, then mM = mu,
and so if M = mM we must have u = ru for some r ∈ m. Then (1 − r)u = 0, and since
1− r is a unit, we have that u = 0. At the inductive step suppose that M is generated by
u1, . . . , un. Let M1 = M/Run, which is generated by n − 1 elements. We still have that
mM1 = M1, and so, by the induction hypothesis, M1 = 0, which says that M = Run. But
we have already done the case where n = 1. �

Corollary (Nakayama’s lemma, second form). If J is contained in every maximal
ideal of R, M is finitely generated, and M = JM , then M = 0.

Proof. It suffices to show that MP = 0 for all maximal P . But M = JM ⇒ MP =
JMP ⇒MP = PMP = (PRP )MP , and so MP = 0. �

We leave it to the reader to see that j is in every ideal maximal ideal of R if and only
if 1− jr is a unit for every element r of R. The intersection of the maximal ideals of R is
called the Jacobson radical of R.

Corollary (Nakayama’s lemma, third form). Let M be a finitely generated module
over a quasilocal ring (R,m,K). Then u1, . . . , un generate M if and only their images
in the K-vector space M/mM span M/mM over K. Hence, from any set of generators
of M , one may choose a subset that is a minimal set of generators, and all such minimal
sets of generators have the same cardinality, which is the K-vector space dimension of
M/mM . Any set of elements of M whose images are linearly independent in M/mM can
be extended to a minimal set of generators of M/mM .

Proof. Let N = Ru1 + · · · + Run. Then M = N iff M/N = 0 iff M/N = m(M/N) iff
M = N + mM iff the image of N in M/mN is all of M/mM iff the images of the ui
span M/mM . A set of elements of M is a minimal set of generators for M iff its image
in M/mM is a K-vector space basis. The remaining statements in the theorem are a
consequence of the fact that every set of vectors that spans a vector space has a subset
that is a basis, and every independent set of vectors can be enlarged to a basis. �

We want to use Nakayama’s lemma to investigate the support of the tensor product of
two finitely generated modules. The following fact comes up frequently enough that it is
worth isolating:

Lemma. If M , N are arbitrary R-modules and P is a prime of the ring R, then there is
an isomorphism (M ⊗R N)P ∼= MP ⊗RP

NP .

Proof. We use that the tensor product of two modules over a localization of R is indepen-
dent of whether it is taken over R or over the localization. In particular, (RP ⊗R ⊗RP ) ∼=
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RP ⊗RP
RP ∼= RP . Thus, (M⊗RN)P = RP ⊗R (M⊗RN) ∼= (RP ⊗RRP )⊗R (M⊗RN) ∼=

(RP ⊗M)⊗R (RP ⊗R N) ∼= MP ⊗R NP ∼= MP ⊗RP
NP . �

Proposition. Over any ring R, if M and N are finitely generated R-modules, then the
support of M ⊗R N is the intersection of the supports of M and N .

Proof. First suppose that (R,m,K) is quasilocal and that M , N are nonzero. We claim
that M ⊗R N is nonzero: we have surjection M ⊗R N → (M/mM) ⊗R (N/mN) ∼=
(M/mM)⊗K (N/mN). By Nakayama’s lemma, M/mM and N/mN are nonzero K-vector
spaces, and so their tensor product over K is nonzero.

In the general case, (M ⊗N)P ∼= MP ⊗RP
NP , and so vanishes if and only if MP = 0

or NP = 0. �

If a module M if finitely presented there is an exact sequence 0→ N → Rn � M → 0
with N finitely generated. It turns out that if one chooses a different surjection of Rn

′

to M , the kernel N ′ will also be finitely generated: this is a problem in Supplementary
Problem Set #5. The idea is to compare each of two sets of generators with their union,
and then to reduce to the case where one has two sets of generators, one of which is
obtained from the other by enlarging it with a single redundant element. We shall assume
this fact here.

Note that if (R,m,K) is quasilocal, andM has u1, . . . , un as a minimal set of generators,
we may map Rn � M so that (r1, . . . , rn) 7→ r1u1 + · · · + rnun. If one tensors with K,
one gets a surjection Kn →M/mM , and since the images of the ui are vector space basis
for M/mM , this surjection is actually an isomorphism.

If f : A→ B and g : C → D are maps of R-modules then there is a diagram:

A⊗R C
1A⊗g−−−−→ A⊗R D

f⊗1C

y yf⊗1D

B ⊗R C −−−−→
1B⊗g

B ⊗R D

Note that (f ⊗ 1D) ◦ (1A ⊗ g) = f ⊗ g = (1B ⊗ g) ◦ (f ⊗ 1C), so the diagram commutes.

We are now ready to prove:

Theorem. Let M be a finitely presented module over a quasilocal ring (R,m,K). Then
the following conditions are equivalent:
(a) M is free.
(b) M is projective.
(c) M is flat.
(d) The map m⊗M →M that sends r ⊗ u to ru is injective.

Proof. We already know that (a) ⇒ (b) ⇒ (c) ⇒ (d): the last implication comes from
applying ⊗RM to the injection 0→ m ⊆ R. We only need to show that (d) ⇒ (a).

Choose a minimal set of generators u1, . . . , un for M and map Rn onto M such that
(r1, . . . , rn) is sent to r1u1 + · · ·+rnun. Let N be the kernel of the surjection Rn � M , so
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that we have a short exact sequence 0→ N → Rn →M → 0. We also have a short exact
sequence 0→ m→ R→ K → 0: think of this as written vertically with m at the top and
K at the bottom. Then we may tensor the two sequences together to get the following
array (all tensor products are taken over R):

0y
m⊗N −−−−→ m⊗Rn −−−−→ m⊗M −−−−→ 0y y yα

0 −−−−→ N −−−−→ Rn −−−−→ M −−−−→ 0y y y
K ⊗N f−−−−→ K ⊗Rn g−−−−→ K ⊗M −−−−→ 0y y y

0 0 0

The rows are obtained by applying m⊗ , R⊗ , and K ⊗ , respectively to the short
exact sequence 0→ N → Rn →M → 0, and the columns are obtained by applying ⊗N ,
⊗ Rn, and ⊗M , respectively, to the short exact sequence 0 → m → R → K → 0.

The exactness of the rows and columns shown follows from the right exactness of tensor,
with two exceptions: the injective arrow on the left in the middle row comes from the fact
that R is free, and the injectivity of α is the hypothesis in (d). (We also have an injection
at the top of the middle column because Rn is free, but we don’t need this.)

The four squares in the diagram commute: each has the form described in the remark
just preceding the statement of the theorem.

The minimality of the set of generators u1, . . . , un implies that g is an isomorphism of
Kn with Kn, and the fact that M is finitely presented implies that N is finitely generated.
To complete the proof it suffices to show that K⊗N = 0, for then, by Nakayama’s lemma,
we have that N = 0. But if N = 0 then Rn →M is an isomorphism. To show that K⊗N
is 0, it suffices to prove that the map f is injective.

Suppose that u is an element in the kernel of f . Choose v ∈ N that maps to u. The
image of v in Rn (we still call it v) maps to 0 in K ⊗ Rn: we can go around the square
on the lower left the other way, and u is killed by f . It follows that v is the image of an
element w in m⊗Rn. Suppose that w maps to x in m⊗M . Then α(x) = 0, because we
can go around the square on the upper right the other way, and the image of v in M must
be 0 because v ∈ N . But α is injective! Therefore, x = 0, which shows that w is the image
of an element y in m ⊗ N . Since w maps to v, y maps to v in N (the map N → Rn is
injective), and this implies that v maps to 0 in K ⊗ N . But v maps to u, and so u = 0.
We are done: we have shown that f is injective! �
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Lecture of November 7

Note that a finitely generated projective R-module P is automatically finitely presented:
let Q be the kernel of a surjection Rn � P . As we have already seen, this surjection splits,
so that P ⊕Q ∼= Rn. But then Q ∼= RN/P is finitely generated as well.

Also note that if P ⊆ Q are primes then RP ∼= (RQ)P e where P e = PRQ, so that if
MQ is RQ-free for all maximal ideals Q then MP is a priori RP -free for all prime ideals P
as well, since freeness is preserved by arbitrary base change.

We next give a global version of what we just proved for the quasilocal case:

Theorem. Let M be a finitely presented R-module. The following conditions are equiva-
lent:
(a) M is projective.
(b) M is flat.
(c) M is locally free, i.e., for all maximal ideals (respectively, for all prime ideals) P of

R, MP is RP -free.

Proof. We know (a)⇒ (b). If M is flat over R, MP is flat over RP , and so MP is free over
RP by the preceding result. It remains to show that (c) ⇒ (a). Map a finitely generated
free module Rn onto M . We get an exact sequence 0→ N → Rn →M → 0. If we localize
at any prime P , MP is free over RP , and then the sequence splits. By the Proposition
on p. 4 of the Lecture Notes for November 3, the sequence splits over R, so that M is
projective. �

We next want to use localization as a tool to study the structure of the ideals of a
Noetherian ring R. We want to show that every ideal is a finite intersection of rather
special ideals called primary ideals. In the integers, the primary ideals are the same as the
ideal (0) and the ideals generated by a power of a prime element, and this is true more
generally in any principal ideal domain. In the general case the situation is much more
complicated. Every ideal is a finite intersection of primary ideals, and if the intersection
is irredundant in a sense that we shall make precise, then it satisfies certain uniqueness
statements. However, for many ideals the so-called primary decomposition is not unique.

This theory was first developed by the chess champion Emmanuel Lasker for polynomial
rings finitely generated over a field, and then for arbitrary Noetherian rings by Emmy
Noether. The irredundant primary decomposition of an ideal is also called the Noether-
Lasker decomposition.

An ideal I in a ring R is called primary if whenever ab ∈ I then either a ∈ I or
b ∈ Rad (I). If ab ∈ Rad (I), then anbn ∈ I, so that either an ∈ I or bn ∈ Rad (I). But
then either a ∈ Rad (I) or b ∈ Rad (I). Thus, if I is primary, Rad (I) is prime, say P , and
one says that I is primary to P .

It is not true that I must be primary simply because its radical is prime. Let I =
(x2, xy) ⊆ R = K[x, y], a polynomial ring in two variables. Then Rad (I) = xR, which is
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prime. However, xy ∈ I, while x is not in I and y is not in Rad (I). On the other hand,
by part (a) of the result that follows, it is true that an ideal is primary if its radical is a
maximal ideal. Moreover, a prime ideal P is primary to itself.

Proposition. Let R be a ring and I an ideal of R with radical P .
(a) If P is maximal, then I is primary to P .
(b) I is primary if and only if P is prime and I is contracted with respect to R−P . Thus,

the ideals primary to P are in bijective correspondence with the ideals primary to the
maximal ideal PRP of RP .

(c) I is primary to P if and only if P/I is prime and the elements of R − P are not
zerodivisors on R/I, that is, if and only if the nilpotent elements in R/I form a prime
ideal (which will necessarily be the unique minimal prime) and the elements that are
not nilpotent in R/I are not zerodivisors.

(d) If J ⊆ I, then I is primary to P if and only if I/J is primary to P/J in R/J .

Proof. (a) Suppose ab ∈ I and b has no power in I. Then b /∈ Rad I, which is maximal.
It follows that Rad (I) + Rb = R, so that V

(
Rad (I) + Rb

)
= ∅, and this is the same as

V (I +Rb), so that I +Rb = R, say i+ rb = 1 with i ∈ I and r ∈ R. Then a = a(i+ rb) =
ai+ rab ∈ I, as required, since i, ab ∈ I.

(b) We already know that if I is primary then P = Rad (I) is prime, so we may assume
this. The definition of primary ideal then says precisely that if ab ∈ I and b ∈ R − P ,
then a ∈ I, which is the definition of being contracted with respect to R − P . The
second statement then follows from the general fact that ideals of RP are in bijective
correspondence with ideals of R contracted with respect to R − P , restricted to the case
where the radical of the ideal is P .

The statement in (c) is equivalent to the statement in (b), since P/I is prime iff P is
prime, and since the image of b ∈ R− P in R/I is a not a zerodivisor if and only if for all
a ∈ R, ab ∈ I implies a ∈ I.

(d) Part (c) characterizes when I is primary in terms of the quotient ring R/I: the
nilpotent elements from a unique minimal prime, and the elements that are not nilpotent
are not zerodivisors. Part (d) follows that once, since (R/J)/(I/J) ∼= R/I. �

Proposition. Let R be a ring and P a prime ideal of R.
(a) The intersection of finitely many P -primary ideals is P -primary.
(b) If R → S is a ring homomorphism, and J is an ideal of S primary to a prime ideal

Q lying over P in R, then the contraction I of J to R is primary to P .

Proof. (a) Suppose that I1 and I2 are primary to P . Since every element of P has a
power in I1 and a power in I2, the higher of these two powers will be in I1 ∩ I2, and so
Rad (I1 ∩ I2) = P . Suppose that ab ∈ I1 ∩ I2 and a /∈ I1 ∩ I2. But if a /∈ It for t = 1 or
t = 2 then b ∈ P = Rad (I1 ∩ I2). The general case follows by an obvious induction on the
number of ideals.

(b) We have an injection of R/I ↪→ S/J , since I is the contraction of J to R. The
elements of P/I map into Q/J , and are nilpotent in S/J . Therefore, they are nilpotent in
R/I. The elements of R/I − P/I map into S/J −Q/J , and are therefore not zerodivisors
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in S/J . It follows that they are not zerodivisors in the subring R/I. The result follows
from part (c) of the preceding Proposition. �

A primary decomposition of an ideal I is a representation of I as a finite intersection
of of primary ideals. Given such a decomposition, if several of the ideals have the same
radical, we may intersect them, and so give a decomposition that involves intersecting
fewer ideals. If some proper subset of the ideals has the same intersection, we may work
with that proper subset instead of the original set of ideals. Therefore, if an ideal has a
primary decomposition it has a primary decomposition satisfying:

(1) The radicals of the mutually distinct ideals occurring are mutually distinct primes.
(2) No term may be omitted without strictly increasing the intersection.

Such a primary decomposition is called irredundant.

We shall prove that every ideal of a Noetherian ring has an irredundant primary de-
composition, and that it has some uniqueness properties: the number of ideals occurring
in such a decomposition and the set of primes occurring are unique. Some of the primes
occurring are minimal in the set of primes occurring. These turn out to be the same as the
minimal primes of the original ideal. The primary ideals corresponding to minimal primes
of I occurring in an irredundant primary decomposition are unique. The other primes that
occur are called embedded primes. Note that if Q is an embedded prime and it contains a
minimal prime P , then V (Q) ⊂ V (P ), which may help to explain the terminology.

Before proving this statement we consider an example in which primary decomposition
is not unique. Let I = (x2, xy)R in R = K[x, y], the polynomial ring in two variables over
a field K. It is easy to check that

(x2, xy)R = xR ∩ (x2, y)R

is an irredundant primary decomposition. Note that xR is prime, and the radical (x, y)R
of (x2, y)R is maximal. Observe also that Rad (I) = xR is the unique minimal prime of I,
and that (x, y)R, which contains xR, is an embedded prime.

For any scalar c ∈ K, the elements x, cx + y also generate the polynomial ring R and
can be used as “new indeterminates,” while

(x2, xy)R =
(
x2, x(cx+ y)

)
R.

Thus, we also have that
(x2, xy)R = xR ∩ (x2, x+ cy)R

for all c ∈ K. If K = C, say, is uncountable, this gives uncountably many distinct
irredundant primary decompositions of (x2, xy)R. (If we had (x2, x+cy)R = (x2, x+c′y)R
for c 6= c′, then the difference (x+ cy)− (x+ c′y) = (c− c′)y would be in both ideals, and
so y would be in both ideals, and then x = (x+ cy)− cy would be in both ideals as well,
a contradiction.)

We now want to start on proving that primary decompositions exist in a Noetherian
ring. A proper ideal of a ring R is called irreducible if it is not the intersection of two
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(equivalently, finitely many) strictly larger ideals. We shall show that every proper ideal
of a Noetherian ring is the intersection of finitely many irreducible ideals, and then we
shall show that every irreducible ideal is primary. This will give a primary decomposition,
which, by the comments made above, implies the existence of an irredundant primary
decomposition.

Proposition. Every proper ideal of a Noetherian ring is the intersection of a finite family
of irreducible ideals (if the ideal is irreducible, the family has just one element).

Proof. If this is false, the set of ideals that give counterexamples has a maximal element I.
If I is irreducible, we are done. Thus, we must have I = J ∩J ′, where J and J ′ are strictly
larger ideals. It follows that J and J ′ are proper (if J = R, then J ′ = I and vice versa).
By the maximality of I among counterexamples, each of J and J ′ is the intersection of a
finite family of irreducible ideals. But then I is the intersection of the ideals in the union
of these two finite families, a contradiction. �
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Lecture of November 10

Note that a linear map from a formal power series ring need not commute with “infinite”
addition, which is a formal operation. For example, Q[[x]] is uncountable and has an
uncountable basis over Q, while Q[x] is countable. Thus, there are uncountably many Q-
linear maps of Q[[x]]/Q[x] to Q: these can be specified arbitrarily on the uncountable basis.
It follows that there are uncountably many composite maps Q[[x]] � Q[[x]]/Q[x]→ Q that
kill 1 and every power of x. Therefore, giving the values of a Q-linear map Q[[x]]→ Q on
the powers of x does not come anywhere near determining the map.

The next result guarantees the existence of irredundant primary decompositions for
every proper ideal in every Noetherian ring.

Theorem. Let R be a Noetherian ring and I an irreducible ideal of R. Then I is primary.

Proof. Let ab ∈ I, and suppose, to the contrary, that a /∈ I and b /∈ Rad (I), so that
bn /∈ I for all n. Then the sequence of ideals I :R bn is obviously non-decreasing. Since
R is Noetherian this sequence stabilizes, and so we may choose n so that R : bn = R : bN

for all N ≥ n. In particular, we may choose n so that R : bn = R : b2n. Since bn /∈ I, we
have that I +Rbn is strictly larger than I, and since ab ∈ I, we have that abn ∈ I, so that
I :R bn, which contains a, is strictly larger than I. To complete the proof, we shall show
that

(I +Rbn) ∩ (I :R bn) = I,

contradicting the irreducibility of I. Suppose that u = i+ rbn is in the intersection, where
i ∈ I and r ∈ R. Then it multiplies bn into I, so that ubn = ibn + rb2n ∈ I, which implies
that rb2n ∈ I and so r ∈ I : b2n = I : bn. But then rbn ∈ I, and so u = i + rbn ∈ I, as
required. �

Putting this together with the results of the previous lecture, we have:

Theorem (existence of irredundant primary decompositions in the Noetherian
case). Every proper ideal I of an arbitrary Noetherian ring has an irredundant primary
decomposition. �

The uniqueness statements that one can make about primary decomposition are in-
dependent of the Noetherian hypotheses. We state the uniqueness result, although we
postpone the proof briefly.

Theorem (uniqueness statements for primary decomposition). If a proper ideal
I ⊆ R has a primary decomposition, it has an irredundant one, say I = A1 ∩ · · · ∩ An.
In this case the prime ideals Pi = Rad (Ai) are distinct, by the definition of irredundant,
and are uniquely determined. In fact, a prime Q occurs if and only if it has the form
Rad (I :R r) for some r ∈ R. The number of terms n is therefore uniquely determined
as well. The minimal elements among P1, . . . , Pn, when intersected, give an irredundant
primary decomposition of Rad (I), and are the same as the minimal primes of I. The
primary ideal A in the decomposition corresponding to P , where P is one of the minimal
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primes among {P1, . . . , Pn}, is the contraction of IRP to R, and so is uniquely determined
as well.

Before proving this, we want to establish:

Lemma. Let R be a ring.
(a) If I1, . . . , In are ideals of R, then

Rad (I1 ∩ · · · ∩ In) = Rad (I1) ∩ · · ·Rad (In).

(b) If P1, . . . , Pk are finitely many mutually incomparable prime ideals, then the Pi are
the minimal primes of P1 ∩ · · · ∩ Pk.

(c) If A is primary to P , then Rad (A : r) = R if r ∈ A and Rad (A : r) = P if r /∈ A.
Moreover, if r /∈ P , then A : r = A.

Proof. (a) has been discussed before: the harder part is that if an element has a power
in each of the ideals intersected, the highest power used is in all of them. For (b) we
must show that if a prime Q ⊇ P1 ∩ · · · ∩ Pk then it must contain some Pi. If not choose
ri ∈ Pi − Q for every i. Then the product of the ri is in all the Pi but not in Q, a
contradiction.

For part (c), the only statement that is not immediate is that if an element r is not
in A then Rad (A : r) = P . Since A ⊆ A : r, we have that P = Rad (A) ⊆ Rad (A : r).
Therefore, it suffices to show that if u ∈ R − P and r /∈ A, then u /∈ Rad (A : r), i.e.,
ut /∈ A : r, or rut /∈ A. But since u /∈ P , we have ut /∈ P , and so rut ∈ A implies r ∈ A
since A is P -primary, which gives the needed contradiction. �

Proof of the uniqueness statements for primary decomposition. Since I = A1 ∩ · · · ∩ An,
from part (a) of the Lemma we have that Rad (I) = P1 ∩ · · · ∩ Pn. Suppose that the Pi
have been numbered so that P1, . . . , Pk are the minimal elements of {P1, . . . , Pn}. Then
we also have that Rad (I) = P1∩ · · · ∩Pk, and it follows from the Lemma that P1, . . . , Pk,
which are clearly mutually incomparable, are the minimal primes of Rad (I) and, hence,
of I. Now suppose that P = Pi is one of these minimal primes, and that we localize at P .
Note that for any ideal J ⊆ R, we have JP ⊆ RP and JP may be identified with JRP .
Since I = A1 ∩ · · · ∩ An and localization commutes with finite intersection, we have that
IP = (A1)P ∩ · · · (An)P . If j 6= i, then Pj = Rad (Aj) is not contained in P = Pi, and so
some element of Pj is in R− P . This element has a power in Aj . Therefore, (Aj)P = RP .
We therefore get that (Ai)P = IP = IRP . Since Ai is P -primary, if we expand to RP and
then contract, we get Ai. Thus, Ai is the contraction of (Ai)P = IRP to R.

Finally, if r is any element of R, then

Rad (I : r) = Rad
(
(A1 ∩ · · · ∩ An) : r

)
=
⋂
i

Rad (Ai : r) =
⋂

i such that r/∈Ai

Pi

by part (c) of the Lemma, where the intersection over the empty set is defined to be R.
Therefore we get the intersection of a certain subset S of the Pi, which is the same as
the intersection of the primes of S that are minimal elements of S. This intersection can
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only be prime if it is equal to one of the Pi. To see that we actually do get each of the
Pi, notice that the intersection of Aj for j 6= i cannot be contained in Ai, or Ai could be
omitted and the intersection would not be irredundant. Choose r in the intersection of
the Aj for j 6= i, but not in Ai. By the calculation above, for this choice of r we have that
Rad (I : r) = Pi. �

In the Noetherian case the primes that occur as radicals for an irredundant primary
decomposition have an alternative characterization. In order to give this characterization,
we introduce the set of associated primes of a module M . We do not need finiteness
conditions to give the definition.

A prime ideal P of R is called an associated prime of the R-module M if equivalently:

(1) There is an element u ∈M whose annihilator is P .
(2) There is an injection R/P ↪→M .

These two conditions are equivalent because the submodule of M generated by u is
isomorphic with R/P if and only if the annihilator of u is P . Note that the element u with
prime annihilator can never be 0, since the annihilator of 0 is the unit ideal.

The set of associated primes of M is denoted Ass (M) and is sometimes called the
assassinator of M . When M is not Noetherian there may be no primes in Ass (M).

We shall soon show that in the Noetherian case Ass (M) is finite, and non-empty if
M 6= 0. Moreover, it will turn out that Ass (R/I) is the same as the set of primes that
occurs as radicals of primary ideals in an irredundant primary decomposition of I. The
primes that occur in a primary decomposition are sometimes called associated primes of I,
which is ambiguous because I may also be considered as an R-module. But there should
be no problem if they are referred to as the associated primes of I as an ideal. Then, in
the Noetherian case, the associated primes of I as an ideal are the same as the associated
primes of the module R/I.

The following facts hold quite generally:

Proposition. Let R be a ring.
(a) If P is prime in R, then Ass (R/P ) = {P}.
(b) If 0→M ′ →M →M ′′ → 0 is exact, then Ass (M) ⊆ Ass (M ′) ∪Ass (M ′′).

Proof. (a) Given any nonzero element of R/P represented by r ∈ R/P , its annihilator is
P , precisely because P is prime: if s /∈ P , rs is not 0 in R/P .

For the second part, we may assume without loss of generality that M ′ ⊆ M and
M ′′ = M/M ′. Suppose that u ∈M has annihilator P , so that Ru ∼= R/P . If Ru∩M ′ 6= 0,
some nonzero element v of Ru is in M ′, and, as observed in the proof of part (a), the
annihilator of v is P , so that P ∈ Ass (M ′). On the other hand, if Ru ∩M ′ = 0, then
Ru ∼= R/P embeds into M/M ′ = M ′′, and so P ∈ Ass (M ′′), as required. �
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Lecture of November 12

Lemma. Let M be an R-module and let u ∈M−{0}. Suppose that M or R is Noetherian.
Then we may choose r ∈ R such that ru 6= 0 and P = AnnRru is maximal among ideals
that are annihilators of nonzero multiples of u. For such a choice of r, P is a prime ideal.

Proof. Without loss of generality we may replace M by Ru and then R by R/AnnRM , so
that we may assume thatM andR are Noetherian. The set of ideals {AnnRru : ru 6= 0} is a
non-empty family in a Noetherian ring. Therefore, we may choose an element ru ∈ Ru−{0}
whose annihilator P is maximal in this set. Suppose that ab ∈ P , but a /∈ P . Then aru 6= 0,
and is killed by P + Rb, so that we must have b ∈ P , or else P would not be a maximal
annihilator. �

By a finite ascending filtration of an R-module M we mean a sequence

0 = M0 ⊆M1 ⊆ · · · ⊆Mn−1 ⊆Mn = M

of submodules of n. The filtration is said to have length n. The modules Mi+1/Mi,
0 ≤ i ≤ n− 1 are called the factors of the filtration.

If N is a submodule of M the problem of giving a finite ascending filtration of M that
contains N is equivalent to that of giving such filtrations for N and M/N . Suppose that
we have a filtration

0 = M0 ⊆ · · · ⊆Mk = N

of N . Any filtration of M/N has the form

0 ⊆Mk+1/N ⊆ · · · ⊆Mn/N

where Mn = M , since the submodules of M/N correspond bijectively with the submodules
of M containing N in such a way that Q/N corresponds to its inverse image Q in M . Note
that the 0 occurring initially on the left may be thought of as N/N . Then

0 ⊆M1 ⊆ · · · ⊆Mk ⊆Mk+1 ⊆ · · · ⊆Mn = M

is the required filtration of M . The factors from this filtration are the union of the two
sets of factors. The length of this filtration of M is the sum of the lengths of the filtrations
of N and M/N .

Proposition. Let 0 = M0 ⊆ · · · ⊆Mi ⊆ · · · ⊆Mn = M be a finite ascending filtration of
M . Then

Ass (M) ⊆
n−1⋃
i=0

Ass (Mi+1/Mi).

Proof. This is obvious if there is only one factor, and we may use induction on n. Because
of the short exact sequence 0→Mn−1 →M →M/Mn−1 → 0 we have that

Ass (M) ⊆ Ass (Mn−1) + Ass (M/Mn−1),

and we may apply the induction hypothesis to the filtration

0 ⊆M1 ⊆ · · · ⊆Mn−1

of Mn−1. �
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Theorem. Every Noetherian module M 6= 0 has a finite ascending filtration in which the
factors are prime cyclic modules, R/Pi. Therefore Ass (M) is finite, and is contained in
the set {P1, . . . , Pn} of primes that occur. Thus, Ass (M) = ∅ if and only if M = 0.

Proof. By Noetherian induction we may assume that the result holds for every quotient
of M by a nonzero submodule. (If M is a counterexample, the family of submodules N of
M such that M/N is counterexample is non-empty, since it contains 0, and therefore has
a maximal element N1. Work with M/N1 instead of M .) If M 6= 0 we can choose u 6= 0
in M and r as in the Lemma so that P = AnnRru is prime. Then R/P ∼= Ru ⊆ M , so
that P ∈ Ass (M). Let N = Ru. By the hypothesis of Noetherian induction, M/N has a
filtration of the specified type, and, hence, so does M . �

A cyclic module with prime annihilator P (which will then be isomorphic with R/P )
is called a prime cyclic module. A finite ascending filtration in which all the factors are
prime cyclic modules is called a prime cyclic filtration.

Proposition. Let M be an R-module and W a multiplicative system in R. If R is Noe-
therian, then Ass (W−1M) over W−1R is

{PW−1R : P ∈ Ass (M) and P ∩W = ∅}.

More generally, for any R, if P ∈ Ass (M) and P ∩W = ∅, then PW−1R ∈ Ass (W−1M)
over W−1R. If P is finitely generated, then PW−1R ∈ Ass (W−1M) over W−1R if and
only if P ∈ Ass (M) and P ∩W = ∅.

Proof. Since, quite generally, the primes of W−1R have the form PW−1R for a unique
choice of prime P ⊆ R disjoint from W , the results in the last two sentences imply the
result stated for the Noetherian case. If P ∈ Ass (M) we have an injection R/P ↪→M , and
localizing gives an injection W−1(R/P ) ↪→W−1M , where W−1(R/P ) ∼= W−1R/PW−1R.
Since P ∩W = ∅, PW−1R is a prime ideal of W−1R, and we are done.

Now suppose that P = (f1, . . . , fs)R is finitely generated and that PW−1R is an
element of Ass (W−1M). We can choose a nonzero element of W−1M that has PW−1R
as annihilator, and after multiplying an element in the image of W , we may assume this
element has the form u/1 for u ∈ M . Since each fiu/1 is 0 in W−1M , for each i we can
choose wi ∈ W such that wifiu = 0 in M . Let w be the product of the wi. Then each of
f1, . . . , fn kills wu, and so P kills wu. We claim that P is AnnRwu which will show that
P ∈ Ass (M), as required. Let w′ ∈ R− P . We need only check that w′wu 6= 0 in R. But
this is clear, since otherwise u/1 would be 0 in W−1M . �

Corollary. Let M be a finitely generated module over a Noetherian ring, and suppose
that Ass (M) = {P1, . . . , Pn}. Then Rad (AnnRM) =

⋂
i Pi. Thus, Rad (AnnRM) is

the intersection of the minimal elements of Ass (M): these are the minimal primes of
Rad (AnnRM), and also the minimal primes of AnnR(M). Since the support Supp (M) of
M is V

(
AnnR(M)

)
, the minimal primes in P1, . . . , Pn are also the minimal elements of

Supp (M).

Proof. Let u1, . . . , un generate M . Let r ∈ R. We know that ui/1 = 0 in Mr = W−1M ,
where W = {1, r, r2, r3, · · · } if and only if some power of r kills ui. Now Mr = 0 iff each
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of ui/1 is 0 in Mr iff some power of r kills each of the ui iff some power of r kills all the
ui iff some power of r kills M iff r ∈ Rad (Ann(M)). But Mr = 0 iff Ass (Mr) = ∅, and
Ass (Mr) is the set of minimal primes in Ass (M) not containing r, so that Mr = 0 iff r is
in every prime in Ass (M). �

When the ring R and the module M are Noetherian, the minimal primes of Ass (M)
(equivalently, of AnnR(M)) are called the minimal primes of M .

Note that if J is an ideal of R, then Rad (JW−1R) =
(
Rad (J)

)
W−1R. Clearly, it

suffices to prove ⊆. But if u/w has a power in JW−1R, where u ∈ R and w0 ∈ W , then
u/1 does as well, and so un/1 = j/w1 for some n, j ∈ J and w1 ∈ W . It follows that for
some w2 ∈W , w2(w1u

n − j) = 0, from which we have that wun ∈ J with w = w1w2, and
so (wu)n ∈ J . But then u ∈W−1Rad (J). We shall use this fact in analyzing the effect of
localization on primary decomposition.

Proposition. Let I have irredundant primary decomposition

A1 ∩ · · · ∩ An,

and let W be a multiplicative system in R. Let Pi = Rad (Ai). Then the intersection of
those AiW

−1R such that Pi does not meet W is an irredundant primary decomposition of
IW−1R. In particular, if A is primary with radical P , then AW−1R is the unit ideal if W
meets P and is primary to PW−1R otherwise.

Proof. We establish the final statement first. If W meets P , then some element of W has
a power in A, and so AW−1R is the unit ideal. If not, AW−1R has radical PW−1R, and it
suffices to show that if r, s ∈ R, v, w ∈W , and (r/v)(s/w) ∈ AW−1R then r/v ∈ AW−1R
or s/w ∈ Rad (AW−1R). Since rs/vw ∈ AW−1R, we find that w′(rs) ∈ A for some
w′ ∈W . Since W ⊆ R− P , this implies that rs ∈ A, so r ∈ A or s ∈ Rad (A), from which
the desired result follows.

We recall that we have an identification W−1J ∼= JW−1R for every ideal J of R
and make free use of it. Since localizing commutes with finite intersection, we have that
W−1I =

⋂
iW
−1Ai, and we may omit those terms such that W meets Pi, since for

those, W−1Ai is the unit ideal. This gives a primary decomposition involving distinct
primes. To see that it is irredundant, let Pi be a fixed one of the primes occurring that
is disjoint from W . We know that Pi = Rad (I :R r) for some element of R. Then
W−1Pi = W−1

(
Rad (I :R r)

)
= Rad

(
W−1(I :R r)

)
= Rad

(
W−1I :W−1R (r/1)

)
, which

shows, by our earlier criterion for when a prime must occur as the radical of some term in
a primary decomposition, that all of the terms are needed. �

The contraction of PnRP to R is a P -primary ideal that contains Pn. It is the smallest
P -primary ideal containing Pn, and is called the n th symbolic power of P , and denote
P (n). Note that P is the radical of Pn, and so it is the unique minimal prime of Pn. If
Pn has a primary decomposition, the P -primary ideal that is used must be P (n). We also
have the description

P (n) = {r ∈ R : for some w ∈ R− P,wr ∈ Pn}.
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In general, P (n) ⊇ Pn, and the containment is often strict, even when the ambient ring R
is a polynomial ring. The behavior of symbolic powers is very subtle, and has engendered
a huge literature.

Example (F. S. Macaulay). Let R = K[x, y, z], the polynomial ring in three variables
over a field, and map R by a K-algebra homomorphism onto K[t3, t4, t5] ⊆ K[t], where
t is another variable, by sending x 7→ t3, y 7→ t4 and z 7→ t5. The kernel P of this
homomorphism is a prime ideal of K[x, y, z]. We leave it to the reader to show that
P = (f, g, h)R where f = xz − y2, g = x3 − yz, and h = x3y − z2: these elements are the
2× 2 minors of the matrix (

x y z
y z x2

)
which maps to the rank one matrix (

t3 t4 t5

t4 t5 t6

)
(the rank is one because the second row is t times the first row). Of course, it is clear
that f , g, and h are in the kernel: the problem is to show that they generate the entire
kernel. Assuming that we have these generators, it is not difficult to see that there is
an element of P (2) that is not in P 2. We assign degrees to the variables in a somewhat
non-standard way, so that x , y, and z have degrees 3, 4, and 5, respectively. Then xiyizk

has degree 3i + 4j + 5k. The elements f , g and h are homogeneous with respect to this
grading, of degrees 8, 9, and 10 respectively. Now consider fh− g2. Working mod x, this
is (−y2)(−z2)− (−yz)2 = y2z2 − (yz)2 = 0. That is, x divides fh− g2, and we can write
fh − g2 = xq. Note that fh − g2 6= 0, since, for example, g2 has an x6 term while fh
does not. Thus, q 6= 0. Now fh− g2 is homogeneous of degree 18, and x is homogeneous
of degree 3. It therefore follows without computation that q is homogeneous of degree 15.
Since xq = fh− g2 ∈ P 2, while x /∈ P , it follows that q ∈ P (2). But q cannot be in P 2: its
degree is 15, while the generators f2, g2, h2, fg, fh, gh of P 2 all have degree 16 or more.
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Lecture of November 14

Note that if J ⊆ I ⊆ R then the problem of giving an (irredundant) primary de-
composition for I in R is equivalent to the problem of giving an (irredundant) primary
decomposition for I/J in R/J . In particular, it is the same problem as giving an (irredun-
dant) primary decomposition of 0 in R/I. The same remark applies to studying whether
I is irreducible in R.

Also note that while every prime in Ass (M) must occur as the annihilator of a factor
in any finite filtration of M with prime cyclic factors, it may be impossible to give such a
filtration of M in which only primes of Ass (M) occur. If M is torsion-free over a domain R,
then the annihilator of any nonzero element is (0) in R: thus, Ass (M) = {(0)}. Consider
any torsion-free module over R that is not free. A prime cyclic filtration cannot consist
only of factors that are ∼= R = R/(0). (If one has a finite filtration in which all the factors
are R, there is a surjection of M onto the last factor, M � R, which will split, so that
M = M0 ⊕R R, where M0 has such a filtration with one fewer copy of R. By induction,
induction on the number of factors, M is R-free.) One can start with several such factors,
but eventually one will have a quotient which is a torsion module. For example, let
M = (x, y)R in the polynomial ring K[x, y]. M needs two generators, and after killing any
copy of R = Rf where f is an element of M one has a torsion module and other primes
are needed for the filtration. E.g., if one kills xR, the quotient is ∼= y(R/xR) ∼= R/xR,
and one has a prime cyclic filtration that involves (0) and xR.

If P is any prime occurring in a prime cyclic filtration of M , then R/P is a homomorphic
image of a submodule of M , and therefore if I kills M , then I kills R/P , so that I ⊆ P .
Thus, AnnRM ⊆ P , and this implies that P contains a minimal prime of M . Thus, even
the “extraneous” primes occurring in a prime cyclic filtration of M (by which we mean
the primes occurring that are not associated primes of M) must contain a minimal prime
of M .

Examples. (1) Let R = K[X1, X2, X3, . . . ]/J where J = (Xt+1
t : t ≥ 1). The ideal m of R

generated by the images xt of the Xt is maximal: R/m ∼= K. Since every xt is nilpotent,
this maximal ideal is also the unique minimal prime of R. Thus, Spec (R) = {m}. We
claim that AssR = ∅. Since m is the only prime ideal of R, this amounts to the assertion
that there is no element of R − {0} that is killed by m. Note that m is spanned over K
by the monomials xk11 · · ·xkn

n , with n varying, such that for all t, 0 ≤ kt ≤ t. Suppose
that f ∈ R− {0}, and that xN does not occur in f . Then xNf 6= 0, which establishes our
claim. The theory that we have already developed shows that this does not happen if R
is Noetherian.

(2) Let R = K[y, x1, x2, x3, . . . ] be a polynomial ring in infinitely many variables. Let
P = (xi : i ≥ 1) and let M = R/J , where J = (yixi : i ≥ 1)R. Let W = {yt : t ∈ N}.
Then PW−1R ∈ Ass (W−1M): in fact, W−1M ∼= W−1R/PW−1R. But no element of
R − J is multiplied into J by P , so that P /∈ Ass (M). This is another sort of behavior
that cannot occur in the Noetherian case.
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(3) Let R = K[x, y, u, v, z, w]/(xy + uv + zw). It is easy to see that xy + uv + zw
is irreducible, and this ring can be shown to be UFD. Let P = (x, y, u, v, w)R. This is
ideal is prime, with quotient ring K[z], and of course Q = P + zR is a maximal ideal with
quotient ring K. Now, P ⊆ Q and P 2 ⊆ Q2, but P (2) is not contained in Q(2). Because
Q is maximal, Q2 is Q-primary and so Q2 = Q(2). But since zw = −xy − uv ∈ P 2 while
z /∈ P , we have that w ∈ P (2). In a polynomial or power series ring over a field or a PID, it
is true that if P ⊆ Q are primes then P (n) ⊆ Q(n) for all n: but this is a difficult theorem
due to Nagata and Zariski independently. Cf. [M. Nagata, Local Rings, Interscience, New
York, 1962], p. 143, for Nagata’s proof. In the massive breakthrough paper [H. Hironaka,
Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals
of Math. 79 (1964), pp. 205–326], Hironaka gives Zariski’s proof: see Theorem 1. A
more elementary argument is used to prove this fact in [M. Hochster, Symbolic powers
in Noetherian domains, Illinois Math. J. (1971), pp. 9–27]: this paper has a proof for
formal power series rings over a field that uses the Weierstrass preparation theorem. The
case of formal power series over a field implies the case of polynomial rings over a field.
Another subtle result on behavior of symbolic powers in polynomial and power series rings
over fields is that if P has height h, then P (n) ⊆ Pnh for all n. This was proved over
fields of characteristic 0 in [L. Ein, R. Lazarsfeld, and K. E. Smith, Uniform bounds and
symbolic powers on smooth varieties, Inventiones Math. 144 (2001), pp. 241–252] and over
arbitrary fields in [M. Hochster and C. Huneke, Comparison of symbolic and ordinary
powers of ideals, Inventiones Math. 147 (2002),, pp. 349–369].

Note that if Q1, . . . , Qn are submodules of M , then the kernel of the map

M →M/Q1 ⊕R · · · ⊕RM/Qn

such that
u 7→ (u+Q1)⊕ · · · ⊕ (u+Qn)

is precisely Q1 ∩ · · · ∩Qn, yielding an injection

M/(Q1 ∩ · · · ∩Qn) ↪→M/Q1 ⊕R · · · ⊕RM/Qn.

A finite direct sum of modules W1 ⊕R ⊕R · · · ⊕RWn has a filtration

0 ⊆W1 ⊆W1 ⊕RW2 ⊆W1 ⊕RW2 ⊕RW3 ⊆ · · · ⊆W1 ⊕RW2 ⊕R · · · ⊕RWn

with factors Wi, and so

Ass (W1 ⊕R · · · ⊕RWn) ⊆
⋃
i

Ass (Wi).

Thus, when Q1, . . . , Qn are submodules of M with intersection N , we have that

Ass (M/N) ⊆ Ass
(
⊕i(M/Qi)

)
⊆
⋃
i

Ass (M/Qi).
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Theorem. Let R be a Noetherian ring, M a finitely generated R-module, and let I ⊆ R
be an ideal.
(a) An element r ∈ R is a zerodivisor on M (i.e., ru = 0 for some u ∈ M − {0}) if and

only if it belongs to a prime P ∈ Ass (M). In other words, the set of zerodivisors on
M in R is the same as the union of the associated prime ideals of M .

(b) I is primary if and only if Ass (R/I) contains just one element P , in which case I is
primary to P .

(c) The associated primes of I as an ideal are the elements of Ass (R/I).

Proof. For part (a), note that if u ∈ P ∈ Ass (M), then P = AnnRu, u 6= 0, and so ru = 0
with u 6= 0. On the other hand, if ru = 0 with u 6= 0 then u has a multiple r′u that is not
0 with prime annihilator P . Clearly r ∈ P ∈ Ass (M).

For parts (b) and (c), first observe that if I is primary to P then the zerodivisors on I
are precisely the elements of P/I (which are nilpotent in R/I: by the definition of primary
ideal, the elements of R−P are not zerodivisors on the module R/I). Thus, Ass (R/I) = P .
This proves the “only if” part of (b).

Now suppose that I = A1 ∩ · · · ∩An is an irredundant primary decomposition of I and
that Rad (Ai) = Pi. Then the remarks preceding the statement of the theorem show that
Ass (R/I) ⊆

⋃
i Ass (R/Ai) = {P1, . . . , Pn} by the preceding paragraph. Now fix i and

choose r in the intersection of the Aj for j 6= i but not in Ai, so that Rad (I :R r) = Pi. Let
N = (I+rR)/I ∼= r(R/I), where r denotes the class of r in R/I. Then Ass (N) ⊆ Ass (M).
But the annihilator of the cyclic module N is I :R r, whose radical is Pi. Since Pi is a
minimal prime of I :R rR, Pi ∈ Ass

(
R/(I :R rR)

)
= Ass (N) ⊆ Ass (M). This shows that

every associated prime of I as an ideal is in Ass (R/I).

Finally, if Ass (R/I) = P , then there is only one term in the primary decomposition of
R, and so I is primary with Rad (I) = P , which proves the “if” part of (b). �

Next, note that if a finitely generated ideal I = (f1, . . . , fh) is contained in the radical
of J , then IN ⊆ J for sufficiently large N . Each ft has a power in J : say the fat

t ∈ J .
Take N ≥ a1 + · · · ah − h+ 1. Then IN is generated by the monomials of degree N in the
ft, and, in any such monomial, the exponent on some ft must be at least at, or else the
sum of the exponents is at most (a1 − 1) + · · ·+ (ah − 1) = a1 + · · ·+ ah − h.

As an application of primary decomposition, we prove the following beautiful result.

Theorem. Let (R, m) be a local ring, i.e., a Noetherian ring with a unique maximal ideal
m. Then

⋂
nm

n = (0).

Proof. Let J =
⋂
nm

n. Let mJ = A1 ∩ · · · ∩ An be a primary decomposition for mJ . We
shall show that J ⊆ Ai for every I. But this proves that J ⊆ mJ , so that J = mJ . But
then J = (0) by Nakayama’s Lemma.

To prove that J ⊆ Ai we consider two cases. First suppose that Pi = Rad (Ai) is
different from m. Choose x ∈ m − Pi. Then xJ ⊆ mJ ⊆ Ai, but x is not in Rad (Ai).
This implies that J ⊆ Ai. The remaining case is where Ai is primary to m. But then
each generator of m has a power in Ai, and since m is finitely generated, mN ⊆ Ai for all
N � 0. But J ⊆ mN for all N , and so J ⊆ Ai in this case as well. �
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We want to show that
⋂
nm

nM = 0 for any finitely generated R-module M as well.
There are at least three methods of doing this: one is extend the theory of primary
decomposition to modules, and we shall do this in these notes shortly. A second method
involves a result called the Artin-Rees theorem, and we shall also give that proof eventually.

The third method is to deduce the result for all modules from the ring case by a trick:
Nagata’s idealization trick (or method). The key point is that if R is any ring and M
is any R-module, then R ⊕R M becomes a commutative ring with identity if we define
multiplication by the rule

(r ⊕ u)(s⊕ v) = rs⊕ (rv + su).

This ring is an R-algebra. M is an ideal in which the square of every element is 0, and
the product of any two elements of M is 0. Killing M gives R back. Every prime ideal
of R ⊕R M has the form P ⊕R M for some prime P of R: the same is true for maximal
ideals. If R is quasilocal, then R ⊕R M is quasilocal, and if R is local and M is finitely
generated as an R-module then R⊕M is module-finite over R, hence, Noetherian, and is
a local ring.

Theorem. If (R, m) is local and M is a finitely generated R-module, then
⋂
nm

nM = 0.

Proof. Consider the local ring R ⊕RM described just above. Its unique maximal ideal is
m⊕M , and

(m⊕M)n+1 = mn+1 ⊕mnM.

Any element of
⋂
mnM is therefore in every power of the maximal ideal of R⊕RM , and

is therefore 0. �

Theorem. Let R be a Noetherian ring, M a finitely generated R-module, and I an ideal
of R. Then u ∈

⋂
n I

nM if and only if there exists an element i ∈ I such that u = iu.

Proof. The “if” part is trivial, for if u = iu then u = iu = i(iu) = i2u, and by a straight-
forward induction, u = inu ∈ InM for all n.

For the other direction, suppose that I + AnnRu is a proper ideal of R, let m be a
maximal ideal of R containing it. Then u/1 is nonzero in Mm, and Im ⊆M = mRm, the
maximal ideal of Rm. But then u ∈ InM for all n implies that u/1 ∈MnM for all n, and
this is a contradiction. Thus, we can choose i ∈ I and z ∈ AnnRu such that i+ z = 1. But
then iu = iu+ zu = (i+ z)u = 1u = u. �

Notice that this is a global result obtained by reduction to the local case. Our next main
objectives are first, to classify all rings with DCC, and second to make use of the theory
of Noetherian rings and modules that we have developed to analyze dimension theory in
an arbitrary Noetherian ring.

However, before leaving the topic of primary decomposition, we extend the theory to
an arbitrary submodule N of a module M over a Noetherian ring R. We define Q ⊆ M
to be primary to a prime ideal P of R if Ass (M/Q) = {P}. We shall say that M/Q
is P -coprimary. A proper submodule Q ⊆ M is called irreducible in M if it is not the
intersection of two (equivalently, finitely many) strictly larger submodules of M .
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Theorem (primary decomposition for modules). Let R be Noetherian, let M be a
finitely generated R-module, and let N, Q ⊆M be finitely generated R-submodules.
(a) Q is primary if and only if Rad

(
AnnR(M/Q)

)
is a prime ideal P (whose elements

then act nilpotently on M/Q) and the elements of R−P are not zerodivisors on M/Q.
(b) Every irreducible submodule of Q of M is primary.
(c) Every proper submodule N of M is a finite intersection of of irreducible submodules.
(d) If Q1, . . . , Qn are primary to P , so is their intersection.
(e) Every proper submodule N of M is an irredundant intersection of primary submodules,

where irredundant means that the primes to which they are primary are mutually
distinct, and that no term can be omitted. The set of primes that occur are the
associated primes of M/N , and so are unique, the minimal primes among them are
the minimal primes of Ann(M/N), and if P is one of these minimal primes, then the
primary submodule to P that occurs is unique, and is the submodule of all elements
of M whose images in MP are in NP .

(f) If N has irredundant primary decomposition Q1 ∩ · · · ∩Qn where Qi is primary to Pi,
1 ≤ i ≤ n, and W is a multiplicative system in R, then the W−1R-module W−1M
has an irredundant primary decomposition as the intersection of the W−1Qi for those
i such that Pi does not meet W .

Proof. (a) Ass (M/Q) = {P} implies that Rad (AnnRm) = P , and this in turn implies
that elements of P act nilpotently on M . Since the union of the associated primes is the
set of zerodivisors on M/Q, we also have that an element of R − P is not a zerodivisor
on M/Q. Conversely, if Rad (AnnRM) = P then P consists of zerodivisors on M , and no
prime strictly smaller than P can be in Ass (M), while no prime strictly larger than P can
be in Ass (M), since elements of R− P are not zerodivisors on M/Q.

For part (b), let Q be irreducible. We replace M by M/Q. We want to show that
Ass (M) contains just one element. Suppose that there are two elements P and P ′: then
R/P and R/P ′ both embed into M , and their images can meet only in 0, because any
nonzero element in either has annihilator P and also annihilator P ′. Thus, 0 is the inter-
section of two larger submodules, a contradiction.

By Noetherian induction, if some proper submodule is not the intersection of a finite
family of strictly larger submodules, there is a maximal such submodule. Then either it
is irreducible, or it is the intersection of two larger proper submodules, each of which is a
finite intersection of irreducible submodules. This proves (c).

For part (d), if Q1, . . . , Qn are all primary P then M/(
⋂
iQi) embeds in

⊕
iM/Qi and

it follows that Ass
(
M/(

⋂
iQi)

)
= {P}, as required.

The existence of an irredundant primary decomposition for a submodule is now obvious.
If N = Q1∩· · ·∩Qn is an irredundant primary decomposition, then we have an embedding
of M/N into the direct sum of the M/Qi. Therefore, Ass (M) ⊆ {P1, . . . , Pn}, where
Ass (M/Qi) = {Pi}. Now, for fixed i, we know that the intersection of the Qj for j 6= i is
not contained in Qi, or Qi would be redundant. Pick u ∈ Qj for j 6= i such that u /∈ Qi.
Then u /∈ N . Consider Ru ∈ M/N . We claim that Pi is a minimal prime of this module:
in fact the support of this module is V (Pi). To see this, note that for a prime P , (Ru)P 6= 0
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iff u/1 /∈ NP iff u/1 /∈ (Qt)P for some t iff u/1 /∈ (Qi)P (since u was chosen in all the other
Qj). Since M/Qi is primary to Pi, it has support V (Pi), and this shows P ⊇ Pi. But it is
clear that localizing at P ⊇ Pi will not kill u mod Qi, since elements of R−P ⊆ R−Pi are
not zerodivisors on M/Qi. Thus, Pi is the unique minimal prime of Ru ⊆M/N . But then
Pi ∈ Ass (Ru) ⊆ Ass (M/N), as required. This completes the proof of part (e), except for
the very last statement, which we shall give in the next paragraph when we prove part (f).

(f) Since localization commutes with finite intersection, we have that W−1N is the
intersection of all the W−1Qi. If W meets Pi, then since Pi = Ass (M/Qi), we have that
Pi = Rad

(
AnnR(M/Qi)

)
, and then some element of W will have a power that annihilates

M/Qi, and if follows that W−1(M/Qi) = 0 for such i, i.e., that W−1Qi = W−1M .
Evidently, these terms may be omitted, and we know that W−1N is the intersection of the
others, which are primary to various distinct primes PiW−1R or W−1R. All of the terms
are needed, because we know that these primes are precisely the ones in Ass (W−1M).
This also shows that if Pi is minimal among the {P1, . . . , Pn}, then NPi = (Qi)Pi , and
since elements of R−Pi are not zerodivisors on M/Qi, we find that u ∈M is in Qi if and
only if u/1 ∈ (Qi)Pi

= NPi
, as required. �

It is worth noting that the problem of giving an (irredundant) primary decomposition of
N ⊆M (and also the issue of whether N is an irreducible submodule of M) is unaffected
by replacing the pair N ⊆M by the pair N/N0 ⊆M/N0, where N0 is a submodule of N .
In particular, one may as well study the problem for 0 ⊆M/N .
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Lecture of November 17

We need to understand one more case where the ring is not necessarily Noetherian, but
one knows nonetheless that there is a primary decomposition.

Theorem. Let R be any ring and I an ideal such that V (I) is a finite set of ideals, all
of which are maximal. Then I has a primary decomposition, I = A1 ∩ · · · ∩ An, which is
unique except for the order of the terms. In this case I is also the product A1 · · ·An, and
R/I is isomorphic with the product of the rings R/Ai.

Proof. It is an equivalent problem to find a primary decomposition for (0) in the ring
R/I. Therefore we may assume that R is a ring such that every prime ideal is maximal,
and such that there are only finitely many maximal ideals, say m1, . . . ,mn. We seek a
primary decomposition for the ideal (0). Let An be the contraction of the (0) ideal from
Rmi

, i.e., the set of elements of R which map to 0 in Rmi
: these are the elements that

are killed by an element not in mi. Then Ai is mi-primary, since it is the contraction of
an miRmi-primary ideal, the zero ideal, of Rmi . Moreover, 0 = A1 ∩ · · · ∩ An, for any
element of this intersection vanishes no matter at which prime ideal of R we localize: the
mi constitute all of the prime ideals of R. This gives a primary decomposition of (0), and
since all of the primes occurring as radicals are maximal, they are all minimal, and so the
primary decomposition is unique.

Since the Ai have radicals that are mutually distinct maximal ideals, they are pairwise
comaximal: if i 6= j, Rad (Ai + Aj) ⊇ Rad (Ai) + Rad (Aj) ⊇ mi + mj = R , and the
remaining statements now follow from the Chinese Remainder Theorem. �

A nonzero module over a ring R is called simple if, equivalently, (1) it has no nonzero
proper submodule or (2) it is isomorphic with R/m for some maximal ideal m. Note that
a module satisfying (1) must be generated by any nonzero element, and is therefore cyclic
and of the form R/I for some proper ideal I. The statement that there are no proper
submodules except (0) is the equivalent to the statement that every nonzero ideal of R/I
is the unit ideal, which forces R/I to be a field.

A module is said to have finite length if it has a filtration in which every factor is simple.
Recall that a refinement of a filtration is chain of submodules that contains the original
chain: what happens is that between pairs of modules Mi ⊆ Mi+1 in the original chain,
additional modules M ′i,t may be inserted, so that one has Mi ⊆M ′i,1 ⊆ · · · ⊆M ′i,k ⊆Mi+1.
In any refinement of a filtration with simple factors, every factor is 0 or simple. If M has
finite length, by the Jordan-Hölder theorem, any finite filtration can be refined to one in
which every factor is simple or 0. In any two filtrations such that all factors are 0 or
simple, the simple factors are the same in some order, counting multiplicities, because,
again by the Jordan-Hölder theorem, the two filtrations have isomorphic refinements. If
M has finite length the length `(M) is defined to be the number of simple factors in any
finite filtration such that all factors are simple or 0. If 0 → M ′ → M → M ′′ → 0 is a
short exact sequence of modules, then M has finite length if and only if both M ′ and M ′′

have finite length, and then `(M) = `(M ′) + `(M ′′). (If M ′ and M/M ′ ∼= M ′′ have finite
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filtrations with simple factors, these can be conjoined to give such a filtration for M , and
the lengths add. On the other hand, if M has such a filtration, the filtration 0 ⊆M ′ ⊆M
can be refined to a filtration where all factors are simple or 0, and it follows that both M ′

and M ′′ ∼= M/M ′ have finite length.)

If M has finite length and M1 ⊆M2 are submodules, then `(M2) = `(M1) + `(M2/M1),
and so M1 and M2 are equal if and only if they have the same length. Thus, any chain of
distinct submodules of M has length at most equal to `(M), and a finite length module
has both ACC and DCC. If M is killed by a maximal ideal m, then it has finite length if
and only if it is a finite-dimensional vector space over R/m, in which case its length is the
same as its dimension over R/m.

For a vector space W over a field K, we note that the conditions of having ACC, DCC,
and finite length are all equivalent: they hold precisely when K has finite dimension,
which we know is equal to its length over K. If W has finite length, we have already
seen that ACC and DCC hold. On the other hand, if W contains an infinite set of linearly
independent vectors v1, v2, v3, . . . then there is an infinite strictly ascending chain of which
the n th term is the span of v1, . . . , vn, and an infinite strictly descending chain of which
the n th term is the span of vn, vn+1, vn+2, · · · .

Over a principal ideal domain R, the length of R/f , where f 6= 0, is the same as the
number n of irreducible factors in a factorization f = f1 · · · fn of f into irreducible factors
(which are allowed to be repeated). Thus, `(Z/60Z) = 4, since 60 = 2 · 2 · 3 · 5, and
`
(
K[x]/(x3 − x)

)
= 3, since x3 − x = (x− 1)x(x+ 1).

Note that C has length 1 as a C-module and length 2 as an R-module.

A module M has finite length iff M is Noetherian and Ass (M) consists entirely of
maximal ideals. This is clear because if M has a prime cyclic filtration by modules R/m
with m maximal, it is immediate that M is Noetherian and that Ass (M) is contained in
the set of maximal ideals occurring. Conversely, if M is Noetherian and Ass (M) consists
entirely of maximal ideals, then AnnRM is the intersection of these. Any prime occurring
in a finite prime cyclic filtration of M must contain AnnRM and therefore must be in
Ass (M). It follows that a finite prime cyclic filtration has only factors of the form R/m,
where m is maximal.

A local ring (R,m,K) of dimension 0 has finite length as a module over itself: if m is
the maximal ideal, then every element of m is nilpotent. Since m is finitely generated,
some power of m is 0. Say that mn = 0. Then 0 = mn ⊆ mn−1 ⊆ · · · ⊆ m2 ⊆ m ⊆ R is a
filtration of R, and each factor has the form mi/mi+1, is a vector space over R/m, and is
finite dimensional, since mi is finitely generated. The length of R is the same as the sum
of these dimensions.

Theorem. The following conditions on a ring R are equivalent.
(1) R is Noetherian of Krull dimension 0.
(2) R is a finite product of local rings of Krull dimension 0.
(3) R has finite length as a module over itself.
(4) R has DCC.
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Proof. To see that (1)⇒ (2), note that when (1) holds, all prime ideals of R are minimal as
well as maximal: thus, R has only finitely many maximal ideals m1, . . . ,mn, and we may
use the preceding theorem to write R as the product of rings R/Ai where Ai is primary to
mi.

That (2) ⇒ (3) is obvious, since we have already seen that a local ring of dimension 0
has finite length as a module over itself, and (3) ⇒ (4) has already been noted.

It remains only to prove that (4) ⇒ (1). Since R has DCC, so does every quotient. Let
P be prime in R. If A = R/P is not a field, we may choose a ∈ A that is not 0 and not
a unit. The sequence of ideals anA must stabilize. But then an ∈ an+1A for some n, say
an = an+1b. But since a 6= 0 and A is a domain, we get 1 = ab, a contradiction. Thus,
every prime ideal of A is maximal.

If there were infinitely many maximal ideals m1, m2, m3, . . . the chain

m1 ⊇ m1 ∩m2 ⊇ m1 ∩m2 ∩m3 ⊇ · · ·

would have to stabilize, yielding mn+1 ⊇ m1 ∩ · · · ∩mn for some sufficiently large n. But
then mn+1 ⊇ mi for some i ≤ n, a contradiction.

Therefore R has Krull dimension 0, and has only finitely many maximal ideals. The
preceding theorem on primary decomposition in this situation enables us to write R as a
finite product of quasilocal rings of dimension 0. We have therefore reduced to studying
the case where R is quasilocal, with a unique prime ideal (which is necessarily its maximal
ideal).

Now suppose that (R, m, K) is quasilocal of Krull dimension 0, and has DCC. Then
the sequence of ideals

m ⊇ m2 ⊇ m3 ⊇ · · · ⊇ mn ⊇ · · ·
is eventually stable, and we may assume that n has been chosen such that mn = mn+1.
Each of the vector spaces mi/mi+1 has DCC, and therefore each is finite-dimensional over
K. We want to show that mn = 0. Assume otherwise. Consider the family of ideals
{I ⊆ m : Imn 6= 0}. Then m is in this family. Therefore, the family has a minimal
element J ⊆ m. Clearly, we can choose x ∈ J such that xmn 6= 0, and so Rx ⊆ J is in
the family. Therefore, J = Rx. Now, xm(mn) = xmn+1 = xmn 6= 0, and so xm ⊆ Rx is
also in the family, and we get that Rx = mx = mRx. By Nakayama’s lemma, Rx = 0, a
contradiction. Thus, mn = 0 for some n, and then R has a finite filtration

0 = mn ⊆ mn−1 ⊆ · · · ⊆ m2 ⊆ m ⊆ R

whose factors are finite-dimensional vector spaces. Thus, R has finite length as a module
over itself and, therefore, R is Noetherian. �

A word of caution: although a ring with DCC has finite length, a module with DCC
over a Noetherian ring need not have finite length. Let V = ZP , where P is the prime
ideal generated by the prime integer p. Then Q/V has DCC as a V -module, but not finite
length. What happens is that every proper submodule of Q/V has finite length, but Q/V
itself does not. It is also true that if V is any discrete valuation ring with fraction field F ,
then F/V has DCC but not finite length as a V -module.
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Lecture of November 19

We note one more fact about the behavior of primary ideals.

Proposition. Let I be primary to P in R. And let S be a polynomial ring over R (the
number of variables may be infinite). Then IS is primary to PS, which is prime, in S.

Proof. Let x denote all the variables being adjoined. Then PR[x] is the kernel of the
obvious surjection R[x] � (R/P )[x] that replaces every coefficient of a given polynomial
with its image in R/P . Thus, PR[x] is prime, and is certainly the radical of IR[x]. We
replace R by R/I and P by P/I and henceforth assume that I = (0). Thus, P consists of
nilpotents, and elements of R− P are not zerodivisors in R.

Now suppose that f is a polynomial with a coefficient that is not in P . It suffices to see
that f does not kill any nonzero polynomial in R[x]. Suppose that fg = 0 where g 6= 0.
Consider the subring R0 of R generated over the image of Z in R by the coefficients of f
and g. Let P0 = P ∩ R0, which is the same as the (prime) ideal of all nilpotents in R0.
Notice that f, g ∈ R0[x], and that f has a coefficient not in P0. Elements of R0−P0 are in
R − P and therefore are not zerodivisors even in R. Of course, we still have that fg = 0.
Thus, we may replace R and P by R0 and P0, and we have reduced to the Noetherian
case. We change notation and write R for R0 and P for P0.

We may also omit adjoining any indeterminates not occurring in f or g, and we may
therefore assume that the number of indeterminates is finite. By induction on the numberof
indeterminates, we may assume that there is only one indeterminate.

Elements of R−P are clearly not zerodivisors in R[x] as well. We may therefore replace
R by RP , and assume that R is local with nilpotent maximal ideal P , f has a coefficient
not in P , hence, a unit, and g ∈ R[x] − {0}. We want to show that fg = 0 leads to a
contradiction. Now, PN = 0 in R for sufficiently large N . We can replace g by a nonzero
multiple all of whose coefficients are killed by P : if all coefficients of g are killed by P
we are done: if not, multiply by some element of P that does not kill g. This procedure
can be repeated at most N times, since PN = 0. Thus, we may assume without loss of
generality that every coefficient of g is killed by P .

All terms of f whose coefficients are in P kill g. Therefore, if fg = 0 and we omit all
terms from f with coefficients in P , we still have that fg = 0. Thus, we may assume that
the highest degree term in f has a coefficient that is a unit. Multiplying this term by the
highest degree nonzero term in g produces a nonzero term in the product that cannot be
canceled. �

Our next objective is to study dimension theory in Noetherian rings. There was initially
amazement that the results that follow hold in an arbitrary Noetherian ring.

Theorem (Krull’s principal ideal theorem). Let R be a Noetherian ring, x ∈ R, and
P a minimal prime of xR. Then the height of P ≤ 1.
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Before giving the proof, we want to state a consequence that appears much more general.
The following result is also frequently referred to as Krull’s principal ideal theorem, even
though no principal ideals are present. But the heart of the proof is the case n = 1, which
is the principal ideal theorem. This result is sometimes called Krull’s height theorem. It
follows by induction from the principal ideal theorem, although the induction is not quite
straightforward, and the converse also needs a result on prime avoidance.

Theorem (Krull’s principal ideal theorem, strong version, alias Krull’s height
theorem). Let R be a Noetherian ring and P a minimal prime ideal of an ideal generated
by n elements. Then the height of P is at most n. Conversely, if P has height n then it
is a minimal prime of an ideal generated by n elements. That is, the height of a prime P
is the same as the least number of generators of an ideal I ⊆ P of which P is a minimal
prime. In particular, the height of every prime ideal P is at most the number of generators
of P , and is therefore finite. For every local ring R, the Krull dimension of R is finite.

Proof of the first version of the principal ideal theorem. If we have a counterexample, we
still have a counterexample after we localize at P . Therefore we may assume that (R, P )
is local. Suppose that there is a chain of length two or more. Then there is a strict chain

P ⊃ Q ⊃ Q0

in R. We may replace R, P, Q, Q0 by R/Q0, P/Q0, Q/Q0, (0). We may therefore assume
that (R, P ) is a local domain, that P is a minimal prime of xR, and that there is a prime
Q with 0 ⊂ Q ⊂ P , where the inclusions are strict. We shall get a contradiction.

Recall that Q(n) = QnRQ ∩R, the n th symbolic power of Q. It is Q-primary. Now, the
ring R/xR has only one prime ideal, P/xR. Therefore it is a zero dimensional local ring,
and has DCC. In consequence the chain of ideals Q(n)R/xR is eventually stable. Taking
inverse images in R, we find that there exists N such that

Q(n) + xR = Q(n+1) + xR

for all n ≥ N . For n ≥ N we have Q(n) ⊆ Q(n+1) + xR. Let u ∈ Q(n). Then u = q + xr
where q ∈ Q(n+1), and so xr = u−q ∈ Q(n). But x /∈ Q, since P is the only minimal prime
of xR in R. Since Q(n) is Q-primary, we have that r ∈ Q(n). This leads to the conclusion
that Q(n) ⊆ Q(n+1) + xQ(n), and so

Q(n) = Q(n+1) + xQ(n).

But that means that with M = Q(n)/Q(n+1), we have that M = xM . By Nakayama’s
lemma, M = 0, i.e., Qn/Qn+1 = 0.

Thus, Q(n) = Q(N) for all n ≥ N . If a ∈ Q − {0}, it follows that aN ∈ QN ⊆ Q(N)

and is hence in the intersection of all the Q(n). But then, since Q(n) ⊆ QnR for all n, in
the local domain RQ, the intersection of the powers of the maximal ideal QRQ is not 0, a
contradiction. �

Before proving the strong version of the principal ideal theorem, we want to record
the following result on prime avoidance. In applications of part (b) of this result, W is
frequently a K-algebra R, while the other subspaces are ideals of R. This shows that if
there is an infinite field in the ring R, the assumptions about ideals being prime in part
(a) are not needed.
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Theorem (prime avoidance). Let R be a ring. Let V ⊆ W be vector spaces over an
infinite field K.
(a) Let A be an ideal of R (or a subset of R closed under addition and multiplication).

Given finitely many ideals of R all but two of which are prime, if A is not contained
in any of these ideals, then it is not contained in their union.

(b) Given finitely many subspaces of W , if V is not contained in any of these subspaces,
then V is not contained in their union.

(c) (Ed Davis) Let x ∈ R and I, P1, . . . , Pn be ideals of R such that the Pi are prime. If
I +Rx is not contained in any of the Pt, then for some i ∈ I, i+ x /∈

⋃
t Pt.

Proof. (a) We may assume that no term may be omitted from the union, or work with
a smaller family of ideals. Call the ideals I, J, P1, . . . , Pn with the Pt prime. Choose
elements i ∈ I ∩ A, j ∈ J ∩ A, and at ∈ Pt ∩ A, 1 ≤ t ≤ n, such that each belongs to only
one of the ideals I, J, P1, . . . , Pn, i.e., to the one it is specified to be in. This must be
possible, or not all of the ideals would be needed to cover A. Let a = (i+ j) + ijb where

b =
∏

t such that i+j /∈Pt

at,

where a product over the empty set is defined to be 1. Then i + j is not in I nor in J ,
while ijb is in both, so that a /∈ I and a /∈ J . Now choose t, 1 ≤ t ≤ n. If i+ j ∈ Pt, the
factors of ijb are not in Pt, and so ijb /∈ Pt, and therefore a /∈ Pt. If i+ j /∈ Pt there is a
factor of b in Pt, and so a /∈ Pt again.

(b) If V is not contained in any one of the finitely many vector spaces Vt covering V ,
for every t choose a vector vt ∈ V − Vt. Let V0 be the span of the vt. Then V0 is a
finite-dimensional counterexample. We replace V by V0 and Vt by its intersection with V0.
Thus, we need only show that a finite-dimensional vector space Kn is not a finite union
of proper subspaces Vt. (When the field is algebraically closed we have a contradiction
because Kn is irreducible. Essentially the same idea works over any infinite field.) For
each t we can choose a linear form Lt 6= 0 that vanishes on Vt. The product f = L1 · · · Lt
is a nonzero polynomial that vanishes identically on Kn. This is a contradiction, since K
is infinite.

(c) We may assume that no Pt may be omitted from the union. For every t, choose
an element pt in Pt and not in any of the other Pk. Suppose, after renumbering, that
P1, . . . , Pk all contain x while the other Pt do not (the values 0 and n for k are allowed).
If I ⊆

⋃k
j=1 Pj then it is easy to see that I + Rx ⊆

⋃k
j=1 Pj , and hence in one of the Pj

by part (a), a contradiction. Choose i′ ∈ I not in any of P1, . . . , Pk. Let q be the product
of the pt for t > k (or 1, if k = n). Then x + i′q is not in any Pt, and so we may take
i = i′q. �
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Lecture of November 21

Examples. Let K = Z/2Z and let V = K2. This vector space is the union of the
three subspaces spanned by (1, 0), (0, 1) and (1, 1), respectively. This explains why we
need an infinite field in part (b) of the preceding theorem. Now consider the K-algebra
K ⊕K V where the product of any two elements of V is 0. (This ring is isomorphic
with K[x, y]/(x2, xy, y2), where x and y are indeterminates.) Then the maximal ideal is,
likewise, the union of the three ideals spanned by its three nonzero elements. This shows
that we cannot replace “all but two are prime” by “all but three are prime” in part (a) of
the preceding theorem.

Proof of Krull’s principal ideal theorem, strong version. We begin by proving by induction
on n that the first statement holds. If n = 0 then P is a minimal prime of (0) and this
does mean that P has height 0. Note that the zero ideal is the ideal generated by the
empty set, and so constitutes a 0 generator ideal. The case where n = 1 has already been
proved. Now suppose that n ≥ 2 and that we know the result for integers < n. Suppose
that P is a minimal prime of (x1, . . . , xn)R, and that we want to show that the height of
P is at most n. Suppose not, and that there is a chain of primes

P = Pn+1 ⊃ · · · ⊃ P0

with strict inclusions. If x1 ∈ P1 then P is evidently also a minimal prime of P1 +
(x2, . . . , xn)R, and this implies that P/P1 is a minimal prime of the ideal generated by
the images of x2, . . . , xn in R/P1. The chain

Pn+1/P1 ⊃ · · · ⊃ P1/P1

then contradicts the induction hypothesis. Therefore, it will suffice to show that the chain

P = Pn+1 ⊃ · · · ⊃ P1 ⊃ 0

can be modified so that x = x1 is in P1. Suppose that x ∈ Pk but not in Pk−1 for k ≥ 2.
(To get started, note that x ∈ P = Pn+1.) It will suffice to show that there is a prime
strictly between Pk and Pk−2 that contains x, for then we may use this prime instead of
Pk−1, and we have increased the number of primes in the chain that contain x. Thus, we
eventually reach a chain such that x ∈ P1.

To find such a prime, we may work in the local domain

D = RPk
/Pk−2RPk

.

The element x has nonzero image in the maximal ideal of this ring. A minimal prime P ′ of
xR in this ring cannot be PkRPk

, for that ideal has height at least two, and P ′ has height
at most one by the case of the principal ideal theorem already proved. Of course, P ′ 6= 0
since it contains x 6= 0. The inverse image of P ′ in R gives the required prime.
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Thus, we can modify the chain

P = Pn+1 ⊃ · · · ⊃ P1 ⊃ P0

repeatedly until x1 ∈ P1. This completes the proof that the height of P is at most n.

We now prove the converse. Suppose that P is a prime ideal of R of height n. We
want to show that we can choose x1, . . . , xn in P such that P is a minimal prime of
(x1, . . . , xn)R. If n = 0 we take the empty set of xi. The fact that P has height 0 means
precisely that it is a minimal prime of (0). It remains to consider the case where n > 0.
We use induction on n. Let q1, . . . , qk be the minimal primes of R that are contained in
P . Then P cannot be contained in the union of these, or else it will be contained in one
of them, and hence be equal to one of them and of height 0. Choose x1 ∈ P not in any
minimal prime contained in P . Then the height of P/x1R in R/x1R is at most n − 1:
the chains in R descending from P that had maximum length n must have ended with a
minimal prime of R contained in P , and these are now longer available. By the induction
hypothesis, P/x1R is a minimal prime of an ideal generated by at most n − 1 elements.
Consider x1 together with pre-images of these elements chosen in R. Then P is a minimal
prime of the ideal they generate, and so P is a minimal prime of an ideal generated by at
most n elements. The number cannot be smaller than n, or else by the first part, P could
not have height n. �

If (R, m) is a local ring of Krull dimension n, a system of parameters for R is a sequence
of elements x1, . . . , xn ∈ m such that, equivalently:

(1) m is a minimal prime of (x1, . . . , xn)R.
(2) Rad (x1, . . . , xn)R is m.
(3) m has a power in (x1, . . . , xn)R.
(4) (x1, . . . , xn)R is m-primary.

The theorem we have just proved shows that every local ring of Krull dimension n has
a system of parameters.

One cannot have fewer than n elements generating an ideal whose radical is m, for
then dim (R) would be < n. We leave it to the reader to see that x1, . . . , xk ∈ m can be
extended to a system of parameters for R if and only if

dim
(
R/(x1, . . . , xk)R

)
≤ n− k,

in which case
dim

(
R/(x1, . . . , xk)R

)
= n− k.

In particular, x = x1 is part of a system of parameters iff x is not in any minimal prime P
of R such that dim (R/P ) = n. In this situation, elements y1, . . . , yn−k extend x1, . . . , xk
to a system of parameters for R if and only if their images in R/(x1, . . . , xk)R are a system
of parameters for R/(x1, . . . , xk)R.

The following statement is now immediate:
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Corollary. Let (R, m) be local and let x1, . . . , xk be k elements of m. Then the dimension
of R/(x1, . . . , xk)R is at least dim (R)− k.

Proof. Suppose the quotient has dimension h. If y1, . . . , yh ∈ m are such that their images
in R/(x1, . . . , xk)R are a system of parameters in the quotient, then m is a minimal prime
of (x1, . . . , xk, y1, . . . , yh)R, which shows that h+ k ≥ n. �

We are now almost ready to address the issue of how dimension behaves for Noetherian
rings when one adjoins either polynomial or formal power series indeterminates.

We first note the following fact:

Lemma. Let x be an indeterminate over R. Then x is in every maximal ideal of R[[x]].

Proof. If x is not in the maximal idealM it has an inverse modM, so that we have xf ≡ 1
mod M, i.e., 1− xf ∈ M. Thus, it will suffice to show that 1− xf is a unit. The idea of
the proof is to show that

u = 1 + xf + x2f2 + x3f3 + · · ·

is an inverse: the infinite sum makes sense because only finitely many terms involve any
given power of x. Note that

u = (1 + xf + · · ·+ xnfn) + xn+1wn

with
wn = fn+1 + xfn+2 + x2fn+3 + · · · ,

which again makes sense since any given power of x occurs in only finitely many terms.
Thus:

u(1− xf)− 1 = (1 + xf + · · ·+ xnfn)(1− xf) + xn+1wn(1− xf)− 1.

The first of the summands on the right is 1− xn+1fn+1, and so this becomes

1− xn+1fn+1 + xn+1wn(1− xf)− 1 = xn+1
(
−fn+1 + wn(1− xf)

)
∈ xn+1R[[x]],

and since the intersection of the ideals xtR[[x]] is clearly 0, we have that u(1−xf)−1 = 0,
as required. �

Theorem. Let R be a Noetherian ring and let x1, . . . , xn be indeterminates. Then S =
R[x1, . . . , xk] and T = R[[x1, . . . , xk]] both have dimension dim (R) + k.

Proof. By a straightforward induction we may assume that k = 1. Write x1 = x. If P is a
prime ideal of R then PS and PT are both prime, with quotients (R/P )[x] and (R/P )[[x]],
and PS+ xS, PS+ xT are prime as well. If P0 ⊂ · · · ⊂ Pn is a chain of primes in R, then
their expansions P e

i together with P e
n + (x) give a chain of primes of length one greater in

S or T . This shows that the dimensions of S and T are at least dim(R) + 1.
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If R has infinite dimension, so do S and T . Therefore let dim (R) = n be finite. We
want to show that S and T have dimension at most n + 1. We first consider the case of
S = R[x]. Let Q be a prime ideal of this ring and let P be its contraction to R. It suffices
to show that the height of Q is at most one more than the height of P . To this end we
can replace R by RP and S by RP [x]: QRP [x] will be a prime ideal of this ring, and the
height of Q is the same as the height of its expansion. We have therefore reduced to the
local case. Let x1, . . . , xn be a system of parameters for R (which is now local). It suffices
to show that we can extend it to a system of parameters for R[x]Q using at most one more
element. It therefore suffices to show that R[x]Q/(x1, . . . , xn) has dimension at most 1.
This ring is a localization of (R/(x1, . . . , xn))[x], and so it suffices to see that this ring
has dimension at most 1. To this end, we may kill the ideal of nilpotents, which is the
expansion of P , producing K[x]. Since this ring has dimension 1, we are done.

In the case of T we first note that, by the Lemma, every maximal ideal of T contains
x. Choose Q maximal in T . Since x ∈ Q, Q corresponds to a maximal ideal m of R,
and has the form me + (x). If m is minimal over (x1, . . . , xn), then Q is minimal over
(x1, . . . , xn, x). This proves that the height of Q ≤ n+ 1, as required. �

If R is not Noetherian but has finite Krull dimension n, it is true that R[x] has finite
Krull dimension, and it lies between n + 1 and 2n + 1. The upper bound is proved by
showing that in a chain of primes in R[x], at most two (necessarily consecutive) primes lie
over the same prime P of R. This result is sharp.
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Lecture of November 24

Let K be an algebraically closed field. Given two algebraic sets X = V(I) ∈ Km = AmK ,
where we use x1, . . . , xm for coordinates, and Y = V(J) ⊆ Kn = AnK , where we use
y1, . . . , yn for coordinates, the set X × Y ⊆ Km+n = Am+n

K is an algebraic set defined by
the expansions of I and J to K[x1, . . . , xm, y1, . . . , yn] ∼= K[x1, . . . , xm]⊗KK[y1, . . . , yn].
It is obvious that a point satisfies both the conditions imposed by the vanishing of I and
of J if and only if its first m coordinates give a point of X and its last n coordinates give
a point of Y .

Let S = K[x1, . . . , xm] thought of as K[AmK ] and Y = K[y1, . . . , yn] thought of as
K[AnK ]. Then

K[X × Y ] ∼= (S ⊗K T )/Rad (Ie + Je),

where the superscript e indicates expansion of ideals. Since

(S ⊗K T )/(Ie + Je) ∼= (S ⊗K T )/(I ⊗K T + S ⊗K J) ∼= (S/I)⊗K (T/J),

we have that

K[X × Y ] ∼=
(
(S/I)⊗K (T/J)

)
red
∼= (K[X]⊗K K[Y ])red.

It is not necessary to kill the nilpotents, because of the following fact:

Theorem. Let R and S be algebras over an algebraically closed field K.
(a) If R and S are domains, then R⊗K S is a domain.
(b) If R and S are reduced, then R⊗K S is reduced.

Proof. For part (a), let F denote the fraction field of R. Since K is a field, every K-module
is free, and, therefore, flat. We have an injection R ↪→ F . Thus, R ⊗K S ↪→ F ⊗K S.
By Supplementary Problem Set #4, problem 6., this ring is a domain, and so its subring
R⊗K S is a domain.

For part (b), note that R is a the directed union of its finitely generated K-subalgebras
R0. Thus, R ⊗K S is the directed union of its subalgebras R0 ⊗K S where R0 ⊆ R is
finitely generated. Similarly, this ring is the directed union of its subalgebras R0 ⊗K S0,
where both R0 ⊆ R and S0 ⊆ S are finitely generated. We can therefore reduce to the
case where R and S are finitely generated.

Let P1, . . . , Pm be the minimal primes of R. Since R is reduced, their intersection is 0.
Therefore, R injects into

∏
i(R/Pi). Thus,

R⊗K S ↪→
(∏
i

(R/Pi)
)
⊗K S ∼=

∏
i

(
(R/Pi)⊗K S

)
(if we think of the products as direct sums, we have an obvious isomorphism of K-vector
spaces: the check that multiplication is preserved is straightforward), and so it suffices to
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show that each factor ring of this product is reduced. Thus, we need only show that if R
is a domain and S is reduced, where these are finitely generated K-algebras, then R⊗K S
is reduced. But now we may repeat this argument using the minimal primes Q1, . . . , Qn
of S, and so we need only show that each ring R ⊗K (S/Qj) is reduced, where now both
R and S/Qj are domains. By part (a), these tensor products are domains. �

One may also show that the tensor product of two reduced rings over an algebraically
closed field is reduced using an equational argument and Hilbert’s Nullstellensatz, similar
to the argument for Supplementary Problem Set #4, 6.

We return to the study of algebraic sets over an algebraically closed field. We have now
established an isomorphism K[X × Y ] ∼= K[X]⊗K K[Y ]. Moreover, it is easy to see that
the product projections X × Y → X, X × Y → Y correspond to the respective injections
K[X]→ K[X]⊗K K[Y ] and K[Y ]→ K[X]⊗K K[Y ], where the first sends f 7→ f ⊗ 1 and
the second sends g 7→ 1⊗ g.

From the fact that K[X] ⊗K K[Y ] is a coproduct of K[X] and K[Y ] in the category
of K-algebras, it follows easily that X × Y (with the usual product projections) is a
product of X and Y in the category of algebraic sets. That is, giving a morphism from
Z to X × Y is equivalent to giving a pair of morphisms, one from Z to X and the other
from Z → Y . This is simply because giving a morphism from Z to X × Y is equivalent
to giving a K-homomorphism K[X] ⊗K K[Y ] to K[Z], which we know is equivalent to
giving a K-homomorphism K[X] → K[Z] and a K-homomorphism K[Y ] → K[Z]: as
already mentioned, K[X] ⊗K K[Y ] is a coproduct for K[X] and K[Y ] in the category of
K-algebras. Notice also that since K[X]⊗K K[Y ] is a domain whenever K[X] and K[Y ]
are both domains, we have:

Corollary. The product of two varieties (i.e., irreducible algebraic sets) in AnK over an
algebraically closed field K is a variety (i.e., irreducible).

We also note:

Proposition. If X and Y are algebraic sets over the algebraically closed field K, then

dim (X × Y ) = dim (X) + dim (Y ).

Proof. K[X] is module-finite over a polynomial ring A in d variables where d = dim (X),
say with module generators u1, . . . , us, and K[Y ] is module-finite, say with module gen-
erators v1, . . . , vt, over a polynomial ring B in d′ variables. Hence, K[X] ⊗K K[Y ] is
module-finite (with module generators ui ⊗ vj) over a polynomial ring in d+ d′ variables.
Note that A⊗K B injects into A⊗K K[Y ] because A is K-flat, and the latter injects into
K[X]⊗K K[Y ] because K[Y ] is K-flat. �

We next prove a result that was promised long ago:

Theorem. Let X and Y be irreducible algebraic sets meeting at a point x ∈ AnK , where
K is an algebraic closed field. Then

dim(X ∩ Y ) ≥ dim (X) + dim (Y )− n.
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In fact every irreducible component of X ∩ Y has dimension ≥ dim (X) + dim (Y )− n.

Proof. Let X = V(P ) and Y = V(Q), where P and Q are prime ideals of K[x1, . . . , xn].
Then X ∩ Y = V(P +Q), although P +Q need not be radical, and

K[X ∩ Y ] =
(
K[x1, . . . , xn]/(P +Q)

)
red
.

Now

K[x1, . . . , xn]/(P +Q) ∼=
(
(K[x1, . . . , xn]/P )⊗K (K[y1, . . . , yn]/Q′)

)
/I∆,

where I∆ is the ideal generated by the xi − yi for 1 ≤ i ≤ n, which is the ideal that
defines the diagonal ∆ in AnK ×K AnK . The point is that once we kill the generators xi− yi
of I∆, the ring K[y1, . . . , yn] is identified with K[x1, . . . , xn], and the image of Q′ is
Q. (Geometrically, we are identifying X ∩ Y with (X × Y ) ∩ ∆ in AnK × AnK , via the
map z 7→ (z, z).) Let R = (K[x1, . . . , xn]/P ) ⊗K (K[y1, . . . , yn]/Q′). The dimension of
R = K[X × Y ] is dim (X) + dim (Y ). Since the intersection X ∩ Y is non-empty, we know
that I∆ expands to a proper ideal. The dimension of the quotient will be the supremum
of the heights of the m/I∆ as m runs through maximal ideals containing I∆, and this
will be the supremum of the dimensions of the local rings dim (Rm/I∆Rm). Each Rm has
dimension equal to that of R, i.e., dim (X) + dim (Y ). But I∆ is generated by n elements,
and killing n elements in the maximal ideal of a local ring drops the dimension of the local
ring by at most n. Thus, every Rm/I∆Rm has dimension at least dim (X) + dim (Y )− n,
and the result follows. To get the final statement, let x be a point of the irreducible
component considered not in any other irreducible component of X ∩ Y , and let m be
the corresponding maximal ideal of R. We have that Rm/I∆Rm has dimension at least
dim (X) + dim (Y )− n as before, but now there is a unique minimal prime P in this ring,
corresponding to the fact that only one irreducible component of X ∩ Y contains x. It
follows that this irreducible component has dimension at least dim (X) + dim (Y )−n. �

Note that the argument in the proof shows that the map X ∩ Y → (X × Y ) ∩∆ that
sends z to (z, z) is an isomorphism of algebraic sets.

Recall that dim x(X) is the largest dimension of an irreducible component of X that
contains x. It follows at once that:

Corollary. Let X and Y be algebraic sets in Kn, where K is an algebraically closed field,
and suppose x ∈ X ∩ Y . Then

dim x(X ∩ Y ) ≥ dim x(X) + dim x(Y )− n.

Proof. Let X0 be an irreducible component of X containing x of largest dimension that
contains x and Y0 be such a component of Y with x ∈ Y0. Then dim x(X) = dim (X0) and
dim x(Y ) = dim (Y0). Apply the result for the irreducible case to X0 and Y0. �

The theorem we have just proved may be thought of as an existence theorem for solutions
of equations: given two sets of equations in n variables over an algebraically closed field, if
the two sets of equations have a common solution x, and the solutions of the first set have
dimension d near x while the solutions of the second set have dimension d′ near x, then
the set of simultaneous solutions of the two sets has dimension at least d+ d′ − n near x.
This is well known for solutions of linear equations, but surprising for algebraic sets!
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Lecture of November 26

A subset of a topological space is called locally closed if it is, equivalently, (1) the
intersection of an open set with a closed set, (2) a closed subset of an open set, or (3) an
open subset of a closed set. Let X ⊆ AnK be a closed algebraic set. Let f ∈ K[X] = R,
and let Xf = {x ∈ X : f(x) 6= 0}. Then Xf corresponds bijectively to the set of
maximal ideals in Rf . Therefore, Xf has the structure of a closed algebraic set (a priori,
it is only a locally closed algebraic set). If we think of R as K[x1, . . . , xn]/I where
I = I(X), we can map K[x1, . . . , xn+1] � Rf , extending the map K[x1, . . . , xn] � R by
mapping xn+1 → 1/f . X now corresponds bijectively to a closed algebraic set in An+1

K :
the bijection sends x to

(
x, 1/f(x)

)
. The closed algebraic set in question may be described

as {(x, λ) ∈ An+1
K : x ∈ X and λ = 1/f(x)}. The new defining ideal is I + (fxn+1 − 1).

We define a function Xf → K to be regular if it is regular with respect to the closed
algebraic set structure that we have placed on Xf . This raises the following question:
suppose that we have a cover of a closed algebraic set X by open sets Xfi

and a function
g : X → K such that the restriction of g to each Xfi

is regular in the sense just specified.
Is g regular? We shall show that the answer is “yes,” and this shows that regularity is a
local property with respect to the Zariski topology. Let gi denote the restriction of g to
Xi = Xfi . Note that gi|Xj = gj |Xi for all i, j, since they are both restrictions of g.

The following fact gives a generalization to arbitrary modules over an arbitrary com-
mutative ring, and underlies the theory of schemes.

Theorem. Let R be any ring and M any R-module. Let X = Spec (R), and let fi be a
family of elements of R such that the open sets Xi = Xfi

= D(fi) cover X. Suppose that
for every i we are given an element ui ∈ Mfi

= Mi, and suppose that (∗) for all choices
of i and j, the images of ui and uj in Mfifj

agree. Then there is a unique element u ∈M
such that for all i, the image of u in Mfi is ui.

The result says, informally, that “constructing” an element of a module is a local prob-
lem: one can solve it on an open cover, provided the solutions “fit together” on overlaps.
This turns many problems into local problems: for example, if M is finitely presented,
the problem of constructing a map of modules M → N amounts to giving an element
of the module HomR(M, N). Since localization commutes with Hom when M is finitely
presented, the problem of doing the construction becomes local.

Note that if we apply this result in the case of the algebraic set X, we find that there
is an element g0 ∈ K[X] whose image in K[Xi] is gi for all i. This implies that g0 agrees
with g on Xi. Since the Xi cover X, g0 = g. Thus, g ∈ K[X]. Consequently, the theorem
stated above does show that regularity is a local property.

Proof of the theorem. Uniqueness is obvious: if u and u′ are two such elements, then they
agree after localizing at any fi. When one localizes at a prime P , since P cannot contain
all the fi, u and u′ have the same image in MP . It follows that u = u′. We focus on the
existence of u.
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The statement that the Xi cover is equivalent to the statement that the fi generate the
unit ideal. Then finitely many generate the unit ideal: call these fi1 , . . . , fin . Suppose
that we can construct u ∈ M such that the image of u is uit ∈ Mit , 1 ≤ t ≤ n. We claim
that the image u′j of u in Mj is uj for any j. To see this, it suffices to show that u′j − uj
vanishes in (Mj)P for any P ∈ Xj . But Xj is covered by the sets Xj ∩Xit , 1 ≤ t ≤ n. If
P ∈ Xit , it suffices to show that u′j and uj have the same image in Mfitfj

. The image of
u′j is the same as the image of u, and hence the same as the image of uit , and the result
follows from our assumption (∗).

Therefore, it suffices to work with the cover by the Xfit
, and we simplify notation: we let

the index set be {1, . . . , n} and so the fis are simply f1, . . . , fn, the cover is X1, . . . , Xn,
and Mi = Mfi . We use induction on n. If n = 1, X1 = X and the result is clear: u = u1.

We next consider the case where n = 2. This is the core of the proof. Let u1 = v1/f
s
1

and u2 = v2/f
t
2 where v1, v2 ∈ M . Since these agree in Mf1f2 there exists an integer N

such fN1 f
N
2 (f t2v1 − fs1v2) = 0. Then u1 = fN1 v1/f

N+s
1 , u2 = fN2 v2/f

N+t
2 , and

fN+t
2 fN1 v1 − fN+s

1 fN2 v2 = (f1f2)N (f t2v1 − fs1v2) = 0.

Thus, if we replace f1 by fN+s
1 , f2 by fN+t

2 , v1 by fN1 v1 and v2 by fN2 v2, then u1 = v1/f1,
u2 = v2/f2, and f2v1− f1v2 = 0 (Note that the original fN+s

1 and fN+t
2 generate the unit

ideal, since any maximal ideal containing both would have to contain both f1 and f2, a
contradiction: thus, the new f1 and f2 still generate the unit ideal).

Choose r1, r2 such that r1f1 + r2f2 = 1. Let u = r1v1 + r2v2. Then

f1u = r1f1v1 + r2(f1v2) = r1f1v1 + r2(f2v1) = (r1f1 + r2f2)v1 = v1,

so that u = v1/f1 in M1, and u = v2/f2 in M2 by symmetry.

We now assume that n > 2 and that the result has been established for integers < n.
Suppose that

r1f1 + · · ·+ rnfn = 1.

Let
g1 = r1f1 + · · ·+ rn−1fn−1

and g2 = fn. Evidently, g1 and g2 generate the unit ideal, since g1 + rng2 = 1. Consider
the images of f1, . . . , fn−1 in Rg1 . Because g1 is invertible, they generate the unit ideal.
We now apply the induction hypothesis to Mg1 , using the images of the fi for 1 ≤ i ≤ n−1
to give the open cover of Spec (Rg1). Let u′i denote the image of ui in Mg1fi , 1 ≤ i ≤ n−1.
It is straightforward to verify that condition (∗) continues to hold here, using cases of the
original condition (∗). By the induction hypothesis, there is an element of Mg1 , call it w1,
such that the image of w1 in each Mg1fi

is the same as the image of ui, 1 ≤ i ≤ n − 1.
We claim that the images of w1 and un agree in Mg1fn

. It suffices to show that they agree
after localizing at any prime P , and P cannot contain the images of all of f1, . . . , fn−1. If
P does not contain fi, 1 ≤ i ≤ n − 1, the result follows because the images of ui and un
agree in Mfifn

. We can now apply the case where n = 2 to construct the required element
of M . �
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Corollary. Let X and Y be closed algebraic sets over an algebraically closed field K.
Then a function h : X → Y is regular if and only if (#) it is continuous and for all x ∈ X
there is an open neighborhood Yg of y = h(x) and an open neighborhood Xf ⊆ h−1(y) such
that the restriction of h mapping Xf to Yg is regular.

Proof. Y ⊆ AnK (with coordinates x1, . . . , xn in the latter), and we will reduce to showing
that the composite map X → AnK is regular. Let hi be the composition of this map with
the i th coordinate projection. It suffices to show that every hi is regular. Let Xf be a
neighborhood of x ∈ X such that h maps into an open neighborhood Yg of h(x). It will
correspond to a K-algebra homomorphism K[Y ]g → K[X]f . Note that g is the restriction
of a function g′ on AnK , and (AnK)g′ meets Y in Yg. The inclusion Y ⊆ AnK corresponds to
a surjection K[x1, . . . , xn] → K[Y ]. The map Yg → (AnK)g′ corresponds to the ring map
K[x1, . . . , xn]g′ → K[Y ]g induced by localization at the multiplicative system generated
by g′ (recall that g′ maps to g). Thus, the map Xf → (AnK)g′ is regular, and so is the map
Xf → AnK , which corresponds to the composite ring map

K[x1, . . . , xn]→ K[x1, . . . , xn]g′ → K[Y ]g → K[X]f .

It follows that the composition of the map Xf → AnK with the i th coordinate projection
is regular: this is the restriction of hi to Xf . Since the Xf cover X, it follows that every
hi is regular, and so h is regular. �

We can now define when a function between open subsets of algebraic sets (i.e., locally
closed algebraic sets) is a morphism: simply use the condition (#) in the Corollary.

A set has the structure of a reduced scheme of finite type over an algebraically closed
field K if it is a topological space X with a finite open cover by sets Xi together with, for
every i, a bijection fi : Xi

∼= Yi where Yi is a closed algebraic set over K, satisfying the
additional condition that if

fij : Xi ∩Xj
∼= fi(Xi ∩Xj) = Yij ⊆ Yi,

then the for all i, j the composite

fji ◦ f−1
ij : Yij → Yji

is an isomorphism of (locally closed) algebraic sets.

Roughly speaking, a reduced scheme of finite type over K is the result of pasting to-
gether finitely many closed algebraic sets along overlaps that are isomorphic in the category
of locally closed algebraic sets. This is analogous to the definitions of topological, differ-
entiable and analytic manifolds by pasting open subsets having the same structure as an
open set in Rn (or Cn in the case of an analytic manifold).

One can use condition (#) to define when a function between two reduced schemes of
finite type over K is a morphism: thus, we require that f be continuous, and that for all
x ∈ X, if y = f(x), then when we choose an open neighborhood V of y with the structure
of a closed algebraic set, and and an open neighborhood U of x with the structure of a
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closed algebraic set such that f(U) ⊆ V , then restriction of f to a map from U to V is
a morphism of algebraic sets. Our results on the local character of morphisms show that
when X and Y are closed algebraic sets, we have not enlarged the set of morphisms from
X to Y .

A major failing of this theory is that while the category of finitely generated K-algebras
has rings with nilpotents, our reduced schemes never have any. It turns out that the
presence of nilpotents can carry geometric information! Even if one detests nilpotents and
never wants them around, it is very useful on occasion to be able to say that there really
aren’t any because of a suitable theorem (as opposed to saying that there aren’t any because
we were forced by our definitions to kill them all). For example, one cannot express the fact
that the tensor product of two reduced K-algebras is reduced in the category of reduced
schemes. While there is an object corresponding to the reduced tensor product, there is
no object corresponding to the tensor product. The remedy is the theory of schemes: the
category of schemes contains the opposite of the category of rings as a subcategory, and
contains the category of reduced schemes of finite type over an algebraically closed field as
well.

When one does the full theory of schemes, the definition of a reduced scheme of finite
type over an algebraically closed field K is somewhat different, but the category of reduced
schemes of finite type over K introduced here is equivalent to the category one gets from
the more general theory of schemes.
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Lecture of December 1

We briefly discuss the notion of the Krull dimension of a Noetherian module M over
a Noetherian ring R. Let I be the annihilator of M in R. Then we define dim (M) =
dim (R/I), which is the same as

sup{dim (R/P ) : P is a minimal prime of I} = sup{dim (R/P ) : P ∈ Ass (M)}.

It follows easily that if
0→M ′ →M →M ′′ → 0

is exact then
dim (M) = sup{dim (M ′), dim (M ′′)}

and, by induction on n that if

0 = M0 ⊆M1 ⊆ · · · ⊆Mn−1 ⊆Mn = M

is a finite filtration of M then

dim (M) = sup{dim (Mi+1/Mi) : 0 ≤ i ≤ n− 1}.

If (R, m) is local with x1, . . . , xn ∈ m and M 6= 0 is finitely generated over R, then
`
(
M/(x1, . . . , xn)M

)
is finite iff

M/(x1, . . . , xn)M =
(
R/(x1, . . . , xn)R

)
⊗RM

is supported precisely at m iff

Supp
(
R/(x1, . . . , xn)R

)
∩ Supp (M) = {m}

iff
V
(
(x1, . . . , xn)R

)
∩ V (I) = {m}

iff (x1, . . . , xn)R + I has radical m iff (x1, . . . , xn)(R/I) is (m/I)-primary. The least
integer n such that M/(x1, . . . , xn)M has finite length for x1, . . . , xn ∈ m is therefore the
same as dim (R/I) = dim (M), and the elements x1, . . . , xn ∈ m are called a system of
parameters for M if n = dim (M) and `

(
M/
(
x1, . . . , xn)M

)
is finite. Clearly, x1, . . . , xn ∈

R form a system of parameters for M iff their images in R/I are a system of parameters
for R/I.

Our next objective is to give an important characterization of normal Noetherian do-
mains, and then apply it to the study of normal Noetherian domains of Krull dimension
one. A normal Noetherian domain of Krull dimension one is called a Dedekind domain.
Every PID that is not a field is a Dedekind domain. The integral closure of Z in a finite
algebraic extension F of Q also turns out to be a Dedekind domain. F is called an algebraic
number field and the integral closure of Z in F is called the ring of algebraic integers of F .
It is module-finite over Z, as we shall see below.

Before giving our characterization of normal Noetherian domains, we need:
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Proposition. Let R be a Noetherian ring, and suppose that P is an associated prime of
the ideal xR, where x ∈ R is not a zerodivisor. Then P is an associated prime of y for
every nonzerodivisor y ∈ P .

Proof. The issues are unaffected by passing to RP . Therefore we may assume that (R, P )
is local. Then we may choose a ∈ P − xR such that Pa ⊆ xR. Then ya = xb for some
b ∈ R. Note that b /∈ yR, or else b = yr, and then ya = xyr ⇒ y(a − xr) = 0 ⇒ a = xr,
since y is not a zerodivisor. This is a contradiction, since a /∈ xR, which completes the
proof that b /∈ yR. We claim that Pb ⊆ yR, for if u ∈ P , we have that ua = xs for some
s ∈ R. Since ya = xb, we find that uxb = uya = yxs and so x(ub − ys) = 0 ⇒ ub = ys,
since x is not a zerodivisor. �

Proposition. A local domain (R, P ) not a field is a DVR iff P = yR is principal.

Proof. The condition is clearly necessary. Now suppose that P = yR. Consider any
nonzero element r of P . Since it is not in every power of P , there is a largest integer n ≥ 1
such that r = uyn for u ∈ R. Then y does not divide u, which shows that u ∈ R − P is a
unit. That is, every nonzero non-unit is a unit times a power of y. It follows at once that
any proper nonzero ideal is generated by the least power of y that it contains. �

Theorem. Let R be a Noetherian domain. Then R is normal if and only if (1) every
associated prime of any nonzero principal ideal has height one, and (2) the localization of
R at every height one prime is a DVR. In particular, if R is one-dimensional and local,
then R is normal if and only if R is a DVR.

Proof. First suppose that R is normal. Let x be any nonzero element of R and let P be
an associated prime of xR: note that any height one prime will be a minimal prime (and,
hence, an associated prime) of a principal ideal. We may localize at P . We shall show that
RP is a DVR, which evidently implies that the height of P is one. This establishes both
(1) and (2) in the characterization of normality.

Since P 6= 0, P 6= P 2, by Nakayama’s lemma. Choose y ∈ P − P 2. We shall prove that
yR = P , which shows that P has height one and that R = RP is a DVR. Note that P is
an associated prime of yR, by the first Proposition above. Thus, we may choose a ∈ R
such that a /∈ yR but Pa ⊆ yR. If a is a unit we find that P ⊆ yR and so P = yR and we
are done. Suppose a ∈ P . We shall obtain a contradiction. We claim that Pa ⊆ yP . For
if r ∈ P and ra = yu, if u were a unit we would have that yu ∈ P 2, and then y ∈ P 2, a
contradiction.

Let f1, . . . , fn generate P . Then for every i we have an equation

afi = y
∑
j

rijfj .

If we make f1, . . . , fn into the entries of a column vector V and let A be the matrix (rij),
this says that AV = (a/y)V . We are working over a domain R, so that we may think over
the fraction field of R. The entries of V generate the nonzero prime P , and so V 6= 0, and
is an eigenvector of A for the eigenvalue a/y. It follows as usual that det

(
(a/y)I −A

)
= 0
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i.e., that a/y satisfies the characteristic polynomial of the matrix A = (rij), which is a
monic polynomial with coefficients in R. Since a/y ∈ frac (R) and R is normal, this implies
that a/y ∈ R, and so a ∈ yR, a contradiction. This concludes the proof of the necessity of
conditions (1) and (2).

Now suppose that associated primes of nonzero principal ideals are height one and that
the localization of R at any height one prime is a DVR. We must show that R is normal. If
not, choose a fraction α that is integral over R. Then M = R[α]/R is a finitely generated
nonzero R-module: choose a prime P ∈ Ass (M). Now replace R by RP . Our hypotheses
are preserved. Moreover, PRP ∈ Ass (MP ) and so MP 6= 0, which means that RP [α] is
strictly bigger than RP . We change notation and assume that (R, P ) is local and that
β ∈ R[α] is such that P is the annihilator of the image of β in R[α]/R, that is, β /∈ R but
Pβ ⊆ R. We may write β = a/x where x ∈ R − {0} and a /∈ xR. Then P (a/x) ⊆ R,
which implies that Pa ⊆ xR. This implies that P is an associated prime of the ideal xR.
Therefore, P has height one. But then R = RP is a DVR, and is normal, since a DVR is
a PID and therefore a UFD. This is a contradiction. �

Primary decomposition of principal ideals in a normal Noetherian domain has a par-
ticularly simple form: there are no embedded primes, and so if 0 6= a ∈ P the P -primary
component is unique, and corresponds to the contraction of an ideal primary to the maxi-
mal ideal in RP , a discrete valuation ring. But the only ideals primary to PRP in RP are
the powers of PRP , and so every P -primary ideal has the form P (n) for a unique positive
integer n. Thus, if a 6= 0 is not a unit, then aR is uniquely an intersection

P
(k1)
1 ∩ · · · ∩ P (kn)

n .

Form the free abelian group G on generators [P ] corresponding bijectively to the height one
prime ideals P of R. If the ideal aR has the primary decomposition indicated, the element∑n
i=1 ki[Pi] is called the divisor of a, and denoted div (a). By convention, the divisor of a

unit of R is 0. The quotient of G by the span of all the divisors is called the divisor class
group of R, and denoted C` (R). It turns out to vanish if and only if R is a UFD. In fact,
[P ] maps to 0 in C` (R) iff P is principal. One can say something even more general. An
ideal I of a Noetherian ring R is said to have pure height h if all associated primes of I
as an ideal have height h. The unit ideal, which has no associated primes, satisfies this
condition by default. If I is an ideal of a Noetherian normal domain of pure height one,
then I has a primary decomposition P

(k1)
1 ∩ · · · ∩ P (kn)

n , and so there is a divisor div (I)
associated with I, namely

∑n
i=1 ki[Pi]. If I = R is the unit ideal, we define div (I) = 0.

Theorem. Let R be a Noetherian normal domain. If I has pure height one, then so does
fI for every nonzero element f of R, and div (fI) = div (f) + div (I). For any two ideals
I and J of pure height one, div (I) = div (J) iff I = J , while the images of div (I) and
div (J) in C` (R) are the same iff there are nonzero elements f, g of R such that fI = gJ .
This holds iff I and J are isomorphic as R-modules. In particular, I is principal if and
only if div (I) is 0 in the divisor class group. Hence, R is a UFD if and only if C` (R) = 0.

The elements of C` (R) are in bijective correspondence with isomorphism classes of pure
height one ideals considered as R-modules, and the inverse of the element represented
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by div (I) is given by div (J), for a pure height one ideal J ∼= HomR(I, R). In fact, if
g ∈ I − {0}, we may take J = gR :R I.

Proof. I = J iff div (I) = div (J) because, for pure height one ideals, the associated
divisor completely determines the primary decomposition of the ideal. Note that 0 ⊆
fR/fI ⊆ R/fI and that the quotient is ∼= R/fR while fR/fI ∼= R/I. Since Ass (R/I)
contains only height one primes and Ass (R/fR) contains only height one primes (since
R is normal), it follows that Ass (R/aI) contains only height one primes. The statement
that div (fI) = div (f) + div (I) may be checked locally after localizing at each height
one prime ideal Q, and is obvious in the case of a discrete valuation ring. In particular,
div (fg) = div (f) + div (g) when f, g ∈ R− {0}. It follows easily that

Span {div (f) : f ∈ R− {0}} = {div (g)− div (f) : f, g ∈ R− {0}}.

Thus, if div (I) = div (J) in C` (R), then div (I) − div (J) = div (g) − div (f) and so
div (fI) = div (gJ) and fI = gJ . Then I ∼= fI = gJ ∼= J as modules. Now suppose
θ : I ∼= J as modules (it does not matter whether I, J have pure height one) and let
g ∈ I − {0} have image f in J . For all a ∈ I, gθ(a) = θ(ga) = aθ(g) = af , and so
θ(a) = (f/g)a, and θ is precisely multiplication by f/g. This yields that (f/g)I = J and,
hence, fI = gJ .

Now fix I 6= (0) and g ∈ I − {0}. Any map I → R is multiplication by a fraction
f/g, where f is the image of g in R: thus, HomR(I, R) ∼= {f ∈ R : (f/g)I ⊆ R},
where the homomorphism corresponding to multiplication by f/g is mapped to f . But
(f/g)I ⊆ R iff fI ⊆ gR, i.e., iff f ∈ gR :R I. Thus, HomR(I, R) ∼= gR :R I = J . We
claim that J has pure height one (even if I does not) and that if I has pure height one
then div (J) + div (I) = div (g), which shows that div (J) = −div (I) in C` (R). If not, let
P be an associated prime of J of height two or more, and localize at P . Then there is an
element u /∈ J , i.e., such that uI * gI, but such that Pu ⊆ J , i.e. PuI ⊆ gR. Choose
r ∈ I such that ur /∈ gR. Then Pur ⊆ gR, which shows that P is an associated prime
of g, a contradiction, since R is normal. Thus, J has pure height one. Now localize at
any height one prime P to check that div (J) + div (I) = div (g). After localization, if x
generates the maximal ideal we have that I = xmR, g = xm+nR, where m, n ∈ N, and,
since localization commutes with formation of colon ideals, that J = xm+nR : xnR, which
is xmR. This is just what we needed to show that the coefficients of P in div (I) and
div (J) sum to the coefficient of P in div (g).

It remains only to show that every element of C` (R) is represented by div (I) for some
ideal I. But this is clear, since the paragraph above shows that inverses of elements like
[P ] are represented by divisors of ideals. �

A further related result is that a finitely generated torsion-free module M of torsion-free
rank one over a Noetherian normal domain R is isomorphic with a pure height one ideal
if and only if it is a reflexive R-module, i.e, if and only if the natural map M →M∗∗ is an
isomorphism, where ∗ indicates Hom( , R), and the natural map sends u ∈ M to the
map M∗ → R whose value on f ∈ M∗ is f(u). In fact, a finitely generated torsion-free
module of rank one over a Noetherian domain is always isomorphic to an ideal I 6= 0 of R,
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and if R is normal, I∗∗ may be identified with the intersection of the primary components
of I corresponding to height one minimal primes of I. (If there are no such minimal primes
then I∗∗ may be identified with R.)

Computing the divisor class group is extremely difficult, even for rings of algebraic
integers in an algebraic number field: such calculations constitute a branch of mathematics
in its own right. The problem is amazingly hard even for quadratic extensions of Q.

We next want to comment further on the normal Noetherian domains of Krull dimension
one: these are called Dedekind domains.

Theorem. The following conditions on a domain R of Krull dimension one are equivalent:
(1) R is normal, i.e., is a Dedekind domain.
(2) For every maximal ideal P in R, RP is a discrete valuation ring.

In a Dedekind domain, every nonzero ideal other than R is uniquely a product of powers
of maximal ideals.

Proof. We know that the property of being normal is local, and a local domain of Krull
dimension one is normal if and only if it is a DVR. The final statement corresponds to
primary decomposition for principal ideals in a normal Noetherian ring R: symbolic powers
of maximal ideals agree with ordinary powers, since the ordinary powers are primary,
and we can replace intersection with product because the ideals involved are pairwise
comaximal. �

We shall come back to the study of Dedekind domains but we first want to observe some
other results about normal rings that need not have Krull dimension one.
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Lecture of December 3

Theorem. A Noetherian ring is normal if and only if it is the intersection of discrete
valuation rings, and these may be taken to be its localizations at height one primes.

Proof. A DVR is normal, and hence an intersection of DVRs is normal. Thus, it suffices
to show that a normal Noetherian ring is the intersection of its localizations at height
one primes. Let f = a/x be a fraction supposedly in all these localizations. Let M =
(R + R(a/x)/R), which is a nonzero module. Then a/x has some nonzero multiple b/x
with prime annihilator P mod R. Localize at P , and change notation, replacing R by RP .

It follows that b/x /∈ R but P (b/x) ⊆ R, which says that b /∈ xR but Pb ⊆ xR. This
implies that P is an associated prime of the ideal xR, and since R is normal we have that
P has height one and R is a DVR. But then b/x ∈ R, a contradiction.

Theorem. A polynomial ring (even in infinitely many variables) over a normal Noether-
ian ring is normal.

Proof. It is easy to check that a directed union of normal domains is normal. (An element
alpha in the fraction field integral over the union will be in the fraction field of one of these
domains, and likewise will be integral over one of them. But some domain D in the family
will contain both, and since D is normal, α is integral over D and in the fraction field of D,
and so must be in D.) Therefore, it suffices to consider the case of finitely many variables.
By a straightforward induction we need only consider the case of one variable. Since the
ring R is the intersection of discrete valuation rings V ⊆ F = frac (R), it follows that R[x]
is the intersection of the rings V [x] ⊆ F [x], and every V [x] is a UFD, and, hence, normal.
Thus, R[x] is normal. �

The same proof applies to the power series ring in finitely many variables over a normal
Noetherian ring, although we are missing a step in the proof, since we do not know that
the ring V [[x]] is a UFD, but this is true. This is part of the theory of regular local rings.
For polynomial rings, the Noetherian restriction on R can be removed. One method of
proof is to represent R is an intersection of non-Noetherian valuation domains: these are
domains in which the ideals are totally ordered. One thus reduces to proving the result
for valuation domains. Another method is to show that a domain finitely generated over
Z or over any Z/pZ has the property that its integral closure is a finite module over it. It
then follows that every normal ring is a directed union of Noetherian normal rings, and
one can reduce to the Noetherian case. A direct argument is also possible.

However it is not true that when R is normal but not Noetherian, that the formal power
series ring R[[x]] must be normal: this is not true even when R is a valuation domain,
although it is erroneously asserted to be true in the first edition of Nagata’s book Local
Rings. It is also worth noting that in the Noetherian case, the formal power series ring in
one variable over a UFD need not be a UFD, by independent examples of D. Buchsbaum
and P. Samuel, although the formal power series ring in any number of variables over a
field or a discrete valuation ring is a UFD.

We next want to prove that certain integral closures are module-finite:
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Theorem. Let R be a normal Noetherian domain and let L be a finite separable algebraic
extension of the fraction field K of R (separability is automatic if K has characteristic 0).
Then the integral closure S of R in L is a module-finite over R, and, hence, a Noetherian
normal ring.

When K ⊆ L is a finite algebraic extension of fields, for any λ ∈ L, we define TrL/K(λ)
to be trace of the K-linear map L → L given by λ: it may be computed by choosing a basis
for L over K, finding the matrix of the map given by multiplication by λ, and summing
the entries of the main diagonal of this matrix. It is independent of the choice of basis. If
the characteristic polynomial is xn − cxn−1+ lower degree terms, where n = [L : K], the
trace is c. It is also the sum of the eigenvalues of the matrix (calculated in a splitting field
for f or any larger field, such as an algebraic closure of K), i.e., the sum of the roots of f
(where if a root has multiplicity k, it is used a summand k times in the sum of the roots).
We give a further discussion of the properties of trace following the proof of the theorem.

A key element of the proof is that a finite algebraic extension L of K is separable if and
only if some element of L has nonzero trace in K. This fact is quite trivial in characteristic
0, since the trace of the identity element is [L : K] 6= 0. This implies that the function
B : L×L→ K that maps (a, b) to the trace of ab is a non-degenerate symmetric bilinear
form: it is non-degenerate because if c has nonzero trace, given a ∈ L − {0}, B(a, c/a) is
the trace of c, and so is not 0. Here, n = [L : K]. This non-degeneracy tells us that if
b1, . . . , bn is any basis for L over K, then the matrix (TrL/Kbibj) is invertible over K, and
we shall assume this in proving the theorem. After we give the proof we discuss further the
facts about bilinear forms and about trace that we are using, including the characterization
of separability using trace in positive characteristic.

We next prove a preliminary result of great importance in its own right.

Theorem. Let R be a normal domain with fraction field K, and let L be a finite algebraic
extension of K. Let s ∈ L be integral over R. Multiplication by s defines a K-linear map
of L to itself. The coefficients of the characteristic polynomial of this K-linear map are in
R. In particular, TrL/K(s) ∈ R.

Proof. We first consider the case where L = K[s]. Let f be the minimal polynomial of s
over K, which has degree d. We showed earlier that f has all of its coefficients in R: this
is the first Proposition in the Lecture Notes from Octboer 1. Suppose that f has degree
d. Then [L : K] = d, and the characteristic polynomial of the matrix of multiplication by
s has degree d. Since the matrix satisfies this polynomial, so does s. It follows that the
characteristic polynomial is equal to the minimal polynomial of s over K.

In the general case, let L0 = K[s] ⊆ L, and let v1, . . . , vd be a basis for L0 over K,
and let w1, . . . , wh be a basis for L/L0. Let A be the matrix of multiplication by s on
L0 with respect to v1, . . . , vd. Then the span of v1wj , . . . , vdwj is L0wj and is stable
under multiplication by s, whose matrix with respect to this basis is also A. Therefore,
the matrix of multiplication by s with respect to the basis

v1w1, v2w1, . . . , vdw1, . . . , v1wh, v2w1, . . . , vdwh
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is the direct sum of h copies of A, and its characteristic polynomial is fh, where f is the
characteristic polynomial of A. We already know that f has coefficients in R. �

Corollary. Let R be a normal domain that contains Q, and let S be a module-finite
extension of R. Then R is a direct summand of S as an R-module. Hence, for every ideal
I of R, IS ∩R = I.

Proof. R−{0} is a multiplicative system in S, and so there is a prime ideal P of S disjoint
from R − {0}. Then R embeds in the domain S/P , which is still module-finite over R.
It suffices to show that R ↪→ S/P splits, for if φ : S/P → R is R-linear and restricts to
the identity map on R, then the composition of φ with S � S/P will be an R-linear map
S → R that restricts to the identity on R. Thus, we have reduced to the case where S
is a module-finite extension domain of R. Let K and L be the fraction fields of R and S,
respectively, and let n = [L : K]. Then (1/n)TrL/K, when restricted to S, takes values in
R (by the preceding Theorem), is R-linear, and is the identity when restricted to R. �

Proof of the Theorem. Consider K ⊗R S = (R − {0})−1S ⊆ (S − {0})−1S = L. This
domain is module-finite over K and so has dimension 0. Therefore, it is a field containing
S, and so must be L. It follows that every element of L can multiplied in S by an element
of R − {0}. Choose a basis for L over K, and multiply each basis element by a nonzero
element of R so as to get a basis for L over K consisting of elements of S. Call this
basis b1, . . . , bn, where n = [L : K]. Because the field extension is separable, the matrix
A =

(
TrL/K(bibj)

)
is invertible. By the preceding theorem, each entry of this matrix is in

R, and so the determinant D of this matrix is a nonzero element of R. We shall prove that
DS ⊆ Rb1 + · · ·+Rbn = G. Since R is a Noetherian ring, G is a Noetherian R-module, and
this implies that DS is a Noetherian R-module. But S ∼= DS as R-modules, via s 7→ Ds.

It remains to show that DS ⊆ R. Let s ∈ S. Then s ∈ L and so can be written uniquely
in the form α1b1 + · · ·+αnbn. We may multiply by bi ∈ S and take the trace of both sides:

TrL/K(sbi) =
n∑
j=1

αjTrL/K(bibj),

Let ri = TrL/K(sbi), let W be the column vector whose entries are the ri (which are in
R, by the preceding Theorem), and let V be the column vector whose entries are the αj .
Then W = AV , where A and W have entries in R. Let B be the classical adjoint of A, i.e.,
the transpose of the matrix of cofactors. Then B also has entries in R, and BA = D(I),
where I is the size n identity matrix. It follows that BW = BAV = DV , so that each
Dαj is in R. But then Ds = (Dα1)b1 + · · ·+ (Dαn)bn ∈ G, as required. �

Corollary. Let D be any Dedekind domain whose fraction field K has characteristic 0,
such as the integers. Let L be a finite algebraic extension of K. Then the integral closure
of D in L is module-finite over K, and is a Dedekind domain.

Proof. It is module-finite by the Theorem we just proved, and therefore Noetherian. It is
normal by construction,’ and one-dimensional because it is an integral extension of a ring
of Krull dimension one. �
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We next backtrack and review some facts about bilinear forms. Let K be a field and
V a vector space of finite dimension n over K. A bilinear form is simply a bilinear map
B : V × V → K, and giving V is the same a giving a linear map T : V ⊗ V → K. If
v1, . . . , vn is a basis for V , then the elements vi ⊗ vj are a basis for V ⊗K V , and so B is
completely determined by the matrix A = (B(vi, vj) = T (vi⊗vj). If the matrix A = (aij).
Suppose that we use this basis to identify V with Kn, with standard basis e1, . . . , en, then
B(ei, ej) = aij . If v and w are the n × 1 column matrices with entries c1, . . . , cn and
d1, . . . , dn, respectively, then

B(v, w) = B(
∑
i

ciei,
∑
j

djej) =
∑
i,j

cidjB(ei, ej) =
∑
i,j

ciaijdj =
∑
i

ci(
∑
j

aijdj)

which is the unique entry of the 1× 1 matrix vtr Aw.

To see the effect of change of basis, let C be an n×n matrix whose columns w1, . . . , wn
are a possibly new basis for V = Kn. Then wtr

i Awj is the i, j entry of the matrix Ctr AC
(which is called congruent or cogredient to A). The invertibility of A is unaffected by the
choice of basis. If A is invertible, the bilinear form is called non-degenerate.

Let B be a bilinear form and fix a basis v1, . . . , vn for V . Let V ∗ be the dual vector
space. Then B gives a linear map L : V → V ∗ by the rule L(v)(w) = B(v, w). fix a
basis v1, . . . , vn for V . There is a dual basis for the dual vector space V ∗ of V , whose i th
element fi is the linear functional whose value on vi is 1 and whose value on vj is 0 for
j 6= i. Since the value of L(vi) on w =

∑
j cjvj is

B(vi,
∑
j

cjvj) =
∑
j

cjB(vi, vj) =
∑
j

B(vi, vj)fj(w),

we have that L(vi) =
∑
j B(vi, vj)fj . Thus, the matrix of B with respect to c1, . . . , cn

is the same as the matrix of L with respect to the two bases v1, . . . , vn and f1, . . . , fn.
Hence, the matrix of B is invertible if and only if L : V → V ∗ is an isomorphism. This
shows that B is non-degenerate if and only if L is one-to-one, which means that B is
non-degenerate if and only if for all v ∈ V −{0} there exists w ∈ V such that L(v, w) 6= 0.

B is called symmetric if B(v, w) = B(w, v) for all v, w ∈ V , and this holds if and only
if its matrix A is symmetric.

We next give some further discussion of the notion of trace, and prove the trace char-
acterization of separability discussed earlier.

Let R be any ring and F ∼= Rn a free R-module. Consider any R-linear endomorphism
T : F → F . We define the trace of T as follows: choose a free basis for F , let M = (rij)
be a matrix for T , and let Tr(T ) be the sum

∑n
i=1 rii of the entries on the main diagonal

of M . This is independent of the choice of free basis for F : if one has another free basis,
the new matrix has the form AMA−1 for some invertible n× n matrix A over R, and the
trace is unaffected.

If S 6= 0 is a free R-algebra that has finite rank as an R-module, so that S ∼= Rn as an R-
module for some positive integer n, then for every element s ∈ S we define TrS/Rs to be the
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trace of the R-linear endomorphism of S given by multiplication by s. Then TrS/R : S → R
is an R-linear map. If r ∈ R, TrS/R(r) = nr, since the matrix of multiplication by r is r
times the n× n identity matrix. We are mainly interested in the case where R and S are
both fields. We first note:

Lemma. If T is a free S-algebra of finite rank m ≥ 1 and S is free R-algebra of finite
rank n ≥ 1, then TrT/R is the composition TrS/R ◦ TrT/S.

Proof. Let u1, . . . , un be a free basis for S over R, and let v1, . . . , vm be a free basis for
T
S . Let A = (sij) be the m×m matrix over S for multiplication by t ∈ T with respect to
the free basis v1, . . . , vm over S. Let Bij be the n×n matrix over R for multiplication by
sij acting on S with respect to the basis u1, . . . , un for S over R. Then

t(uhvk) = uh(tvk) = uh(
∑
j

sjkvk) =
∑
j

(sjkuh)vk

and sjkuh is the dot product of the h column of Bij with the column whose entries are
u1, . . . , un. It follows that a matrix for multiplication by t acting on T over R with respect
to the basis uhvk is obtained, in block form, from (sij) by replacing the i, j entry by the
block Bij . Then TrT/R(t) is the sum of the diagonal entries of this matrix, which is sum
over i of the sums of the diagonals of the matrices Bii. Now, TrT/S(t) is the sum of the
sii, and when we apply TrS/R be get the sum over i of the elements τi = TrS/R(sii. But
τi is the same as the sum of diagonal elements in Bii, and the result follows. �

Theorem. Let cL be a finite algebraic extension field of K. Then the extension is separable
if and only if there is a (nonzero) element λ ∈ L such that TrL/K(λ) 6= 0.

Proof. We have already observed that the trace of 1 is n = [L : K] which will be nonzero
if K has characteristic 0, and every finite algebraic extension is separable in characteristic
0. Now suppose that K (and, hence, L) have positive prime characteristic p.

If the extension if not separable, let F be the largest separable extension of K within
L. Since we must have an element θ ∈ L such that θp ∈ F but θ /∈ F . Let G be the field
F [θ]. Since

TrL/K = TrF/K ◦ TrG/F ◦ TrL/G

it will suffice to show that TrG/F vanishes identically. We have therefore reduced to the
case where L is purely inseparable over K, generated by a single element θ such that
θp ∈ cK. For an element c ∈ K, TrL/K(c) = pc = 0. For an element λ ∈ L − K, we have
that λp = c ∈ K. Since [L : K] = p is prime, there are no strictly intermediate fields, and
so K[λ] = L, and λ has degree p over K. It follows that the minimal polynomial of λ over
K is xp−c, and that the elements λt, 0 ≤ t ≤ p−1, are a basis for L over K. Multiplication
by λ. maps each basis vector to the next, except for λp−1, which is mapped to c · 1. The
matrix for multiplication by λ therefore has only zero entries on the main diagonal, and so
TrL/K(λ) = 0, as required. (The matrix has a string of entries equal to one just below the
main diagonal, and the element c occurs in the upper right hand corner. All other entries
are 0.)
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It remains to show that if L/K is separable, then some element has trace different from
0. By the theorem on the primitive element, we may assume that L = K[θ]. (Even without
knowing this theorem, we can think of L as obtained from K by a finite sequence of field
extensions, each of which consists of adjoining just one element, and so reduce to the case
where one has a primitive element.) Let f be the minimal polynomial of θ: the hypothesis
of separability implies that the roots of f are n distinct elements of the algebraic closure
L of L: call them θ1, . . . , θn. Let A be the matrix for multiplication by θ with respect to
some basis for L over K. Then for every t, At gives a matrix for multiplication by θt. We
shall show that for some i, 0 ≤ i ≤ n− 1, TrcL/K(θi) 6= 0. Assume otherwise.

Since A satisfies its characteristic polynomial, call it g, which is monic of degree n, θ
satisfies g. Thus, f | g. Since f and g are monic of the same degree, g = f . Thus, the
eigenvalues of A are distinct: they are the elements θj . Therefore, A is similar over (L) to
diagonal matrix with the θj on the diagonal, and it follows that, for every i, Ai is similar
to a diagonal matrix with the entries θij on the diagonal. Therefore,

TrL/K(θi) =
n∑
j=1

θij = 0.

Thus, the sum of the columns of the matrix Θ = (θi−1
j ) is 0, which implies that the

determinant is 0. We conclude the proof by showing that the determinant cannot be zero.
(This is the well-known Van der Monde determinant, and its value can be shown to be
the product of the

(
n
2

)
differences θj − θi for j > i. It will not vanish because the θj are

distinct. But we argue differently, without assuming this.) If the determinant is 0 there is
an L-linear relation on the rows as well: suppose that γ = (c0 c1 . . . cn) is a vector such
that γΘ = 0, giving a relation on the rows. This simply says that for every j,

n−1∑
i=0

ciθ
i
j = 0.

But if
h(x) = c0 + c1x+ · · ·+ cn−1x

n−1,

this says that all of the θj are roots of h(x), a polynomial of degree at most n− 1. This is
a contradiction unless all of the ci are 0. �

This completes our treatment of separability and trace.



146

Lecture of December 5

It is a fact that in any Dedekind domain R, fg ∈ (f2, g2)R. This has been left as an
exercise. It is also true that in the polynomial ring in n variables over a field K, for any n+1
elements f1, . . . , fn+1, we have that (f1 · · · fn+1)n ∈ (fn+1

1 , . . . , fn+1
n )R. In particular, in

R = C[x, y], for any three elements f, g, h, we have that (fgh)2 ∈ (f3, g3, h3)R. I know
of three proofs of this, all involving some difficult ideas. It would be of great interest to
find an elementary proof, even in the case of C[x, y].

Here is another example where indeterminates cannot be canceled: let

R = C[x, y, z]/
(
xy − (1− z2)

)
and let

S = C[x, y, z]/
(
x2y − (1− z2)

)
.

There is no obvious reason why R and S should be isomorphic, and they are not (although
it is not easy to prove this). It may come as a surprise that R[t] ∼= S[t]: they do become
isomorphic when an indeterminate is adjoined. These are called Danielewski surfaces. Cf.
[W. Danielewski, On the cancellation problem and automorphism groups of affine algebraic
varieties, preprint, Warsaw, 1989] and [K.-H. Fieseler, On complex affine surfaces with
C+-action, Comment. Math. Helv. 69 (1994), 5–27].

A Noetherian ring with only finitely many maximal ideals is called semi-local. (The
term quasi-semi-local is used for rings with finitely many maximal ideals if they need not
be Noetherian.) Given finitely many mutually incomparable primes P1, . . . , Pk of a ring
R, if W = R−

⋂k
j=1 Pj , then W is a multiplicative system in R. The ring W−1R has as its

maximal ideals precisely the k ideals PjW−1R. Thus, if R is Noetherian, it is semi-local.
It is referred to as the localization of R at the primes P1, . . . , Pk.

Theorem. Let R be a Dedekind domain. Let M be a finitely generated R-module.
(a) If M is torsion-free, it is projective. In particular, every ideal of R is projective, and

the product IJ of two ideals is ∼= I ⊗ J as a module, and so its isomorphism class as
a module depends only on the isomorphism classes of I and J .

(b) R is a UFD if and only if R is a PID.
(c) If R is semi-local, then R is a PID.
(d) Given finitely many maximal ideals P1, . . . , Pk of R and an ideal I 6= 0, I is isomor-

phic with an ideal not contained in any of the Pi.
(e) M is a direct sum of a torsion module and a torsion-free module. The torsion sub-

module N is unique and may be viewed as a module over the localization of R at the
set of finitely many maximal ideals in its support: the localization is a PID and the
theory of modules over a PID applies. Thus, N is a direct sum of cyclic modules.

(f) If I and J are nonzero ideals of R, then I ⊕ J ∼= I ∩ J ⊕ (I + J) ∼= IJ ⊕ R, and if
I1, . . . , In are nonzero ideals then I1 ⊕ · · · ⊕ In ∼= (I1 · · · In)⊕Rn−1.

(g) If N is the torsion submodule of M , the torsion-free summand of M is isomorphic
with M/N . Any finitely generated torsion-free R-module M is the direct sum of a free
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R-module Rn−1 and an ideal I ⊆ R. The integer n is uniquely determined, and I is
uniquely determined up to module isomorphism.

Proof. (a) Projective is equivalent to locally free. Locally, R is a DVR, and every finitely
generated torsion-free module is free, since a DVR is a PID. When we apply I ⊗R to
the injection J ⊆ R we find that I ⊗R J ↪→ I ⊗R R ∼= I: the map is injective because I is
projective and, therefore, flat. The image of this map is IJ .

(b) To prove “only if,” note that in a UFD, height one primes are principal. Every maximal
ideal of R is therefore principal, and every nonzero proper ideal is a finite product of powers
of maximal ideals and so principal. But the “if” part is clear, since a PID is a UFD.

(c) Let m = m1,m2, . . . , mk be the maximal ideals: it suffices to show that each is
principal. m is not contained in any of m2,m2, . . . ,mk: choose x ∈ m not in the union of
these. Then xR = m, because that is true if we localize at any mi. If i = 1, this is because
x ∈ m −m2, and so x /∈ m2Rm, since m2Rm ∩ R = m(2) = m2, since m is maximal. For
any other mi, xRmi

= mRmi
: in fact, both are the unit ideal.

(d) After localization at P1, . . . , Pk, IW−1R becomes principal: we can choose b ∈ I
that generates. Thus, there exists w not in any Pk such that wI ⊆ bR ⊆ I, and so
J = (w/b)I ⊆ R is isomorphic with I as an R-module. If J ⊆ Pi, then wI ⊆ bPi. When
we localize at Pi, w becomes invertible, yielding IRPi

⊆ bPiRPi
. Since IRPi

= bRPi
, we

have that bRPi
⊆ bPiRPi

, and so RPi
⊆ PiRPi

, a contradiction.

(e) The torsion submodule consists of all torsion elements in M and so is obviously unique.
M/N is clearly torsion-free and so projective. Thus, 0 → N → M → M/N → 0 splits.
Choose finitely many generators for N . Each has a nonzero annihilator, and, hence, so
does N . We may view N as a module over R/A, where A = AnnRN , and this is a zero-
dimensional Noetherian ring. Clearly, it has only finitely many maximal ideals coming from
maximal ideals P1, . . . , Pk of R. Any element not in the union of the Pj acts invertibly
on N , and so N is a module over the localization of R at P1, . . . , Pk.

(f) There is an exact sequence 0→ I∩J → I⊕J → I+J → 0 where the map I⊕J � I+J
sends i⊕ j to i− j, and then map I ∩J → I⊕J sends u to u⊕u. Since I+J is projective,
the sequence is split exact, which shows that I ⊕ J ∼= (I ∩ J) ⊕ (I + J). By (d), we can
choose I ′, an ideal isomorphic with I as a module, but such that I ′ is not contained in
any of the finitely many minimal primes of J . This means that I ′ and J are comaximal,
i.e., I ′ + J = R, and then I ′ ∩ J = I ′J . Thus, I ⊕ J ∼= I ′ ⊕ J ∼= (I ′ ∩ J) ⊕ (I ′ + J) =
I ′J ⊕R ∼= (I ′ ⊗R J)⊕R ∼= (I ⊗R J)⊕R ∼= IJ ⊕R, as required. The final statement is a
straightforward induction on n, using the result just proved.

(g) Let K = frac (R). Then K⊗RM ∼= Kn and we can therefore choose a nonzero map from
K⊗RM onto K. This is an element of HomK(K⊗RM,K⊗R) ∼= K⊗R HomR(M,R), and
so there must exist a nonzero R-linear map f : M → R. Call the image I, which is an ideal
of R. Then I is projective. The map M � I therefore splits, and M ∼= M0 ⊕ I. Iterating,
we see that M is a direct sum of ideals, I1⊕ · · ·⊕ In. By (f), this direct sum is isomorphic
with Rn−1 ⊕ (I1 · · · In). The integer n is the torsion-free rank of M , i.e., the vector space
dimension over K of K ⊗R M . It remains only to see that the module isomorphism class
of the ideal I is unique, which follows from the Lemma given immediately following. �
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Lemma. Let R be a Noetherian ring and let P , P ′ be finitely generated modules that are
locally free of rank one. Suppose that M = Rn−1 ⊕ P ∼= Rn−1 ⊕ P ′. Then P ∼= P ′.

This immediately yields the fact needed to complete the proof of part (g) of the preceding
theorem.

The Lemma is proved by showing that P ∼=
∧n
RM

∼= P ′. Before giving the details, we
review the properties of exterior powers.

A multilinear map of R-modules Mn →W is called alternate or alternating if its value
is 0 whenever two entries of an n-tuple are equal. (This implies that switching two entries
negates the value. Making an even permutation of the entries will not change the value,
while an odd permutation negates the value.) Let

∧n
R(M) =

∧n(M) denote the quotient
of M⊗n by the submodule spanned by all n-tuples two of whose entries are equal. We
make the convention that

∧0
M ∼= R, and note that we may identify M ∼=

∧1
M . Then∧

M =
⊕

n

∧n
M is an associative N-graded algebra with R in the center, with

∧n(V ) as
the component in degree n.

∧
(V ) is called the exterior algebra of M over R, and

∧n(M)
is called the n th exterior power of M over k. The multiplication on

∧
(M) is often denoted

∧. If the elements ui span M , then the elements ui1 ∧ · · · ∧ uin span
∧n(V ). If α has

degree m and β has degree n, then α ∧ β = (−1)mnβ ∧ α. Thus, the even degree elements
are all in the center, while any two odd degree elements anti-commute. If u1, . . . , un is a
free basis for M , then the elements ui1 ∧ · · · ∧ uik , 1 ≤ i1 < · · · < ik ≤ n form a free basis
for
∧k(M), and

∧k(M) has dimension
(
n
k

)
. In particular,

∧N (M) = 0 if N exceeds the
rank of the free module M (more generally,

∧N
M = 0 whenever M is spanned by fewer

than N elements).

If f : M → N is R-linear, there is an induced map
∧n(f) :

∧n(M) →
∧n(N), and∧n(f ′ ◦ f) =

∧n(f ′) ◦
∧n(f) when the composition f ′ ◦ f is defined. Together these maps

give a ring homomorphism of
∧

(M) →
∧

(N) that preserves degrees. Thus,
∧

( ) is a
functor from R-modules to skew-commutative associative graded R-algebras, and every∧i( ) is a covariant functor from R-modules to R-modules.

If M is free of rank n with basis v1, . . . , vn and f : M →M has matrix A = (aij), then∧n(f) : M →M sends v1 ∧ · · · ∧ vn to det(A)v1 ∧ · · · ∧ vn. (We have that∧n(f)(v1 ∧ · · · ∧ vn) = (a11v1 + · · ·+ a1nvn) ∧ · · · ∧ (an1v1 + · · ·+ annvn).

Expanding by the generalized distributive law yields nn terms each of which has the form
ai1,1 · · · ain,nvi1 ∧ · · · ∧ vin . If two of the it are equal, this term is 0. If they are all
distinct, the vit constitute all the elements v1, . . . , vn in some order: call the corresponding
permutation σ. Rearranging the vj gives sgn (σ)ai1,1 · · · ain,nv1∧· · ·∧vn. The sum of all of
the n! surviving terms is det(A)v1∧· · ·∧vn, using one of the standard definitions of det(A) ).
The fact that the determinant of a product of two n × n matrices is the product of the
determinants may consequently be deduced from the fact that

∧n preserves composition.

We note that if M and N are any two R-modules then there is a canonical isomorphism

θ :
∧n(M ⊕N) ∼=

⊕
i+j=n

∧i
M ⊗R

∧j
N = W .
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Here, i, j are restricted to be nonnegative integers. This isomorphism is suggested by
the fact that (y1 ⊕ z1) ∧ · · · ∧ (yn ⊕ zn), where the yt are in M and the zt are in N ,
expands as the sum of 2n terms of the form u1 ∧ · · · ∧ un, and in one of these terms,
if ut1 , . . . , uti are from M and ut′1 , . . . , ut′j are from N , the term can be rewritten as
sgn (σ)(ut1 ∧ · · · ∧ uti) ∧ (ut′1 ∧ · · · ∧ ut′j ), where σ is the permutation of {1, . . . , n} whose
values on 1, . . . , n are t1, . . . , ti, t′1, . . . , t

′
j . Thus, to construct θ, we give a multilinear

map (M ⊕N)n → W as follows. It is equivalent to give a linear map (M ⊕N)⊗n → W ,
and (M ⊕ N)⊗n is the direct sum of 2n terms of the form U1 ⊗ · · · ⊗ Un where every
Ut is either M or N . It suffices to give a multilinear map on every U1 × · · · × Un to
W . Suppose that we have Ut1 = · · · = Uti = M , where t1 < · · · < ti, and that we
likewise have Ut′1 = · · · = Ut′

j
= N , where t′1 < · · · < t′j . Here i + j = N . Let σ be the

permutation whose values on 1, . . . , n are t1, . . . , ti, t′1, . . . , t
′
j , as above. Then our map

will send (u1, . . . , un) to sgn (σ)(ut1 ∧ · · · ∧ uti)⊗ (ut′1 ∧ · · · ∧ ut′j ). The direct sum of all
these determines a multilinear map (M ⊕ N)n → W , and it is straightforward to check
that it is alternating, and so induces a map θ :

∧n(M ⊕N)→W .

Note that there is a multilinear map M i ×N j →
∧n(M ⊕N) such that

(u1, . . . , ui, v1, . . . , vj) 7→ u1 ∧ · · · ∧ ui ∧ v1 ∧ · · · ∧ vj ,

and so we have a map

M⊗i ⊗R N⊗j →
∧n(M ⊕N) = W .

It is easy to verify that this map factors through
∧i(M)⊗R

∧j(N), and the direct sum of all
these maps gives an inverse φ for θ: that these maps are mutually inverse is easy to check
on suitable generators: these can be taken to be of the form mt1 ∧· · ·∧mti ⊗nt′1 ∧· · ·∧nt′j
for the left hand module and of the form mt1 ∧ · · · ∧mti ∧nt′1 ∧ · · · ∧nt′j for the right hand
module.

The following result can now be used to complete the proof of the Lemma above.

Proposition. Let R→ S be a map of rings and let M be an R-module.
(a) For all i,

∧i
S(S ⊗RM) ∼= S ⊗

∧i
R(M) in such a way that (s1 ⊗m1) ∧ · · · ∧ (si ⊗mi)

corresponds to (s1 · · · si) ⊗ (m1 ∧ · · · ∧ mi). In particular, we may take S to be a
localization of R, and, in this sense, exterior powers commute with localization.

(b) If for every prime (or maximal) ideal P of R, MP has at most n generators over
RP , then

∧i(M) = 0 for i > n. In particular, if M is locally free of rank n, then∧i(M) = 0 for i > n.
(c) If R is Noetherian and M is a finitely generated projective module, then every

∧i(M)
is a finitely generated projective module. If M is locally free of constant rank n, then
for 0 ≤ i ≤ n,

∧i(M) is locally free of constant rank
(
n
i

)
.

Proof. (a) There is an R-multilinear map (S×M)i → S⊗R
∧i
R(M) that sends the element(

(s1,m1), . . . , (si,mi)
)
7→ (s1 · · · si) ⊗ m1 ∧ · · · ∧ mi. This yields an R-linear map from

(S⊗RM)i to S⊗R
∧i(M) which is easily checked to be both S-multilinear and alternating,
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and so we have a map
∧i
S(S ⊗R M) → S ⊗R

∧i
R(M). On the other hand, there is an

R-multilinear map S × M i →
∧i
S(S ⊗R M) that sends the element (s,m1, . . . ,mi) to

s
(
(1 ⊗m1) ∧ · · · (1 ⊗mi)

)
, which induces an R-bilinear map S ×

∧i
RM →

∧i
S(S ⊗R M)

(for each fixed s ∈ S, the map one gets on M i is alternating), and hence an R-linear map
S ⊗R

∧i
RM →

∧i
S(S ⊗R M). But this map is easily checked to be S-linear. Moreover,

this map and the map
∧i
S(S ⊗RM) ∼= S ⊗

∧i
R(M) constructed earlier are readily checked

to be inverses.

(b) The issue of whether a module is zero can be checked locally, and the hypothesis implies
that all localizations of

∧i(M) are 0.

(c) For finitely generated modules over a Noetherian ring, projective is equivalent to locally
free, and so the statements reduce to the known case where the module is free. �

Proof of the Lemma. It suffices to prove that
∧n(P ⊕Rn−1) ∼= P . This is the direct sum

of terms
∧i

P ⊗R
∧j(Rn−1), where i, j ≥ 0 and i + j = n. The term for i = 0, j = n

vanishes because
∧n(Rn−1) = 0. The terms for i > 1 vanish because ∧i(P ) = 0, since

P is locally free of rank one. The only summand that might not vanish is therefore∧1
R(P )⊗R

∧n−1
R (Rn−1) ∼= P ⊗R R ∼= P , as required. �

Recall that a partially ordered set (Λ, ≤) is called directed if for any two elements
λ, µ ∈ Λ, there exists ν ∈ Λ with λ ≤ ν and µ ≤ ν. That is, any two elements of Λ have
a common upper bound. Examples include any totally ordered set, the finite subsets of a
given set under ⊆, the finitely generated R-submodules of an R-module under ⊆, and the
finitely generated R-subalgebras of an R-algebra under ⊆. Another example is given by
the open neighborhoods of a point x ∈ X, where X is a topological space, under ⊇. The
nonnegative integers N and the positive integers are particularly important examples.

Recall that a partially ordered set (Λ, ≤) becomes a category whose objects are the
elements of Λ, and such that there is a morphism from λ to µ iff λ ≤ µ, in which case
there is a unique morphism from λ to µ. By a direct limit system in a category C indexed
by the partially ordered set Λ, we mean a covariant functor from Λ to C. Explicitly, this
means that for every element λ in Λ we have an object in C, call it Xλ, and for all pairs
λ, µ such that λ ≤ µ a morphism fλ,µ : Xλ → Xµ satisfying (1) every fλ,λ is the identity
on Xλ and (2) whenever λ ≤ µ ≤ ν, we have that fλ,ν = fµ,ν ◦ fλ,µ.

By a candidate for the direct limit of a direct limit system we mean an object X together
with a family of maps gλ : Xλ → X for all λ ∈ Λ such that whenever λ ≤ µ, gµ = fλ,µ ◦gλ.
(This can be expressed alternatively as follows. Given any object X we can construct a
direct limit system in which the object assigned to every λ is X, and all the maps are the
identity on X. We refer to this as a one-object system. A candidate for the direct limit
is the same thing as a natural transformation of functors from the functor defining the
system to a functor defining a one-object system.)

We say that a candidate (Y, hλ : Xλ → Y ) for the direct limit is the direct limit of the
direct limit system if for every candidate X, gλ : Xλ → X there is a unique morphism
k : Y → X such that for all λ ∈ Λ, gλ = k ◦ hλ. We write Y = lim

−→ λXλ.



151

Lecture of December 8

Direct limits are automatically unique up to unique isomorphism compatible with their
structures as candidates.

We focus on the categories of sets, groups, abelian groups, rings, R-modules, and R-
algebras. In each case, there is an underlying set, and a morphism is a function possibly
satisfying additional conditions. Consider an example where the objects are subobjects
Xλ of a given object Z, and the maps are inclusion maps. The direct limit is simply the
union of the subobjects, and is called a directed union.

Direct limits exist in general in the categories mentioned above. In the category of sets,
one takes a disjoint union of the sets in the indexed family, and then for every λ < µ one
identifies every x ∈ Xλ with its image in Xµ. That is, one takes the smallest equivalence
relation such that for λ < µ, every element x ∈ Xλ is equivalent to its image in Xµ, and
then the direct limit is the set of equivalence classes. Every element in Xλ maps to its
equivalence class.

If the sets have an additional structure such as group, abelian group, ring, R-module,
or R-algebra, the same construction still works. To define the needed operations on the
direct limit set, suppose, for example, that one wants to add or multiply two elements of
the direct limit. They are images of elements from Xλ and Xµ for a certain λ and µ. These
both map to elements in Xν for some ν that is an upper bound for both λ and µ, and one
can add or multiply these element in Xν and then take the image in the direct limit.

In the case of abelian groups or R-modules, one can proceed alternatively by taking
the direct sum over R of all the Xλ, and then killing the span of all elements of the form
fλ,µ(x)− x, where λ ≤ µ and x ∈ Xλ.

If X is a topological space, x ∈ X, Λ is the set of all open neighborhoods of x ordered
by ⊇, and RU denotes the ring of all R-valued continuous functions on U , we get a direct
limit system if, whenever U ⊇ V , the map RU → RV is given by f 7→ f |V , the restriction
of f : U → R to V . then lim

−→ U RU is the ring of germs of continuous functions at x ∈ X. If

X is a C∞ manifold or an analytic space, similar constructions lead to the rings of germs
of C∞ or analytic functions. In all these cases, the direct limit ring is a quasi-local ring.

We note that tensor product commutes with direct limit. Given a direct limit system
of R-modules Mλ and an R-module N , we claim that there is an isomorphism

(lim
−→ λMλ)⊗R N ∼= lim

−→ λ (Mλ ⊗R N).

For each fixed v ∈ N we have a map fvλ : Mλ → lim
−→ λ (Mλ ⊗R N) sending u to the

image of u ⊗ v. These induce a map fv : lim
−→ λM → lim

−→ λ (Mλ ⊗R N), which gives

an R-bilinear map (lim
−→ λMλ) × N → lim

−→ λ (Mλ ⊗R N) and, hence, we get an R-linear
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map (lim
−→ λMλ) ⊗R N → lim

−→ λ (Mλ ⊗R N). On the other hand, for each λ the map
Mλ → lim

−→ λMλ induces a map Mλ⊗N → lim
−→ λMλ⊗RN , and this gives the required map

lim
−→ λ (Mλ ⊗R N)→ (lim

−→ λMλ)⊗R N.

It is straightforward to check that these are mutually inverse.

Corollary. A direct limit of flat R-modules is R-flat.

Proof. Let F = lim
−→ λ Fλ where each Fλ is flat, and let N ⊆ M be R-modules. Suppose

that u ∈ F ⊗RN maps to 0 in F ⊗RM . Then u is the image of uλ ∈ Fλ⊗RN for some λ.
The fact that the image of uλ in F ⊗M ∼= lim

−→ λ (Fλ ⊗RM) is 0 implies that it maps to 0
in Fµ ⊗RM for some µ ≥ λ. Since the composite Fλ ⊗R N → Fµ ⊗R N → Fµ ⊗RM kills
uλ, while the right hand map is injective because Fµ is R-flat, it follows that the image of
uλ in Fµ ⊗N is 0. But that image maps to u, and so u is 0. �

Proposition. Let R be a domain and F a flat R-module. Then F is torsion-free over R.

Proof. Let x ∈ R be nonzero. Then 0 → R
x−→ R is exact. Apply ⊗M , we have that

0→M
x−→M is exact, i.e., that x is not a zerodivisor on M . �

More generally, if R is any ring, x ∈ R is not a zerodivisor in R, and M is R-flat, then x
is not a zerodivisor on M . We have the following consequence of the two preceding results.

Corollary. A module F over a Dedekind domain R is flat if and only if it is torsion-free.

Proof. If it is flat, it is torsion-free by the Proposition. Now suppose that it is torsion-
free. It is the directed union of its finitely generated submodules, and so a direct limit of
them. But a finitely generated module over a Dedekind domain is projective, and therefore
flat. �

Let (Λ, ≤) be a directed set. By an inverse limit system in a category C we mean
a direct limit system in Cop. The notions of candidate for an inverse limit and inverse
limit are then immediately given by applying the definitions for direct limit system to Cop.
However, we briefly make all this more explicit. An inverse limit system consists of objects
Xλ indexed by Λ and for all λ ≤ µ a morphism fλ,µ : Xµ → Xλ. A candidate for the
inverse limit consists of an object X together with maps gλ : X → Xλ such that for all
λ ≤ µ, gλ = fλ,µ ◦ gµ. A candidate Y together with morphisms hλ : Y → Xλ is an inverse
limit precisely if for every candidate (X, gλ) there is a unique morphism k : X → Y such
that for all λ, gλ = hλ ◦ k. The inverse limit is denoted lim

←− λ
Xλ and, if it exists, it is

unique up to canonical isomorphism compatible with the morphisms giving X and Y the
structure of candidates.

We next want to see that inverse limits exist in the categories of sets, abelian groups,
rings, R-modules, and R-algebras. The construction for sets also works in the other cate-
gories mentioned. Let (Λ, ≤) be a directed partially ordered set and let (Xλ, fλ,µ) be an
inverse limit system of sets. Consider the subset X ⊆

∏
λXλ consisting of all elements

x of the product such that for λ ≤ µ, fλ,µ(xµ) = xλ, where xλ and xµ are the λ and µ
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coordinates, respectively, of x. It is straightforward to verify that X is an inverse limit
for the system: the maps X → Xλ are obtained by composing the inclusion of X in the
product with the product projections πλ mapping the product to Xλ.

If each Xλ is in one of the categories specified above, notice that the Cartesian product
is as well, and the set X is easily verified to be a subobject in the appropriate category.
In every instance, it is straightforward to check that X is an inverse limit.

Suppose, for example, that Xλ is a family of subsets of A ordered by ⊇, and that the
map Xµ → Xλ for Xλ ⊇ Xµ is the inclusion of Xµ ⊆ Xλ. The condition for the partially
ordered set to be directed is that for all λ and µ, there is a set in the family contained in
Xλ ∩Xµ. The construction for the inverse limit given above yields all functions on these
sets with a constant value in the intersection of all of them. This set evidently may be
identified with

⋂
λXλ.

We are particularly interested in inverse limit systems indexed by N. To give such a
system one needs to give an infinite sequence of objects X0, X1, X2, . . . in the category
and for every i ≥ 0 a map Xi+1 → Xi. The other maps needed can be obtained from these
by composition. In the cases of the categories mentioned above, to give an element of the
inverse limit is the same a giving a sequence of elements x0, x1, x2, . . . such that for all i,
xi ∈ Xi, and xi+1 maps to xi for all i ≥ 0. One can attempt to construct an element of
the inverse limit by choosing an element x0 ∈ X0, then choosing an element x1 ∈ X1 that
maps to x0, etc. If the maps are all surjective, then given xi ∈ Xi one can always find an
element of the inverse limit that has xi as its i th coordinate: for h < i, use the image of
xi in Xh, while for i+ 1, i+ 2, . . . one can choose values recursively, using the surjectivity
of the maps.

We want to use these ideas to describe the I-adic completion of a ring R, where R is a
ring and I ⊆ R is an ideal. We give two alternative descriptions. Consider the set of all
sequences of elements of R indexed by N under termwise addition under multiplication:
this ring is the same as the product of a family of copies of R index by N. Let CI(R)
denote the subring of Cauchy sequences for the I-adic topology: by definition these are the
sequences such that for all t ∈ N there exists N ∈ N such that for all i, j ≥ N , ri− rj ∈ It.
This is a subring of the ring of sequences. It is an R-algebra via the map R → CI(R)
that sends r ∈ R to the constant sequence r, r, r, . . . . Let C0

i (R) be the set of Cauchy
sequences that converge to 0: by definition, these are the sequences such that for all t ∈ N
there exists N ∈ N such that for all i ≥ N , ri ∈ It. These sequences are automatically
Cauchy. Then C0

I(R) is an ideal of CI(R). It is easy to verify that every subsequence of
a Cauchy sequence is again Cauchy, and that it differs from the original sequence by an
element of C0

I(R).

Given an element of CI(R), say r0, r1, r2, . . . we may consider the residue mod It for a
given t. These are eventually all the same, by the definition of a Cauchy sequence. The
stable value of these residues is an element of R/It, and we thus have a map CI(R) � R/It

that is easily seen to be a ring homomorphism that kills C0
I(R). Therefore, for all t we

have a surjection CI(R)/C0
I(R) � R/It. These maps make CI(R)/C0

I(R) a candidate for
lim
←− t

(R/It), and so induce a ring homomorphism CI(R)/C0
i (R)→ lim

←− t
R/It.
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This map is an isomorphism. Given a sequence of elements in the rings R/It that
determine an element of the inverse limit, for each residue ρt choose an element rt of R
that represents it. It is straightforward to verify that the rt form a Cauchy sequence in
R and that it maps to the element of lim

←− t
R/It with which we started. Consider any

other Cauchy sequence with the same image. It is again straightforward to verify that the
difference of the two Cauchy sequences is in C0

i (R). This proves the isomorphism:

Theorem. Let R be any ring and I any ideal. Then CI(R)/C0
I(R) → lim

←− t
(R/It) is an

isomorphism, and the kernel of the map from R to either of these isomorphic R-algebras
is ∩tIt. �

These isomorphic rings are denoted R̂I or simply R̂, if I is understood, and either is
referred to as the I-adic completion of R. If I ⊆ R, then R is called I-adically separated
if
⋂
t I
t = (0), and I-adically complete if R→ R̂I is an isomorphism: this holds iff R is I-

adically separated, and every Cauchy sequence is the sum of a constant sequence r, r, r, . . .
and a sequence that converges to 0. The Cauchy sequence is said to converge to r.

Given a Cauchy sequence in R with respect to I, we may choose a subsequence such
that the residues of all terms from the t th on are constant mod It+1. Call such a Cauchy
sequence standard. Given a standard Cauchy sequence, let s0 = r0 and st+1 = rt+1−rt ∈ It
for t ≥ 0. Then the s0 + · · · + st = rt. Thus, the partial sums of the “formal series”
s0 + s1 + s2 + · · · form a Cauchy sequence, and if the ring is complete it converges. Given
any formal series

∑∞
t=0 st such that st ∈ It for all t, the partial sums form a Cauchy

sequence, and every Cauchy sequence is obtained, up to equivalence (i.e., up to adding a
sequence that converges to 0) in this way.

Proposition. Let J denote the kernel of the map from R̂I � R/I (J consists of elements
represented by Cauchy sequences all of whose terms are in I). Then every element of R̂I

that is the sum of a unit and an element of J is invertible in R̂I . Every maximal ideal
of R̂I contains J , and so there is a bijection between the maximal ideals of R̂I and the
maximal ideals of R/I. In particular, if R/I is quasi-local, then R̂I is quasi-local.

Proof. If u is a unit and j ∈ J we may write u = u(1 +u−1j), and so it suffices to to show
that 1 + j is invertible for j ∈ J . Let r0, r1, . . . be a Cauchy sequence that represents j.
Consider the sequence 1− r0, 1− r1 + r2

1, . . . 1− rn + r2
n − · · ·+ (−1)n−1rn+1

n , · · · : call the
n th term of this sequence vn. If rn and rn+1 differ by an element of It, then vn and vn+1

differ by an element of It + In+2. From this it follows that vn is a Cauchy sequence, and
1− (1 + rn)vn = rn+2

n converges to 0. Thus, the sequence vn represents an inverse for 1 + j

in R̂I .

Suppose that m is a maximal ideal of R̂I and does not contain j ∈ J . Then j has an
inverse v mod m, so that we have jv = 1 + u where u ∈ m, and then −u = 1 − jv is not
invertible, a contradiction, since jv ∈ J . �

Suppose that
⋂
t I
t = 0. We define the distance d(r, s) between two elements r, s ∈ R

to be 0 if r = s, and otherwise to be 1/2n (this choice is somewhat arbitrary), where n
is the largest integer such that r − s ∈ In. This is a metric on R: given three elements
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r, s, t ∈ R, the triangle inequality is clearly satisfied if any two of them are equal. If not,
let n, p, q be the largest powers of I containing r − s, s− t, and t− r, respectively. Since
t − r = −(s − t) − (r − s), q ≥ min{n, p}, with equality unless n = p. It follows that
in every “triangle,” the two largest sides (or all three sides) are equal, which implies the
triangle inequality. The notion of Cauchy sequence that we have given is the same as the
notion of Cauchy sequence for this metric. Thus, R̂I is literally the completion of R as a
metric space with respect to this metric.

Given a ring homomorphism R→ R′ mapping I into an ideal I ′ of R′, Cauchy sequences
in R with respect to I map to Cauchy sequences in R′ with respect to I ′, and Cauchy
sequences that converge to 0 map to Cauchy sequences that converge to 0. Thus, we get

an induced ring homomorphism R̂I → R̂′
I′

. This construction is functorial in the sense
that if we have a map to a third ring R′′, a ring homomorphism R′ → R′′, and an ideal

I ′′ of R′′ such that I ′ maps into I ′′, then the induced map R̂I → R̂′′
I′′

is the composition

(R̂′
I′

→ R̂′′
I′′

) ◦ (R̂I → R̂′
I′

). If R → R′ is surjective and I maps onto I ′, then the map

of completions is surjective: each element of R̂′
I′

can be represented as the partial sums
of a series s0 + s1 + s2 + · · · , where sn ∈ (I ′)n. But In will map onto (I ′)n, and so we can
find rn ∈ In that maps to sn, and then r0 + r1 + r2 · · · represents an element of R̂I that
maps to s0 + s1 + s2 + · · · .

Example. Let S = R[x1, . . . , xn] be the polynomial ring in n variables over R, and let
I = (x1, . . . , xn)S. An element of S/In is represented by a polynomial of degree ≤ n− 1
in the xi. A sequence of such polynomials will represent an element of the inverse limit
if and only if, for every n, then n th term is precisely the sum of the terms of degree at
most n in the n+ 1 st term. It follows that the inverse limit ring ŜI is R[[x1, . . . , xn]], the
formal power series ring. In consequence, we can prove:

Theorem. If R is a Noetherian ring and I is an ideal of R, then R̂I is Noetherian.

Proof. Suppose that I = (f1, . . . , fn)R. Map the polynomial ring S = R[x1, . . . , xn] to
R as an R-algebra by letting xj 7→ fj . This is surjective, and (x1, . . . , xn)S maps onto
I. Therefore we get a surjection R[[x1, . . . , xn]] � R̂I . Since we already know that the
formal power series ring is Noetherian, it follows that R̂I is Noetherian. �

Lecture of December 10

We next want to form the I-adic completion of an R-module M . This will be not
only an R-module: it will also be a module over R̂I . Let R be a ring, I ⊆ R an ideal
and M an R-module. Let CI(M) denote the Cauchy sequences in M with respect to I:
the sequence u0, u1, u2, · · · is a Cauchy sequence if for all t ∈ N there exists N ∈ N such
that ui − uj ∈ ItM for all i, j ≥ N . These form a module over CI(R) under termwise
multiplication, and set of Cauchy sequences, C0

I(M), that converge to 0, where this means
that for all t, the terms of the sequence are eventually all in ItM , is a submodule that
contains C0

I(R)CI(M). The quotient CI(M)/C0
I(M) is consequently a module over R̂I .
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Moreover, any homomorphism h : M → N induces a homomorphism from CI(M)→ CI(N)
that preserves convergence to 0, and hence a homomorphism ĥI : M̂ I → N̂ I . This is a
covariant functor from R-modules to R̂I -modules. There is an R-linear map M → M̂ I

that sends the element u to the element represented by the constant Cauchy sequence
whose terms are all u. The kernel of this map is

⋂
t I
tM , and so it is injective if and only if⋂

t I
tM = 0, in which case M is called I-adically separated. If M → M̂ I is an isomorphism,

M is called I-adically complete. The maps M → M̂ I give a natural transformation from
the identity functor on R-modules to the I-adic completion functor. Moreover, by exactly
the same reasoning as in the case where M = R, M̂ I ∼= lim

←− t
M/ItM .

I-adic completion commutes in an obvious way with finite direct sums and products
(which may be identified in the category of R-modules). The point is that un ⊕ vn gives
a Cauchy sequence (respectively, a sequence converging to 0) in M ⊕N if and only if un
and vn give such sequences in M and N . Moreover if f1 : M1 → N and f2 : M2 → N ,
we have that the I-adic completion of the map f1 ⊕ f2 : M1 ⊕M2 → N is the direct sum
of the completions, f̂1 ⊕ f̂2. A similar remark applies when we have g1 : M → N1 and
g2 : M → N2, and we consider the map (g1, g2) : M → N1 × N2. The situation is the
same for finite direct sums and finite direct products. Note also that if we consider the
map given by multiplication by r on M , the induced endomorphism of M̂ I is given by
multiplication by r (or by the image of r in R̂I).

If M → Q is surjective, the map M̂ I → Q̂I is surjective: as in the case of rings, any
element z of Q̂I can be represented using the Cauchy sequence of partial sums of a formal
series q0 +q1 +q2 + · · · where qt ∈ ItQ. To see this, take a Cauchy sequence that represents
the element. Pass to a subsequence w0, w1, w2, . . . such that the residue of wk in M/ItM
is the same for all k ≥ t. The element can be thought of as

w0 + (w1 − w0) + (w2 − w1) + · · · .

Thus, take q0 = w0 and qt = wt−wt−1 for t ≥ 1. For all t, ItM maps onto ItQ. Therefore
we can find ut ∈ ItM such that ut maps to qt, and the partial sums of u0 + u1 + u2 + · · ·
represent an element of M̂ I that maps to z.

Note that because M̂ I is an R-module and we have a canonical map M → M̂ I that is
R-linear, the universal property of base change determines a map R̂I ⊗RM → M̂ I . These
maps give a natural transformation from the functor R̂I ⊗R to the I-adic completion
functor: these are both functors from R-modules to R̂I -modules. If M is finitely generated
over a Noetherian ring R, this map is an isomorphism: not only that: restricted to finitely
generated modules, I-adic completion is an exact functor, and R̂I is flat over R.

In order to prove this, we need to prove the famous Artin-Rees Lemma. Let R be a
ring and I an ideal of R. Let t be an indeterminate, and let It = {it : i ∈ I} ⊆ R[t]. Then
R[It] = R+It+I2t2+· · · is called the Rees ring of I. If I = (f1, . . . , fn) is finitely generated
as an ideal, then R[It] = R[f1t, . . . , fnt] is a finitely generated R-algebra. Therefore, the
Rees ring is Noetherian if R is.
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Before proving the Artin-Rees theorem, we note that if M is an R-module and t and
indeterminate, then every element of R[t]⊗M can be written uniquely in the form

1⊗ u0 + t⊗ u1 + · · ·+ tk ⊗ uk,

where the uj ∈ M , for any sufficiently large k: if a larger integer s is used, then one has
mk+1 = · · · = ms = 0. This is a consequence of the fact that R[t] is R-free with the
powers of t as a free basis. Frequently one writes u0 + u1t + · · · + ukt

k instead, which
looks like a polynomial in t with coefficients in M . When this notation is used, M [t] is
used as a notation for the module. Note that the R[t]-module structure is suggested by
the notation: (rtj)(utk) = (ru)tj+k, and all other more general instances of multiplication
are then determined by the distributive law.

We are now ready to prove the Artin-Rees Theorem, which is due independently to
Emil Artin and David Rees.

Theorem (E. Artin, D. Rees). Let N ⊆M be Noetherian modules over the Noetherian
ring R and let I be an ideal of R. Then there is a constant positive integer c such that
for all n ≥ c, InM ∩ N = In−c(IcM ∩ N). That is, eventually, each of the modules
Nn+1 = In+1M ∩N is I times its predecessor, Nn = InM ∩N .

In particular, there is a constant c such that InM ∩N ⊆ In−cN for all n ≥ c. In con-
sequence, if a sequence of elements in N is an I-adic Cauchy sequence in M (respectively,
converges to 0 in M) then it is an I-adic Cauchy sequence in N (respectively, converges
to 0 in N).

Proof. We consider the module R[t]⊗M , which we think of as M [t]. Within this module,

M = M + IMt+ I2Mt2 + · · ·+ IkMtk + · · ·

is a finitely generated R[It]-module, generated by generators for M as an R-module: this
is straightforward. Therefore, M is Noetherian over R[It]. But

N = N + (IM ∩N)t+ (I2M ∩N)t2 + · · · ,

which may also be described as N [t]∩M, is an R[It] submodule ofM, and so finitely gen-
erated over R[It]. Therefore for some c ∈ N we can choose a finite set of generators whose
degrees in t are all at most c. By breaking the generators into summands homogeneous
with respect to t, we see that we may use elements from

N, (IM ∩N)t, (I2M ∩N)t2, . . . , (IcM ∩N)tc

as generators. Now suppose that n ≥ c and that u ∈ InM ∩N . Then utn can be written
as an R[It]-linear combination of of elements from

N, (IM ∩N)t, (I2M ∩N)t2, . . . , (IcM ∩N)tc,
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and hence as an sum of terms of the form

iht
hvjt

j = (ihvj)th+j

where j ≤ c, ih ∈ Ih, and
vj ∈ IjM ∩N.

Of course, one only needs to use those terms such that h + j = n. This shows that
(InM) ∩N is the sum of the modules

In−j(IjM ∩N)

for j ≤ c. But
In−j(IjM ∩N) = In−cIc−j(IjM ∩N),

and
Ic−j(IjM ∩N) ⊆ IcM ∩N,

so that we only need the single term In−c(IcM ∩N). �

Theorem. Let R be a Noetherian ring, I ⊆ R an ideal.
(a) If 0 → N → M → Q → 0 is a short exact sequence of finitely generated R-modules,

then the sequence 0 → N̂ I → M̂ I → Q̂I → 0 is exact. That is, I-adic completion is
an exact functor on finitely generated R-modules.

(b) The natural transformation θ from R̂I ⊗R to the I-adic completion functor is an
isomorphism of functors on finitely generated R-modules. That is, for every finitely
generated R-module M , the natural map θM : R̂I ⊗RM → M̂ I is an isomorphism.

(c) R̂I is a flat R-algebra. If (R, m) is local, R̂ = R̂m is a faithfully flat local R-algebra.

Proof. (a) We have already seen that the map M̂ I → Q̂I is surjective. Let y be an element
of M̂ I that maps to 0 in Q̂. Choose a Cauchy sequence that represents z, say u0, u1, u2, . . . .
After passing to a subsequence we may assume that ut − ut+1 ∈ ItM for every t. The
images of the ut in Q ∼= M/N converge to 0. Passing to a further subsequence we may
assume that the image of ut ∈ It(M/N) for all t, so that ut ∈ ItM +N , say ut = vt + wt
where vt ∈ ItM and wt ∈ N . Then wt is a Cauchy sequence in M that represents z: in
fact, wt −wt+1 ∈ ItM ∩N for all t. Each wt ∈ N , and so the elements wt form a Cauchy
sequence in N , by the Artin-Rees Theorem. Thus, every element in Ker (M̂ I → Q̂I) is in
the image of N̂ I .

Finally, suppose that z0, z1, z2, . . . is a Cauchy sequence in N that converges to 0 in
M . Then zt already converges to 0 in N , and this shows that N̂ I injects into M̂ I . This
completes the proof of part (a).

(b) Take a presentation of M , say Rn A−→ Rm → M → 0, where A = (rij) is an m × n
matrix over R. This yields a diagram:

R̂I ⊗R Rn
A−−−−→ R̂I ⊗R Rm −−−−→ R̂I ⊗RM −−−−→ 0

θRn

x θRm

x θM

x
R̂n

I A−−−−→ R̂m
I

−−−−→ M̂ I −−−−→ 0
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where the top row is obtained by applying R̂I ⊗ , and is exact by the right exactness
of tensor, the bottom row is obtained by applying the I-adic completion functor, and is
exact by part (a). The vertical arrows are given by the natural transformation θ, and the
squares commute because θ is natural. The map θRh is an isomorphism for h = m or h = n
because both functors commute with direct sum, and the case where the free module is
just R is obvious. But then θM is an isomorphism, because cokernels of isomorphic maps
are isomorphic.

(c) We must show that R̂I ⊗R N → R̂I ⊗R M is injective for every pair of R-modules
N ⊆ M . We know this from parts (a) and (b) when the modules are finitely generated.
The result now follows from the Lemma just below. Faithful flatness is clear, since the
maximal ideal of R clearly expands to a proper ideal in R̂I . �

Lemma. Let F be an R-module, and suppose that whenever N ⊆M are finitely generated
R-modules then F ⊗R N → F ⊗RM is injective. Then F is flat.

Proof. Let N ⊆ M be arbitrary R-modules. Then F ⊗R N is the directed union of the
images of the modules F ⊗R N0 as F runs through the finitely generated submodules of
M . Thus, if z ∈ F ⊗N maps to 0 in F ⊗M , it will be the image of z′ ∈ N0 ⊗M − {0},
which implies that z′ ∈ F ⊗RN0 maps to 0 in F ⊗RM . But since M is the directed union
of its finitely generated modules M0 containing N0, and since F ⊗RM is the direct limit of
these, it follows that for some sufficiently large but finitely generated M0 ⊇ N0, the image
of z′ under the map F ⊗N0 → F ⊗M0 is 0. But then z′ = 0 and so z = 0, as required. �


