Problem Set #2

Math 615, Fall 2010 Due: Friday, February 19

- **1.** Let $R \to S$ be formally smooth (respectively, formally unramifed, respectively formally étale). Let T be an R-algebra and J an ideal of T. Let $n \ge 2$ be a positive integer. Suppose that $J^n = (0)$. Show that every R-algebra homomorphism $S \to T/J$ lifts (respectively, has at most one lifting, respectively, has a unique lifting) to a homomorphism $S \to T$.
- **2.** Let K be a field. Let $X = X_1, X_2, \ldots, X_n$ be indeterminates over K.
- (a) Let K have characteristic p > 0. Let R be a K-algebra, and let F_1, \ldots, F_n be polynomials over R whose linear terms L_1, \ldots, L_n have coefficients in K. Suppose that in every non-linear term of every F_j , every exponent that occurs on one of the X_i is a multiple of p. Show that if L_1, \ldots, L_n are linearly independent over K, then $R[X_1, \ldots, X_n]/(F_1, \ldots, F_n)$ is étale over R.
- (b) Let K have characteristic 0. Let c be an element of K. Give a simple condition on c and h characterizing when $K[X]/(X^h-X+c)$ is étale over K.
- **3.** Let S_1 and S_2 be R-algebras.
- (a) Show that if S_1 and S_2 are both formally smooth, formally unramified, or formally étale over R, then so is $S = S_1 \otimes_R S_2$.
- (b) Show that $\Omega_{S/R} \cong S_2 \otimes_R \Omega_{S_1/R} \oplus S_1 \otimes_R \Omega_{S_2/R}$.
- **4.** Let I be a finitely generated ideal of a ring R such that $I = I^2$. Prove that I is generated by an idempotent. Conclude that a finitely generated R-algebra S is formally unramified iff $\operatorname{Ker}(S \otimes_R S \to S)$ (where $s \otimes s' \mapsto ss'$) is generated by an idempotent.
- **5.** Prove carefully, directly from the definition of formally étale, the assertion made in class that $R \to S$ is formally étale if and only if $R \to S_Q$ is formally étale for all $Q \in \operatorname{Spec}(S)$. Also show that if $R \to (S,Q)$ is a homomorphism to a quasilocal ring (S,Q) and P is the contraction of Q to R, then $R \to S$ is formally smooth or formally unramifed iff $R_P \to S_Q$ has the corresponding property.
- **6.** Let k be a perfect field of characteristic p > 2, let K = k(u, v), where u and v are indeterminates, and $L = K[y]/(y^{2p} + uy^p v)$. Show that L is a finite algebraic extension of K that is not separable, but that L does not meet $K^{1/p} K$.
- **EXTRA CREDIT 3.** Let $S = R[X_1, \ldots, X_n]/(F_1, \ldots, F_m)$ be a presentation of S over R, and let \mathcal{J} be the image of $(\partial F_j/\partial X_i)$ in S, which defines $\theta: S^m \to S^n$. Show that S is unramified over R (respectively, smooth over R) if for every S-module M, the map $M^m \to M^n$ induced by applying $M \otimes_S$ is onto (respectively, one-to-one).
- **EXTRA CREDIT 4.** Characterize when an $n \times m$ matrix (s_{ij}) over S has the property that the map $M^m \to M^n$ that it induces is one-to-one (respectively, onto) for every S-module M without referring to the modules M.
- **EXTRA CREDIT JC.** Let R be the polynomial ring in two variables over \mathbb{C} . Is there an étale \mathbb{C} -algebra map $R \to R$ that is not an isomorphism? What if R is the polynomial ring in n variables over \mathbb{C} , $n \geq 2$?