
Affine algebraic geometry

Closed algebraic sets in affine space

We assume that the reader has basic familiarity with the theory of dimension (i.e.,
Krull dimension) for Noetherian rings, and we also assume the Hilbert basis theorem,
which asserts that a finitely generated algebra over a Noetherian ring is Noetherian. In
particular, a finitely generated algebra over a field K is Noetherian. We also assume
familiarity with Hilbert’s Nullstellensatz.

Throughout, K denotes a field. We eventually focus on the case where K is algebraically
closed, but at the outset, and, occasionally, elsewhere, we relax this assumption. The reader
is welcome to think primarily of the case where K is the field C of complex numbers,
although for the purpose of drawing pictures, it is easier to think about the case where
K = R.

Let K be a field. A polynomial in K[x1, . . . , xn] may be thought of as a function from
Kn → K. Given a finite set f1, . . . , fm of polynomials in K[x1, . . . , xn], the set of points
where they vanish simultaneously is denoted V(f1, . . . , fm). Thus

V (f1, . . . , fm) = {̧(a1, . . . , an) ∈ Kn : fi(a1, . . . , an) = 0, 1 ≤ i ≤ n}.

If X = V(f1, . . . , fm), one also says that f1, . . . , fm define X.

A set of the form V(f1, . . . , fm) is called a closed algebraic set in Kn. For the moment,
we shall only be talking about closed algebraic sets here, and so we usually omit the word
“closed.”

We write MaxSpec (R) for the space of maximal ideals of the ringR. Then MaxSpec (R) ⊆
Spec (R) and has an inherited Zariski topology. LetK be a field, and let R = K[x1, . . . , xn]
be a polynomial rings over K. Then there is an injective map θ : Kn → MaxSpec (R) that
sends P = (λ1, . . . , λn) ∈ Kn to the maximal ideal of polynomials that vanish at P , which
is the kernel of the K-algebra surjection K[x1, . . . , xn] � K such that f 7→ f(P ). This
maximal ideal may also be described as the ideal (x1 − λ1, . . . , xn − λn)R. The map θ
is injective because, given m, the value of λi ∈ K for the point P that maps to m is the
unique value of λ ∈ K such that xi − λi ∈ m. The closed algebraic sets in Kn are simply
the closed sets in the inherited Zariski topology from MaxSpec (R).

Hilbert’s Nullstellensatz provides the information that when K is algebraically closed,
the map θ is a bijection, and we may identify Kn with MaxSpec (R).

Over R[x, y], V(x2 + y2 − 1) ⊆ R2 is a circle in the plane, while V(xy) is the union of
the coordinate axes. Note that V(x, y) is just the origin.

For a while we restrict attention to the case where K is an algebraically closed field
such as the complex numbers C. We want to give algebraic sets a dimension in such a way
that Kn has dimension n. Thus, the notion of dimension that we develop will generalize
the notion of dimension of a vector space.
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We shall do this by associating a ring with X, denoted K[X]: it is simply the set of
functions defined on X that are obtained by restricting a polynomial function on Kn to
X. We define the dimension of X to be the same as the Krull dimension of the ring K[X].

We want to mention a result that tends to show that this notion of dimension is a
worthwhile one.

First, consider the problem of describing the intersection of two planes in real three-
space R3. The planes might be parallel, i.e., not meet at all. But if they do meet in at
least one point, they must meet in a line.

More generally, if one has vector spaces V and W over a field K, both subspaces of some
larger vector space, then dim(V ∩W ) = dimV +dimW−dim(V +W ). If the ambient vector
space has dimension n, this leads to the result that dim(V ∩W ) ≥ dimV + dimW −n. In
the case of planes in three-space, we see that that dimension of the intersection must be
at least 2 + 2− 3 = 1.

Over an algebraically closed field, the same result turns out to be true for algebraic sets!
Suppose that V and W are algebraic sets in Kn and that they meet in a point x ∈ Kn.
We have to be a little bit careful because, unlike vector spaces, algebraic sets in general
may be unions of finitely many smaller algebraic sets, which need not all have the same
dimension. Algebraic sets which are not finite unions of strictly smaller algebraic sets are
called irreducible. Each algebraic set is a finite union of irreducible ones in such a way
that none can be omitted: these are called irreducible components. We define dimx V to
be the largest dimension of an irreducible component of V that contains x. The theorem
we want to mention is that for any algebraic sets V and W in Kn meeting in a point x,
dimx(V ∩W ) ≥ dimx V + dimxW − n. This is a beautiful and useful result: it can be
thought of as guaranteeing the existence of a solution (or many solutions) of a family of
equations.

We next mention one other sort of problem. Given a specific algebraic set X =
V (f1, . . . , fm), the set J of all polynomials vanishing on it is closed under addition and
multiplication by any polynomial — that is, it is an ideal of K[x1, . . . , xn]. J always con-
tains the ideal I generated by f1, . . . , fm. But J may be strictly larger than I: Hilbert’s
NMullstellensatz tell us that when K is aalgebraically clsoed, the ideal J is the radical of
I. We want to point out that given a choice of I, say by a listing of generators, it may be
very hard to tell whether J = I, i.e., to tell whether I is radical.

Here is one example of an open question of this sort. Consider the set of pairs of
commuting square matrices of size n. Let M = Mn(K) be the set of n× n matrices over
K. Thus,

W = {(A, B) ∈M ×M : AB = BA}.

The matrices are given by their 2n2 entries, and we may think of this set as a subset of
K2n2

. (To make this official, one would have to describe a way to string the entries of the
two matrices out on a line.) Then W is an algebraic set defined by n2 quadratic equations.
If X = (xij) is an n × n matrix of indeterminates and Y = (yij) is another n × n matrix
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of indeterminates, then we may think of the algebraic set W as defined by the vanishing
of the entries of the matrix XY − Y X. These are the n2 quadratic equations.

Is the ideal of all functions that vanish on W generated by the entries of XY − Y X?
This is a long standing open question. It is known if n ≤ 3.

We mention one more very natural but very difficult question about algebraic sets.
Suppose that one has an algebraic set X = V (f1, . . . , fm). What is the least number of
elements needed to define X? In other words, what is the least positive integer k such that
X = V (g1, . . . , gk)?

Here is a completely specific example. Suppose that we work in the polynomial ring in
6 variables x1, . . . , x3, y1, . . . , y3 over the complex numbers C and let X be the algebraic
set in C6 defined by the vanishing of the 2× 2 subdeterminants or minors of the matrix(

x1 x2 x3

y1 y2 y3

)
,

that is, X = V (f, g, h) where f = x1y2 − x2y1, g = x1y3 − x3y1, and h = x2y3 − x3y2.
We can think of points of X as representing 2 × 3 matrices whose rank is at most 1: the
vanishing of these equations is precisely the condition for the two rows of the matrix to be
linearly dependent. Obviously, X can be defined by 3 equations. Can it be defined by 2
equations? No algorithm is known for settling questions of this sort, and many are open,
even for relatively small specific examples. In the example considered here, it turns out
that 3 equations are needed. I do not know an elementary proof of this fact — perhaps
you can find one!

We next want to give another strong form of Hilbert’s Nullstellensatz. Fix an alge-
braically closed field and fix n, and let R = K[x1, . . . , xn] be a polynomial ring. For every
set of polynomials S ⊆ K[x1, . . . , xn], V(S) = V(I), where I is the ideal generated by S,
and V(I) = V(Rad I), since V(fn) = V(f), always. Since every ideal is finitely generated,
we may choose finitely many elements f1, . . . , fm that generate I, or any ideal with the
same radical as I, and then V(S) = V(f1, . . . , fm) = V(f1) ∩ · · · ∩ V(fm). We are now
ready to prove another strong form of Hilbert’s Nullstellensatz. If X is any subset of Kn,
we write I(X) = {f ∈ K[x1, . . . , xn] : for all x ∈ X, f(x) = 0}. Note that if X = {x} has
one point, then I({x}) = mx, the maximal ideal consisting of all functions that vanish at
x. Also note that I(X) = ∩x∈Xmx, and is always a radical ideal. These statements are all
valid even without the assumption that K is algebraically closed. When K is algebraically
closed, we can also state the following:

Theorem (Hilbert’s Nullstellensatz, second strong form). Let K be an algebraically
closed field, and consider the polynomial ring R = K[x1, . . . , xn] and algebraic sets in Kn.
The functions V and I give a bijective order-reversing correspondence between radical ideals
of R and closed algebraic sets in Kn.

Proof. Let I be a radical ideal. We may write I = (f1, . . . , fm)R for suitable fj . We
must show that I

(
V(I)

)
= I. The left hand side consists of all polynomials that vanish

everywhere that the fi vanish, and the earlier strong form of Hilbert’s Nullstellensatz that
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we proved says precisely that if g vanishes on V(f1, . . . , fm), then g ∈ Rad (f1, . . . , fm) =
(f1, . . . , fm) in this case, since we assumed that I = (f1, . . . , fm) is radical.

What remains to be shown is that if X is an algebraic set then V
(
I(X)

)
= X. But

since X is an algebraic set, we have that X = V(I) for some radical ideal I. Consequently,
V
(
I(X)

)
= V

(
I
(
V(I)

))
= V(I), since I

(
V(I)

)
= I, by what we proved just above, and

V(I) = X. �

Proposition. In X = Spec (R) where R is Noetherian, every closed set Z has finitely
many maximal closed irreducible subsets, and it is the union of these. This union is
irredundant, i.e., none of the maximal closed irreducible sets can be omitted. The maximal
closed irreducible subsets of Z are the same as the maximal irreducible subsets of Z.

If K is an algebraically closed field, the same statements apply to the closed algebraic
sets in Kn.

Proof. The maximal irreducible closed subsets of Z correspond to the minimal primes
P1, . . . , Pn of the radical ideal I such that V (I) = Z, and this shows that Z is the union
of the maximal irreducible closed sets Zi = V (Pi) contained in Z.

On the other hand, if Z is a finite union of mutually incomparable irreducible closed
sets Zi, then every irreducible subset W of Z is contained in one of them, for W is the
union of the closed subsets W ∩Zi, and so we must have W = W ∩Zi for some i, and thus
W ⊆ Zi. This proves that the Zi are maximal irreducible subsets, and that none of them
can be omitted from the union: if Zj could be omitted it would be contained in the union
of the others and therefore contained in one of the others.

The proof for the case of algebraic sets in Kn is the same. �

In both contexts, the maximal irreducible closed subsets in Z are called the irreducible
components of Z.

Irreducible closed algebraic sets in Kn, when K is algebraically closed, are called alge-
braic varieties. (To be precise, they are called affine algebraic varieties, but we shall not be
dealing in this course with the other kinds. These include the irreducible closed algebraic
sets in a projective space over K, which are called projective varieties, irreducible open
sets in an affine variety, which are called quasi-affine varieties, and irreducible open sets
in a projective variety, which are called quasi-projective varieties. The last type includes
the others already mentioned. There is also an abstract notion of variety which is more
general, but the most important examples are quasi-projective.)

The notation AnK is used for Kn to emphasize that is being thought of as an algebraic
set (rather than as, say, a vector space).

Examples. In A2
K , V(x1x2) = V(x1) ∩ V(x2) gives the representation of the algebraic set

which is the union of the axes as an irredundant union of irreducible algebraic sets. This
corresponds to the fact that in K[x, y], (xy) = (x)∩ (y). Now consider A6

K where the vari-
ables are x1, x2, x3, y1, y2, y3, so that our polynomial ring is R = K[x1, x2, x3, y1, y2, y3].
Instead of thinking of algebraic sets as lying in A6

K , we shall think instead of them as sets
of 2×3 matrices, where the values of the variables xi and yj are used to create a matrix as
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shown:
(
x1 x2 x3

y1 y2 y3

)
. Let ∆1 = x2y3 − x3y2, ∆2 = x1y3 − x3y1 and ∆3 = x1y2 − x2y1

be the three 2 × 2 minors of this matrix. Consider the algebraic set V(∆2,∆3). We may
think of this as the algebraic set of 2×3 matrices such that the minor formed from the first
two columns and the minor formed from the first and third columns vanish. If a matrix is
in this set, there are two possibilities. One is that the first column is zero, in which case
the two minors involved do vanish. The second case is that the first column is not zero. In
this case, the second and third columns are multiples of the first column, and this implies
that ∆1 vanishes. From this we obtain that V(∆2, ∆3) = V(x1, y1)∪V(∆1, ∆2, ∆3). This
does turn out to be the decomposition of V(∆2, ∆3) as an irredundant union of irreducible
components. The hardest part here is to show that V(∆1, ∆2, ∆3) is irreducible.

A topological space is called Noetherian if it satisfies DCC on closed sets. Thus, Spec (R)
is Noetherian iff the radical ideals ofR have ACC, which is, of course true ifR is Noetherian.

Proposition. A subspace Y of a Noetherian topological space X is Noetherian. A Noe-
therian space is quasi-compact. A topological space X is Noetherian if and only if every
open subspace is quasi-compact, in which case every subspace is quasi-compact. In a Noe-
therian topological space, every closed subset is the finite irredundant union of its maximal
closed irreducible subsets, which are the same as its irreducible subsets.

Proof. For the first statement, it suffices to show that a non-increasing sequence of closed
sets Yi in Y is stable, and we can write Yi = Zi ∩ Y , where Zi is closed in X. Then the
sequence Z1, Z1∩Z2, . . . , Z1∩· · ·∩Zn, . . . is eventually stable in X, and the intersection
of the n th term with Y is Y1 ∩ · · · ∩ Yn = Yn.

Consider next a family of closed sets in X with FIP. We must show the intersection
is non-empty. We may assume without loss of generality that the family is closed under
intersection. But it has a minimal element, and this must be contained in all of the sets,
or we could intersect further, contradicting minimality.

Clearly, if X is Noetherian, then every subset is Noetherian and hence quasi-compact,
and so is every open subset. It suffices to show that if every open subset is quasi-compact,
then X is Noetherian. If not, let Z1 ⊃ Z2 ⊃ · · · ⊃ Zn ⊃ · · · be a strictly decreasing
sequence of closed sets. Call the intersection Z. Then X − Z is open, and is the strictly
increasing union of the open sets X−Zn. This gives an open cover with no finite sub-cover,
contradicting the quasi-compactness of X.

Finally, let Z be any closed set in X. If it is not a finite union of irreducibles, take a
minimal counter-example. If Z itself is irreducible, we are done. If not then Z = Z1 ∪ Z2,
where these are proper closed subsets, and hence each is a finite union of irreducibles,
since Z is a minimal counterexample. Once we have Z as a finite union of irreducibles,
we can omit terms until we have Z as an irredundant finite union of irreducibles, say
Z = Z1 ∪ · · · ∪ Zn. Now, if Y is an irreducible set contained in Z, it must be contained
in one of Zi, since it is the union of its intersections with the Zi, which shows that the Zi
are the maximal irreducible sets contained in Z, as well as the maximal irreducible closed
sets contained in Z. �



6

The category of closed algebraic sets

We next want to make the closed algebraic sets over an algebraically closed field K
into a category. Suppose we are given X ⊆ Kn and Y ⊆ Km. We could write AnK
instead of Kn and AmK instead of Km. We define a function f : X → Y to be regular
if it there exist polynomials g1, . . . , gm ∈ K[x1, . . . , xn] such that for all points x ∈ X,
f(x) =

(
g1(x), . . . , gm(x)

)
. Thus, the function f can be given by a polynomial formula

in the coordinates. It is easy to verify that the identity function is regular and that the
composition of two regular functions is regular. The closed algebraic sets over K become
a category if we define Mor (X, Y ) to be the set of regular functions from X to Y .

It may seem a bit artificial to require that a map of X ⊆ AnK to Y ⊆ AmK be induced by
a map from AnK to AmK (the polynomials gj in the definition of regular map actually give
a map Kn → Km that happens to take X into Y ). However, this is not much different
from the situation in topology.

Most of the objects of interest in topology (compact manifolds or compact manifolds
with boundary) are embeddable as closed sets in Rn for some n. If X ⊆ Rn and Y ⊆ Rm,
then every continuous function from X to Y is the restriction of a continuous function
from Rn → Rm. To see this, think about the composition X → Y ⊆ Rm. The function
X → Rm is given by an m-tuple of continuous functions from X to R. But a continuous
function from a closed set X ⊆ Rn to R does extend to a continuous function from Rn
to R: this is the Tietze extension theorem, and uses only that Rn is a normal topological
space.

We now enlarge the category of algebraic sets slightly. Given an algebraic set X and
mutually inverse set bijections α : X ′ → X and β : X → X ′ we shall think of these maps
as giving X ′ the structure of an algebraic set. We define a map f : X ′ → Y to be regular
if f ◦ β is regular, and a map g : Y → X ′ to be regular if α ◦ g is regular.

Of course if we have also given, say, Y ′, the structure of an algebraic set via mutually
inverse set isomorphisms γ : Y ′ → Y and δ : Y → Y ′ with an algebraic set Y , then
f : X ′ → Y ′ is regular if γ ◦ f ◦ β is a regular function from X to Y , while g : Y ′ → X ′ is
regular if α ◦ g ◦ δ is a regular function from Y to X.

More generally, given any category in which the objects have underlying sets and the
morphisms are functions on the underlying sets with, possibly, some further restrictive
property (groups and group homomorphisms, rings and ring homomorphisms, and topo-
logical spaces and continuous maps are examples), one can make an entirely similar con-
struction: given a bijection α : X ′ → X one can introduce an object with underlying set
X ′ into the category in such a way that α is an isomorphism of that new object with X.
In the case of rings, one uses the bijection to introduce addition and multiplication on X ′:
one adds elements of X ′ by taking the images of the elements in X, adding them in X, and
then applying the inverse bijection to the sum to get an element of X ′. One introduces
multiplication in X ′ in an entirely similar way.

Given a closed algebraic set X ⊆ AnK , the regular functions to K (i.e., to A1
K) have

the structure of a K-algebra: the restrictions of polynomials g1 and g2 to X have a sum
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(respectively, a product) that is regular because it is the restriction of g1 +g2 (respectively,
g1g2). This ring is called the coordinate ring of X and is denoted K[X]. It is a reduced
finitely generated K-algebra: if a power of a function is 0, all of its values are nilpotent
in K and therefore 0 in K, so that the function is identically zero. The coordinate ring is
generated over K by the images of the n functions represented by the variables x1, . . . , xn.
The function xi assigns to a point in X its i th coordinate, and so the functions xi are
referred to as coordinate functions, which explains why the K-algebra they generate is
called the coordinate ring.

K[X] is a homomorphic image of K[x1, . . . , xn] under the K-algebra homomorphism
that sends the function given by a polynomial g ∈ K[x1, . . . , xn] to its restriction to X.
The kernel of this K-algebra homomorphism is the ideal I(X) of all polynomial functions
that vanish on X, and so we have a K-algebra isomorphism K[x1, . . . , xn]/I(X) ∼= K[X].

In fact, Mor ( , A1
K) is a contravariant functor from algebraic sets to reduced finitely

generated K-algebras. Given a map of algebraic sets f : X → Y there is a K-algebra
homomorphism f∗ : K[Y ] → K[X] induced by composition; for each g : Y → A1

K , we let
f∗(g) = g ◦ f : X → A1

K .

Now consider the functor HomK-alg( , K) from reduced finitely generated K-algebras
to algebraic sets. Here the subscript indicates that we are dealing with K-algebra homo-
morphisms. For this to make sense, we have to give HomK-alg(R, K) the structure of an
algebraic set: we do this by choosing a finite set of algebra generators vectrn for R over K,
and then mapping HomK-alg(R, K) to AnK by sending φ ∈ HomK-alg(R, K) to the n-tuple(
φ(r1), . . . , φ(rn)

)
∈ AnK . We shall see below that the set of values of this map is a closed

algebraic set in AnK , and that, up to isomorphism, this algebraic set is independent of the
choice of a finite set of generators for R over K. Thus, HomK-alg(R, K) has the structure
of an algebraic set. Moreover, HomK-alg( , K) is a contravariant functor: if h : R → S
is a K-algebra homomorphism, we get a map h∗ : HomK-alg(S, K) to HomK-alg(R, K)
induced by composition: h∗(θ) = θ ◦h. We shall see that this makes F = HomK-alg( ,K)
into a contravariant functor from reduced finitely generated K-algebras to closed algebraic
sets over K.

Note that the elements of HomK-alg(R, K) correspond bijectively with the maximal
ideals of R: the maximal ideal is recovered from a given homomorphism as its kernel. On
the other hand, we have already seen that for any maximal ideal m, K → R/m is an
isomorphism µ when K is algebraically closed, and we may compose R→ R/m with µ−1

to obtain a K-algebra homomorphism R � K whose kernel is the specified maximal ideal
m. Note that if we have θ : S � K and we compose with f : R → S, the kernel of the
composition R→ S � K is the same as the contraction of the kernel of θ to R. Thus, the
functor MaxSpec is isomorphic with G = HomK-alg( ,K), and so we could have worked
with this functor instead of G. In particular, we can give every MaxSpec (R) the structure
of an algebraic set.

Our main result in this direction is:

Theorem. The procedure for giving HomK-alg(R, K) the structure of an algebraic set
described above does produce a bijection with an algebraic set, and changing the choice
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of the finite set of generators for R produces an isomorphic algebraic set. F and G as
described above are contravariant functors such that F ◦ G is isomorphic with the identity
functor on closed algebraic sets over K, and G ◦ F is isomorphic with the identity functor
on reduced finitely generated K-algebras. Thus, the category of closed algebraic sets and
regular functions over the algebraically closed field K is anti-equivalent to the category of
reduced finitely generated K-algebras.

Proof. We first note that the points of the closed algebraic set X correspond bijectively in
an obvious way with the elements of HomK-alg(K[X], K), and, likewise, with the maximal
ideals of K[X]. Think of K[X], as usual, as K[x1, . . . , xn]/I(X). The maximal ideals
of this ring correspond to maximal ideals of K[x1, . . . , xn] containing I(X). Each such
maximal ideal has the form my for some y ∈ AnK , and the condition that y must satisfy is
that I(X) ⊆ my , i.e., that all functions in I(X) vanish at y, which says that y ∈ V

(
I(X)

)
.

By our second strong version of Hilbert’s Nullstellensatz, V
(
I(X)

)
= X.

We next note that our procedure for assigning the structure of an algebraic set to
HomK-alg(R, K) really does give an algebraic set, which is independent, up to isomorphism,
of the choice of the set of generators of R as a K-algebra. To see this, let r1, . . . , rn be one
set of generators of R. Map K[x1, . . . , xn] � R using the unique K-algebra homomor-
phism that sends xi 7→ ri, 1 ≤ i ≤ n. Let I be the radical ideal which is the kernel of this
homomorphism, so that R ∼= K[x1, . . . , xn]/I. The set we assigned to HomK-alg(R, K) is
{
(
h(r1), . . . , h(rn)

)
: h ∈ HomK-alg(R, K)}. Each K-homomorphism h is uniquely deter-

mined by its values on the generators r1, . . . , rn. An n-tuple (λ1, . . . , λn) can be used to
define a K-homomorphism if and only if the elements of I vanish on (λ1, . . . , λn), i.e., if
and only if (λ1, . . . , λn) ∈ V(I). This shows that our map from HomK-alg(R, K)} to Kn

gives a bijection of HomK-alg(R, K)} with the algebraic set V(I).

Now suppose that r′1, . . . , r
′
m are additional elements of R. For every r′j we can choose

gj ∈ K[x1, . . . , xn] such that r′j = gj(r1, . . . , rn). The new algebraic set that we get by
evaluating every element h ∈ HomK-alg(R, K)} on r1, . . . , rm , r

′
1, . . . , r

′
m is preciselyX ′ =

{
(
λ1, . . . , λn, g1(λ), . . . , gm(λ)

)
: λ ∈ X}, where λ = (λ1, . . . , λn). The map X → X ′

that sends λ = (λ1, . . . , λn) to
(
λ1, . . . , λn, g1(λ), . . . , gm(λ)

)
is given in coordinates by

the polynomials x1, . . . , xn, g1, . . . , gm , and so is a morphism in the category of algebraic
sets. Likewise, the map X ′ → X which is simply projection on the first n coordinates
is given by polynomials in the coordinates, and these are mutually inverse morphisms of
algebraic sets. Thus, X ∼= X ′, as required.

This handles the case where one set of generators is contained in another. But now, if
r1, . . . , rn and r′1, . . . , r

′
m are two sets of generators, we may compare the algebraic set

given by r1, . . . , rn with that given by r1, . . . , rn, r
′
1, . . . , r

′
m, and then the latter with

the algebraic set given by r′1, . . . , r
′
m. This completes the proof of the independence of

the algebraic set structure that we are assigning to HomK-alg(R, K) from the choice of
K-algebra generators for R.

If R = K[X] and we choose as generators ri the restrictions of the coordinate functions
xi to R, then the algebraic set we get from HomK-alg(K[X], K) is X itself, and this is the
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same identification of X with HomK-alg(K[X], K) that we made in the first paragraph.
Thus, if we let SX : X → HomK-alg(K[X], K) as in that paragraph, we get an isomorphism
of algebraic sets, for we may use the restricted coordinate functions as the generators to
place the algebraic set structure on HomK-alg(K[X], K) = (G ◦F)(X). We claim that SX
is a natural transformation from the identity functor on the category of algebraic sets over
K to G◦F . We need to see that if θ : X → Y is a morphism of algebraic sets, then (G◦F)(θ)
is the same as θ once we identify HomK-alg(K[X], K) with X and HomK-alg(K[X], K)
with Y . Let φx (resp., φ′y) denote evaluation as at x ∈ X (resp., y ∈ Y ). We need to show
that

(
(G ◦ F)(θ)

)
(φx) = φ′θ(x) for all x ∈ X. Now, F(θ) acting on v ∈ K[Y ] is v ◦ θ, and G

applied to F(θ) acts by composition as well, so that its value on φx is the map that sends
v ∈ K[Y ] to (v ◦ θ)(x) = v

(
θ(x)

)
, which is evaluation at θ(x), as required.

Finally, we need to see that F ◦G is isomorphic to the identity functor on finitely gener-
ated reduced K-algebras. The map sends R to K[HomK-alg(R, K)] where HomK-alg(R, K)
is viewed as a closed algebraic set as discussed above. Each element r of R maps to a func-
tion fr on the set HomK-alg(R, K) by the rule fr(u) = u(r). It is immediate that this is a
K-algebra homomorphism: call it TR. We shall show that the TR give an isomorphism of
the identity functor with F◦G. We first need to show that every TR is an isomorphism. We
use the fact that R ∼= K[x1, . . . , xn]/I for some radical ideal I, with the coordinate func-
tions as generators, and it suffices to consider the case where R = K[x1, . . . , xn]/I. This
identifies HomK-alg(R, K) with V(I), and the needed isomorphism follows from the fact
that K[V(I)] ∼= K[x1, . . . , xn]/I

(
V(I)

)
= K[x1, . . . , xn]/I, again by the second strong

version of Hilbert’s Nullstellensatz.

The last step is to check that T is a natural transformation. Consider a K-algebra
homomorphism α : R → S. Choose a K-algebra homomorphism γ of polynomial ring
A = K[y1, . . . , ym] onto R with kernel I and a K-algebra homomorphism δ of a polynomial
ring B = K[x1, . . . , xn] onto S with kernel J . Without loss of generality, we may assume
that R = A/I, S = B/J . Choose g1, . . . , gm ∈ K[x1, . . . , xn] such that the image
of yj in R maps to the image of gj in B, 1 ≤ j ≤ m, so that α is induced by the
K-algebra map A → B that sends yj to gj , 1 ≤ j ≤ m. The corresponding map of
algebraic sets V(J) → V(I) is given in coordinates by the gj . Finally, the induced map
K[V (I)] ∼= A/I

(
V(I)

)
= A/I to K[V (J)] ∼= B/I

(
V(J)

)
= B/J is induced by composition

with the map given by the polynomials g1, . . . , gm. This means that the image of an
element of A/I represented by P (y1, . . . , ym) ∈ A is represented by the coset in B/J of
P (g1, . . . , gm) ∈ B, and this shows that with the identifications we are making, F ◦ G(α)
is α, which is exactly what we need. �

Given an algebraic set X over an algebraically closed field K, we define dim(X) to be
the same as dim(K[X]). The dimension of a ring is the supremum of the dimensions of its
quotients by minimal primes. Thus, dim(X) is the same as the supremum of the dimensions
of the irreducible components of X. Evidently, dim(X) is also the same as the supremum
of lengths of chains of irreducible closed subsets of X. We define the dimension of X near
a point x ∈ X to the be the supremum of the dimensions of the irreducible components of
X that contain x. If the corresponding maximal ideal of R = K[X] is m = mx, this is also
the dimension of Rm: it has minimal primes P corresponding precisely to the irreducible
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components V (P ) that contain x, and the length of any saturated chain from P to m
= dim(Rm/PRm) = dim(R/P ) = the dimension of the irreducible component V (P ), from
which the result follows.

There are at least three ways to think of an algebra R over a commutative ring ring K.
It is worth considering all three points of view. One is purely algebraic: R is an abstract
algebraic environment in which one may perform certain sorts of algebraic manipulations.

A second point of view is to think of R, or rather some topological space associated
with R, as a geometric object. We have seen explicitly how to do this when R is a finitely
generated reduced K-algebra and K is an algebraically closed field. But a geometric point
of view, introduced by A. Grothendieck, can be taken in great generality, when R is any
commutative ring. In Grothendieck’s theory of schemes, a geometric object Spec (R), is
introduced that has more structure than just the topological space of prime ideals of R
that we have talked about here. The geometric point of view has been very effective as a
tool in commutative algebra, even if one is only interested in seemingly purely algebraic
properties of rings.

The third point of view is simplest when R is a finitely generated algebra over a Noe-
therian ring K (and it simplest of all when K is a field). In this case one has that
R = K[x1, . . . , xn]/(f1, . . . , fm). Now let S be any K-algebra. Then HomK-alg(R, S) is
in bijective correspondence with the set of solutions of the set of m simultaneous equations

f1(x1, . . . , xn) = 0
· · ·

(∗) · · ·
· · ·

fm(x1, . . . , xn) = 0

in Sn, for to give a K-homomorphism from R to S is the same as to give an n-tuple
of elements of S (which will serve as the values of the homomorphism on the images
of the variables x1, . . . , xn) that satisfy these equations. The set of homomorphisms
HomK-alg(R, S) is called the set of S-valued points of the scheme Spec (R) in scheme
theory: since we don’t have that theory available, we shall simply refer to it as the set of
S-valued points of R. Recall again that K can be any Noetherian ring here. This point
of view can be extended: we do not need to assume that R is finitely generated over K,
nor that K is Noetherian, if we allow infinitely many variables in our polynomial ring, and
infinite families of polynomial equations to solve. Thus, very generally, a K-algebra may
be thought of as an encoded system of equations. When one takes homomorphisms into
S, one is solving the equations in S. A different way to say this is the following: suppose
that we start with a system of equations over K, and define a functor from K-algebras to
sets that assigns to every K-algebra S the set of solutions of the family of equations such
that the values of the variables are in S. If one forms the polynomial ring in the variables
occurring and then the quotient by the ideal generated by the polynomials set equal to 0
in the equations, the resulting K-algebra represents this functor.

Here is an example. Let B = R[X, Y, Z]/(X2 + Y 2 + Z2 − 1) = R[x, y, z], and let
S = B[U, V, W ]/(xU + yV + zW ) = R[x, y, z, u, v, w]. We can also form B in a single
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step as R[X, Y, Z, U, V, W ]]/(X2 +Y 2 +Z2−1, XU+Y V +ZW ). The R-homomorphisms
from B or R-valued points of B correspond to the set {(a, b, c) ∈ R3 : a2 + b2 + c2 = 1}:
the real 2-sphere of radius one centered at the origin in R3. The R-valued points of S
correspond to pairs (a, b, c), (d, e, f) such that (a, b, c) ∈ S2 and (a, b, c) · (d, e, f) = 0,
which means that the vector (d, e, f) represents a tangent vector to the sphere at the point
(a, b, c). That is, the R-valued points of S correspond to the points of the tangent bundle
to the real 2-sphere.

Products

Let K be an algebraically closed field. Given two algebraic sets X = V(I) ∈ Km = AmK ,
where we use x1, . . . , xm for coordinates, and Y = V(J) ⊆ Kn = AnK , where we use
y1, . . . , yn for coordinates, the set X × Y ⊆ Km+n = Am+n

K is an algebraic set defined by
the expansions of I and J to K[x1, . . . , xm, y1, . . . , yn] ∼= K[x1, . . . , xm]⊗KK[y1, . . . , yn].
It is obvious that a point satisfies both the conditions imposed by the vanishing of I and
of J if and only if its first m coordinates give a point of X and its last n coordinates give
a point of Y .

Let S = K[x1, . . . , xm] thought of as K[AmK ] and Y = K[y1, . . . , yn] thought of as
K[AnK ]. Then

K[X × Y ] ∼= (S ⊗K T )/Rad (Ie + Je),

where the superscript e indicates expansion of ideals. Since

(S ⊗K T )/(Ie + Je) ∼= (S ⊗K T )/(I ⊗K T + S ⊗K J) ∼= (S/I)⊗K (T/J),

we have that

K[X × Y ] ∼=
(
(S/I)⊗K (T/J)

)
red
∼= (K[X]⊗K K[Y ])red.

It is not necessary to kill the nilpotents, because of the following fact:

Theorem. Let R and S be algebras over an algebraically closed field K.
(a) If R and S are domains, then R⊗K S is a domain.
(b) If R and S are reduced, then R⊗K S is reduced.

Proof. For part (a), let F denote the fraction field of R. Since K is a field, every K-module
is free, and, therefore, flat. We have an injection R ↪→ F . Thus, R ⊗K S ↪→ F ⊗K S.
By Supplementary Problem Set #4, problem 6., this ring is a domain, and so its subring
R⊗K S is a domain.

For part (b), note that R is a the directed union of its finitely generated K-subalgebras
R0. Thus, R ⊗K S is the directed union of its subalgebras R0 ⊗K S where R0 ⊆ R is
finitely generated. Similarly, this ring is the directed union of its subalgebras R0 ⊗K S0,
where both R0 ⊆ R and S0 ⊆ S are finitely generated. We can therefore reduce to the
case where R and S are finitely generated.
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Let P1, . . . , Pm be the minimal primes of R. Since R is reduced, their intersection is 0.
Therefore, R injects into

∏
i(R/Pi). Thus,

R⊗K S ↪→
(∏
i

(R/Pi)
)
⊗K S ∼=

∏
i

(
(R/Pi)⊗K S

)
(if we think of the products as direct sums, we have an obvious isomorphism of K-vector
spaces: the check that multiplication is preserved is straightforward), and so it suffices to
show that each factor ring of this product is reduced. Thus, we need only show that if R
is a domain and S is reduced, where these are finitely generated K-algebras, then R⊗K S
is reduced. But now we may repeat this argument using the minimal primes Q1, . . . , Qn
of S, and so we need only show that each ring R ⊗K (S/Qj) is reduced, where now both
R and S/Qj are domains. By part (a), these tensor products are domains. �

One may also show that the tensor product of two reduced rings over an algebraically
closed field is reduced using an equational argument and Hilbert’s Nullstellensatz, similar
to the argument for Supplementary Problem Set #4, 6.

We return to the study of algebraic sets over an algebraically closed field. We have now
established an isomorphism K[X × Y ] ∼= K[X]⊗K K[Y ]. Moreover, it is easy to see that
the product projections X × Y → X, X × Y → Y correspond to the respective injections
K[X]→ K[X]⊗K K[Y ] and K[Y ]→ K[X]⊗K K[Y ], where the first sends f 7→ f ⊗ 1 and
the second sends g 7→ 1⊗ g.

From the fact that K[X] ⊗K K[Y ] is a coproduct of K[X] and K[Y ] in the category
of K-algebras, it follows easily that X × Y (with the usual product projections) is a
product of X and Y in the category of algebraic sets. That is, giving a morphism from
Z to X × Y is equivalent to giving a pair of morphisms, one from Z to X and the other
from Z → Y . This is simply because giving a morphism from Z to X × Y is equivalent
to giving a K-homomorphism K[X] ⊗K K[Y ] to K[Z], which we know is equivalent to
giving a K-homomorphism K[X] → K[Z] and a K-homomorphism K[Y ] → K[Z]: as
already mentioned, K[X] ⊗K K[Y ] is a coproduct for K[X] and K[Y ] in the category of
K-algebras. Notice also that since K[X]⊗K K[Y ] is a domain whenever K[X] and K[Y ]
are both domains, we have:

Corollary. The product of two varieties (i.e., irreducible algebraic sets) in AnK over an
algebraically closed field K is a variety (i.e., irreducible).

We also note:

Proposition. If X and Y are algebraic sets over the algebraically closed field K, then

dim (X × Y ) = dim (X) + dim (Y ).

Proof. K[X] is module-finite over a polynomial ring A in d variables where d = dim (X),
say with module generators u1, . . . , us, and K[Y ] is module-finite, say with module gen-
erators v1, . . . , vt, over a polynomial ring B in d′ variables. Hence, K[X] ⊗K K[Y ] is
module-finite (with module generators ui ⊗ vj) over a polynomial ring in d+ d′ variables.
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Note that A⊗K B injects into A⊗K K[Y ] because A is K-flat, and the latter injects into
K[X]⊗K K[Y ] because K[Y ] is K-flat. �

The dimension of the intersection of two varities

We next prove a result that was promised long ago:

Theorem. Let X and Y be irreducible algebraic sets meeting at a point x ∈ AnK , where
K is an algebraic closed field. Then

dim(X ∩ Y ) ≥ dim (X) + dim (Y )− n.

In fact every irreducible component of X ∩ Y has dimension ≥ dim (X) + dim (Y )− n.

Proof. Let X = V(P ) and Y = V(Q), where P and Q are prime ideals of K[x1, . . . , xn].
Then X ∩ Y = V(P +Q), although P +Q need not be radical, and

K[X ∩ Y ] =
(
K[x1, . . . , xn]/(P +Q)

)
red
.

Now

K[x1, . . . , xn]/(P +Q) ∼=
(
(K[x1, . . . , xn]/P )⊗K (K[y1, . . . , yn]/Q′)

)
/I∆,

where I∆ is the ideal generated by the xi − yi for 1 ≤ i ≤ n, which is the ideal that
defines the diagonal ∆ in AnK ×K AnK . The point is that once we kill the generators xi− yi
of I∆, the ring K[y1, . . . , yn] is identified with K[x1, . . . , xn], and the image of Q′ is
Q. (Geometrically, we are identifying X ∩ Y with (X × Y ) ∩ ∆ in AnK × AnK , via the
map z 7→ (z, z).) Let R = (K[x1, . . . , xn]/P ) ⊗K (K[y1, . . . , yn]/Q′). The dimension of
R = K[X × Y ] is dim (X) + dim (Y ). Since the intersection X ∩ Y is non-empty, we know
that I∆ expands to a proper ideal. The dimension of the quotient will be the supremum
of the heights of the m/I∆ as m runs through maximal ideals containing I∆, and this
will be the supremum of the dimensions of the local rings dim (Rm/I∆Rm). Each Rm has
dimension equal to that of R, i.e., dim (X) + dim (Y ). But I∆ is generated by n elements,
and killing n elements in the maximal ideal of a local ring drops the dimension of the local
ring by at most n. Thus, every Rm/I∆Rm has dimension at least dim (X) + dim (Y )− n,
and the result follows. To get the final statement, let x be a point of the irreducible
component considered not in any other irreducible component of X ∩ Y , and let m be
the corresponding maximal ideal of R. We have that Rm/I∆Rm has dimension at least
dim (X) + dim (Y )− n as before, but now there is a unique minimal prime P in this ring,
corresponding to the fact that only one irreducible component of X ∩ Y contains x. It
follows that this irreducible component has dimension at least dim (X) + dim (Y )−n. �

Note that the argument in the proof shows that the map X ∩ Y → (X × Y ) ∩∆ that
sends z to (z, z) is an isomorphism of algebraic sets.

Recall that dim x(X) is the largest dimension of an irreducible component of X that
contains x. It follows at once that:
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Corollary. Let X and Y be algebraic sets in Kn, where K is an algebraically closed field,
and suppose x ∈ X ∩ Y . Then

dim x(X ∩ Y ) ≥ dim x(X) + dim x(Y )− n.

Proof. Let X0 be an irreducible component of X containing x of largest dimension that
contains x and Y0 be such a component of Y with x ∈ Y0. Then dim x(X) = dim (X0) and
dim x(Y ) = dim (Y0). Apply the result for the irreducible case to X0 and Y0. �

The theorem we have just proved may be thought of as an existence theorem for solutions
of equations: given two sets of equations in n variables over an algebraically closed field, if
the two sets of equations have a common solution x, and the solutions of the first set have
dimension d near x while the solutions of the second set have dimension d′ near x, then
the set of simultaneous solutions of the two sets has dimension at least d+ d′ − n near x.
This is well known for solutions of linear equations, but surprising for algebraic sets!

Open and locally closed algebraic sets

A subset of a topological space is called locally closed if it is, equivalently, (1) the
intersection of an open set with a closed set, (2) a closed subset of an open set, or (3) an
open subset of a closed set. Let X ⊆ AnK be a closed algebraic set. Let f ∈ K[X] = R,
and let Xf = {x ∈ X : f(x) 6= 0}. Then Xf corresponds bijectively to the set of
maximal ideals in Rf . Therefore, Xf has the structure of a closed algebraic set (a priori,
it is only a locally closed algebraic set). If we think of R as K[x1, . . . , xn]/I where
I = I(X), we can map K[x1, . . . , xn+1] � Rf , extending the map K[x1, . . . , xn] � R by
mapping xn+1 → 1/f . X now corresponds bijectively to a closed algebraic set in An+1

K :
the bijection sends x to

(
x, 1/f(x)

)
. The closed algebraic set in question may be described

as {(x, λ) ∈ An+1
K : x ∈ X and λ = 1/f(x)}. The new defining ideal is I + (fxn+1 − 1).

We define a function Xf → K to be regular if it is regular with respect to the closed
algebraic set structure that we have placed on Xf . This raises the following question:
suppose that we have a cover of a closed algebraic set X by open sets Xfi

and a function
g : X → K such that the restriction of g to each Xfi

is regular in the sense just specified.
Is g regular? We shall show that the answer is “yes,” and this shows that regularity is a
local property with respect to the Zariski topology. Let gi denote the restriction of g to
Xi = Xfi

. Note that gi|Xj
= gj |Xi

for all i, j, since they are both restrictions of g.

The following fact gives a generalization to arbitrary modules over an arbitrary com-
mutative ring, and underlies the theory of schemes.

Theorem. Let R be any ring and M any R-module. Let X = Spec (R), and let fi be a
family of elements of R such that the open sets Xi = Xfi

= D(fi) cover X. Suppose that
for every i we are given an element ui ∈ Mfi = Mi, and suppose that (∗) for all choices
of i and j, the images of ui and uj in Mfifj agree. Then there is a unique element u ∈M
such that for all i, the image of u in Mfi

is ui.

The result says, informally, that “constructing” an element of a module is a local prob-
lem: one can solve it on an open cover, provided the solutions “fit together” on overlaps.
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This turns many problems into local problems: for example, if M is finitely presented,
the problem of constructing a map of modules M → N amounts to giving an element
of the module HomR(M, N). Since localization commutes with Hom when M is finitely
presented, the problem of doing the construction becomes local.

Note that if we apply this result in the case of the algebraic set X, we find that there
is an element g0 ∈ K[X] whose image in K[Xi] is gi for all i. This implies that g0 agrees
with g on Xi. Since the Xi cover X, g0 = g. Thus, g ∈ K[X]. Consequently, the theorem
stated above does show that regularity is a local property.

Proof of the theorem. Uniqueness is obvious: if u and u′ are two such elements, then they
agree after localizing at any fi. When one localizes at a prime P , since P cannot contain
all the fi, u and u′ have the same image in MP . It follows that u = u′. We focus on the
existence of u.

The statement that the Xi cover is equivalent to the statement that the fi generate the
unit ideal. Then finitely many generate the unit ideal: call these fi1 , . . . , fin . Suppose
that we can construct u ∈ M such that the image of u is uit ∈ Mit , 1 ≤ t ≤ n. We claim
that the image u′j of u in Mj is uj for any j. To see this, it suffices to show that u′j − uj
vanishes in (Mj)P for any P ∈ Xj . But Xj is covered by the sets Xj ∩Xit , 1 ≤ t ≤ n. If
P ∈ Xit , it suffices to show that u′j and uj have the same image in Mfitfj . The image of
u′j is the same as the image of u, and hence the same as the image of uit , and the result
follows from our assumption (∗).

Therefore, it suffices to work with the cover by the Xfit
, and we simplify notation: we let

the index set be {1, . . . , n} and so the fis are simply f1, . . . , fn, the cover is X1, . . . , Xn,
and Mi = Mfi

. We use induction on n. If n = 1, X1 = X and the result is clear: u = u1.

We next consider the case where n = 2. This is the core of the proof. Let u1 = v1/f
s
1

and u2 = v2/f
t
2 where v1, v2 ∈ M . Since these agree in Mf1f2 there exists an integer N

such fN1 f
N
2 (f t2v1 − fs1v2) = 0. Then u1 = fN1 v1/f

N+s
1 , u2 = fN2 v2/f

N+t
2 , and

fN+t
2 fN1 v1 − fN+s

1 fN2 v2 = (f1f2)N (f t2v1 − fs1v2) = 0.

Thus, if we replace f1 by fN+s
1 , f2 by fN+t

2 , v1 by fN1 v1 and v2 by fN2 v2, then u1 = v1/f1,
u2 = v2/f2, and f2v1− f1v2 = 0 (Note that the original fN+s

1 and fN+t
2 generate the unit

ideal, since any maximal ideal containing both would have to contain both f1 and f2, a
contradiction: thus, the new f1 and f2 still generate the unit ideal).

Choose r1, r2 such that r1f1 + r2f2 = 1. Let u = r1v1 + r2v2. Then

f1u = r1f1v1 + r2(f1v2) = r1f1v1 + r2(f2v1) = (r1f1 + r2f2)v1 = v1,

so that u = v1/f1 in M1, and u = v2/f2 in M2 by symmetry.

We now assume that n > 2 and that the result has been established for integers < n.
Suppose that

r1f1 + · · ·+ rnfn = 1.
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Let
g1 = r1f1 + · · ·+ rn−1fn−1

and g2 = fn. Evidently, g1 and g2 generate the unit ideal, since g1 + rng2 = 1. Consider
the images of f1, . . . , fn−1 in Rg1 . Because g1 is invertible, they generate the unit ideal.
We now apply the induction hypothesis to Mg1 , using the images of the fi for 1 ≤ i ≤ n−1
to give the open cover of Spec (Rg1). Let u′i denote the image of ui in Mg1fi , 1 ≤ i ≤ n−1.
It is straightforward to verify that condition (∗) continues to hold here, using cases of the
original condition (∗). By the induction hypothesis, there is an element of Mg1 , call it w1,
such that the image of w1 in each Mg1fi

is the same as the image of ui, 1 ≤ i ≤ n − 1.
We claim that the images of w1 and un agree in Mg1fn

. It suffices to show that they agree
after localizing at any prime P , and P cannot contain the images of all of f1, . . . , fn−1. If
P does not contain fi, 1 ≤ i ≤ n − 1, the result follows because the images of ui and un
agree in Mfifn

. We can now apply the case where n = 2 to construct the required element
of M . �

The local nature of the regularity of a morphism

Corollary. Let X and Y be closed algebraic sets over an algebraically closed field K.
Then a function h : X → Y is regular if and only if (#) it is continuous and for all x ∈ X
there is an open neighborhood Yg of y = h(x) and an open neighborhood Xf ⊆ h−1(y) such
that the restriction of h mapping Xf to Yg is regular.

Proof. Y ⊆ AnK (with coordinates x1, . . . , xn in the latter), and we will reduce to showing
that the composite map X → AnK is regular. Let hi be the composition of this map with
the i th coordinate projection. It suffices to show that every hi is regular. Let Xf be a
neighborhood of x ∈ X such that h maps into an open neighborhood Yg of h(x). It will
correspond to a K-algebra homomorphism K[Y ]g → K[X]f . Note that g is the restriction
of a function g′ on AnK , and (AnK)g′ meets Y in Yg. The inclusion Y ⊆ AnK corresponds to
a surjection K[x1, . . . , xn] → K[Y ]. The map Yg → (AnK)g′ corresponds to the ring map
K[x1, . . . , xn]g′ → K[Y ]g induced by localization at the multiplicative system generated
by g′ (recall that g′ maps to g). Thus, the map Xf → (AnK)g′ is regular, and so is the map
Xf → AnK , which corresponds to the composite ring map

K[x1, . . . , xn]→ K[x1, . . . , xn]g′ → K[Y ]g → K[X]f .

It follows that the composition of the map Xf → AnK with the i th coordinate projection
is regular: this is the restriction of hi to Xf . Since the Xf cover X, it follows that every
hi is regular, and so h is regular. �

We can now define when a function between open subsets of algebraic sets (i.e., locally
closed algebraic sets) is a morphism: simply use the condition (#) in the Corollary.

How can one generalize further?

The category already described can be embedded, up to isomorphism, in a much larger
category. One way to do this is to introduce the category of schemes: this category can be
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thought of as containing both the category of algebraic sets over K (reduced quasi-affine
schemes over an algebraically closed field K) and the opposite of the category of commu-
tative rings with identity (the category of affine schemes). There are other generalizations
as well. Here, we shall only give a glimpse of the much larger categories that one may
consider.

A set has the structure of a reduced scheme of finite type over an algebraically closed
field K if it is a topological space X with a finite open cover by sets Xi together with, for
every i, a bijection fi : Xi

∼= Yi where Yi is a closed algebraic set over K, satisfying the
additional condition that if

fij : Xi ∩Xj
∼= fi(Xi ∩Xj) = Yij ⊆ Yi,

then the for all i, j the composite

fji ◦ f−1
ij : Yij → Yji

is an isomorphism of (locally closed) algebraic sets.

Roughly speaking, a reduced scheme of finite type over K is the result of pasting to-
gether finitely many closed algebraic sets along open overlaps that are isomorphic in the
category of locally closed algebraic sets. This is analogous to the definitions of topological,
differentiable and analytic manifolds by pasting open subsets having the same structure
as an open set in Rn (or Cn in the case of an analytic manifold).

One can use condition (#) to define when a function between two reduced schemes of
finite type over K is a morphism: thus, we require that f be continuous, and that for all
x ∈ X, if y = f(x), then when we choose an open neighborhood V of y with the structure
of a closed algebraic set, and and an open neighborhood U of x with the structure of a
closed algebraic set such that f(U) ⊆ V , then restriction of f to a map from U to V is
a morphism of algebraic sets. Our results on the local character of morphisms show that
when X and Y are closed algebraic sets, we have not enlarged the set of morphisms from
X to Y .

A major failing of this theory is that while the category of finitely generated K-algebras
has rings with nilpotents, our reduced schemes never have any. It turns out that the
presence of nilpotents can carry geometric information! Even if one detests nilpotents and
never wants them around, it is very useful on occasion to be able to say that there really
aren’t any because of a suitable theorem (as opposed to saying that there aren’t any because
we were forced by our definitions to kill them all). For example, one cannot express the fact
that the tensor product of two reduced K-algebras is reduced in the category of reduced
schemes. While there is an object corresponding to the reduced tensor product, there is
no object corresponding to the tensor product. The remedy is the theory of schemes: as
indicated earlier, the category of schemes contains the opposite of the category of rings
as a subcategory, and contains the category of reduced schemes of finite type over an
algebraically closed field as well.

When one does the full theory of schemes, the definition of a reduced scheme of finite
type over an algebraically closed field K is somewhat different, but the category of reduced
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schemes of finite type over K introduced here is equivalent to the category one gets from
the more general theory of schemes.


