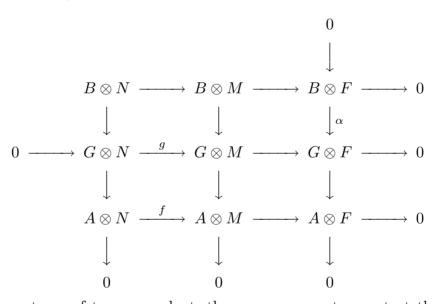
Exact Sequences with a flat cokernel and a sketch of properties of Tor

We give two arguments to prove the following fact:

Lemma. Let $0 \to N \to M \to F \to 0$ be an exact sequence of *R*-modules such that *F* is *R*-flat. Then for every *R*-module $A, 0 \to A \otimes_R N \to A \otimes_R M \to A \otimes_R F \to 0$ is exact.

The first proof is completely elementary. The second uses properties of Tor, and is quite straightforward if one is familiar with Tor. Prior to giving the argument, we give a brief treatment of properties of Tor.

Elementary proof. Map a free *R*-module *G* onto *A*, and let *B* denote the kernel, so that $0 \to B \to G \to A \to 0$ is exact. Think of this exact sequence as written as a column. We may tensor the row and column together to obtain a double array (all tensor products are over *R*) in which the squares commute:



By the right exactness of tensor product, the rows are exact except at the left and the columns are exact except at the top. However, because G is free, the middle row is exact, and because F is flat, the rightmost column is exact. We want to show that f is injective. Suppose that $u \in \text{Ker}(f)$. Pick $v \in G \otimes N$ that maps to u. Let w be ithe image of v in $G \otimes M$. Then w maps to 0 in $A \otimes M$, since the image of w is the image of v, and if we use the maps forming the other two sides of the square, we get $v \mapsto u \mapsto f(u) = 0$. Hence, w is the image of some $x \in B \otimes M$. Let y be the image of w in $B \otimes F$. We claim that y = 0. Since α is injective, it suffices to show that the image z of y in $G \otimes F$ is 0. If we use the other two sides of the square, we see that this is the same as the image of w. Since w is the image of x in $G \otimes N$. Then v and v' both map to w in $G \otimes M$, so that $v - v' \mapsto 0$. Since g is injective, we have that v = v'. But then u is the image of v', and so it is the image of x'. Hence, u = 0. \Box

For those familiar with Tor, we give a different argument. First note that when C, D are R-modules the R-modules $\operatorname{Tor}_i^R(C, D)$ are defined for all integers i. The superscript R is frequently omitted when the base ring is understood from context. For negative i, they vanish, while $\operatorname{Tor}_0(C, D) = C \otimes D$. There is a canonical isomorphism $\operatorname{Tor}_i(C, D) \cong \operatorname{Tor}_i(D, C)$ that generalizes the symmetry of the tensor product. When D is flat and, hence, when C is flat, $\operatorname{Tor}_i(C, D) = 0$ for all $i \geq 1$. Moreover, if $0 \to C' \to C \to C'' \to 0$ is exact, there is a (functorial) long exact sequence:

$$\cdots \to \operatorname{Tor}_i(C', D) \to \operatorname{Tor}_i(C, D) \to \operatorname{Tor}_i(C'', D) \to \operatorname{Tor}_{i-1}(C', D) \to \cdots$$
$$\to \operatorname{Tor}_1(C', D) \to \operatorname{Tor}_1(C, D) \to \operatorname{Tor}_1(C'', D) \to C' \otimes D \to C \otimes D \to C'' \otimes D \to 0.$$

We only need the rightmost four terms of the long exact sequence, which we may utilize in the case where C'' = F, C' = N, C = M, and D = A. The conclusion we want is immediate. \Box

We make the following further comments about Tor. If C is held fixed, $\operatorname{Tor}_i(C, _)$ is a covariant functor form R-modules to R-modules. The same holds for $\operatorname{Tor}_i(_, D)$ when D is held fixed. If R is Noetherian and C, D are Noetherian, so are all the modules $\operatorname{Tor}_i(C, D)$.

If $r \in R$, the map given by multiplication by r on C induces the map given by multiplication by r on $\text{Tor}_i(C, D)$, and the same applies for the map given by multiplication by ron D. It follows that $\text{Tor}_i(C, D)$ is killed by the sum of the annihilators of the modules Cand D.

One way of defining Tor is as follows. If A is an R-module, one can construct a left free resolution of A as follows. Map a free R-module onto A, call it P_0 . Then map a free R-module P_1 onto Ker $(P_0 \rightarrow A)$. This yields a sequence $P_1 \rightarrow P_0 \rightarrow A \rightarrow 0$ exact except at P_1 . Recursively, if one has an exact sequence $P_i \rightarrow P_{i-1} \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow A \rightarrow 0$, one may extend the resolution further by mapping a free module P_{i+1} onto Ker $(P_i \rightarrow P_{i-1})$. This yields a (very possibly infinite) free resolution $\cdots \rightarrow P_n \rightarrow P_{n-1} \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow A \rightarrow 0$ which is exact. Let P_{\bullet} be the sequence obtained by replacing A by 0. This sequence is exact except at P_0 . It is still a complex, i.e., the composition of any two consecutive maps is 0. One gets a new complex $P_{\bullet} \otimes_R D$ by applying $_ \otimes_R D$, namely $\cdots \rightarrow P_n \otimes_R D \rightarrow P_{n-1} \otimes_R \cdots \rightarrow P_1 \otimes_R D \rightarrow P_{n-1} \otimes_R \cdots \rightarrow P_1 \otimes_R D \rightarrow 0$.

Given any complex G_{\bullet} , say $\cdots G_n \to G_{n-1} \cdots$ we may define its homology $H_n(G_{\bullet})$ at the *n*th spot as Z_n/B_n , where $Z_n = \ker(G_n \to G_{n-1})$ and $B_n = \operatorname{Im}(G_{n+1} \to G_n)$. Then $\operatorname{Tor}^n(C, D) = H_n(P_{\bullet} \otimes_R D)$. This turns out to be independent of the free resolution up to canonical isomorphism. In fact, one may use any projective resolution or even a resolution by flat modules to calculate Tor.

 $\mathbf{2}$