
Integral dependence and integral extensions

We discuss the notion of an integral element of a ring S over a ring R. We define integral
and module-finite extensions and discuss the relationship between these two notions. We
define the integral closure of a ring in an extension ring and prove that integral closure
commutes with localization. We then study the behavior of contraction of prime ideals
from S to R when R ⊆ S is an integral extension. In particular, we prove the lying over,
going up, and going down theorems.

Let S be an R-algebra with structural homomorphism f : R→ S. An element s ∈ S is
called integral over R if for some positive integer d we have that

sd = rd−1s
d−1 + · · · + r1s+ r0 · 1S

for suitable elements rj of r, i.e., sd ∈ Rsd−1 + · · · + R1S . If we multiply by s, we see
that sd+1 is in the R-span of sd, . . . , 1S , and sd is not needed, because it is in the R-span
of its predecessors. Thus sd+1 is in the R-span of sd−1, . . . , 1S . We may continue in this
way to prove by a straightforward induction that st is in the R-span of sd−1, . . . , 1S for
all t.

Thus, the fact that s is integral over R is equivalent to the assertion that the R-
submodule of S spanned by the powers of s (including 1S as the 0 th power) is finitely
generated. (Note that any set of generators will involve only finitely many powers of s,
and that these powers of s will lie among the elements sd−1, . . . , 1 for any d� 0.) Let A
denote the image of R in S. Then another equivalent statement is that the ring A[s] is a
finitely generated A-module, and yet another is that s satisfies a monic polynomial (i.e.,
one with leading coefficient 1) with coefficients in A, say sd+ad−1s

d−1 + · · ·+a1s+a0 = 0
where every ai has the form f(ri) for some element ri ∈ R. From this definition, it is clear
that s is integral over R if and only if it is integral over the image A = f(R) of R in S.
Thus, questions about integrality reduce, for the most part, to the case where R ⊆ S, and
we usually assume this without much comment in the proofs.

Note that 1/2 is not integral over Z: its d th power is not a Z-linear combination of
lower powers for any d. On the other hand in Z[

√
2] the element

√
2 is integral over Z: it

satisfies the monic polynomial equation x2−2 = 0. Note that Z[
√

2] = Z+Z
√

2 is spanned
over Z by 1 and

√
2.

S is said to be integral over R if every element of S is integral over R. If R ⊆ S and S is
integral over R then S is called an integral extension of R. S is said to be module-finite over
R if S is finitely generated as an R-module. This is much stronger than the requirement
that S be finitely generated as an R-algebra. If R ⊆ S and S is module-finite over R, then
S is called a module-finite extension of R. We want to explore the connection between
module-finite extensions and integral extensions.

We need to extend aspects of the theory of determinants to arbitrary commutative rings.
If (rij) is an n× n matrix with entries in R, we define

det (rij) =
∑
π∈Sn

sgn (π)r1,π(1)r2,π(2) · · · rn,π(n)
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where Sn is the set of permutations of {1, 2, . . . , n} and sgn (π) is 1 if π is an even
permutation −1 if π is an odd permutation.

Certain facts about determinants follow from polynomial identities in the entries. To
prove them for any ring, it suffices to prove them for polynomial rings over the integers,
and since the problem remains the same if we think over the fraction field, we see that
it is enough to prove the result over a field of characteristic 0. For example, suppose
we want to prove that A and its transpose have the same determinant. If one knows
this when A is matrix of indeterminates over Z, one gets the general case by taking a
homomorphism from Z[xij ]→ R that maps xij to rij for all choices of i, j. The result that
det(AB) = det(A) det(B) can be proved similarly: one starts with the case where A and B
are two matrices of indeterminates. One can similarly prove that if two rows (or columns)
are identical the determinant is 0, and that switching two rows or columns reverses the
sign.

Let Aij denote the submatrix of A obtained by deleting the i th row and j th column.
The determinant of Aij is called the i, j minor of A, and (−1)i+j det(Aij) is called the i, j
cofactor. The classical adjoint of A is the matrix whose i, j entry is the j, i cofactor of A:
it is also referred to as the transpose of the cofactor matrix. We denote it adj(A). The
determinant of a matrix can be found by multiplying each element of the i th row by its
cofactor and summing: this called expansion by minors with respect to the i th row. There
is a similar expansion with respect to any column. Then A adj(A) = det(A)In, where In
is the n × n identity matrix. Each entry of the product on the left is the determinant of
a matrix obtained by expanding with respect to a row. If the entry is off diagonal, the
matrix whose determinant is being expanded has two rows equal. If the entry is on the
diagonal, one gets one of the expansions for det(A) by minors. A similar argument using
columns shows that adj(A) A = det(A)I.

These results are valid for any commutative ring R. If the case of a field of characteristic
0 is taken as known, they can be deduced from that case by the type of argument discussed
above, using maps of polynomial rings.

The fact that for an n × n matrix A over a commutative ring R one has adj(A) A =
det(A)In has the following consequence:

Lemma. Let A = (rij) be an n× n matrix over R and let V be an n× 1 column matrix
such that AV = 0. Then det(A) kills every entry of V , i.e., det(A)V = 0.

Proof. det(A)V = det(A)InV = adj(A)AV = adj(A)0 = 0. �

We note that if x is an indeterminate over the ring R and B is an n × n matrix over
R, then det(xIn − B) ∈ R[x] is a monic polynomial of degree n in x with coefficients in
R. The product of the entries of the main diagonal provides a unique term of degree n
in x, namely, xn, while the product of any other n entries can involve x at most to the
n − 1 st power. As in the case of elementary linear algebra, this polynomial is called the
characteristic polynomial of the matrix B. We can now prove:

Theorem. Let S be module-finite over the ring R. Then every element of S is integral
over R.
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Proof. We may replace R by its image in S, and so assume that R ⊆ S. Let s1, . . . , sn be
a finite set of generators for S as an R-module. Since we may enlarge this set of generators
as we please, we may assume that s1 = 1. Let s ∈ S be any element. Then for every i we
have an equation

ssi =
n∑
j=1

rijsj

with coefficients rij in R, simply because ssj is some element of S and so can be written
as an R-linear combination of elements of s1, . . . , sn. Let In be the n×n identity matrix,
let V be the n × 1 column vector whose entries are s1, . . . , sn, and let B = (rij). Then
these equations can be written in matrix form as sIV = BV or (sI −B)V = 0. Applying
the preceding Lemma with A = sI − B, we find that det(sI − B) kills all the entries of
V , one of which is s1 = 1, and so det(sI − B) = 0. This implies that s is a root of the
characteristic polynomial of B over R, and so s is integral over R. �

Proposition. Let R→ S → T be ring homomorphisms such that S is module-finite over
R with generators s1, . . . , sm and T is module-finite over S with generators t1, . . . , tn.
Then the composition R → T is module-finite with the mn generators sitj, 1 ≤ i ≤ m,
1 ≤ j ≤ n.

Proof. Every element of t can be written as
∑n
j=1 σjtj for suitable elements σj ∈ S, and

each σj can be written as
∑m
i=1 rijsi for suitable elements rij of R. Substituting in the

expression for t shows that the elements sitj span T as an R-module. �

Corollary. The elements of S integral over R form a subring of S.

Proof. Replace R by its image in S and so assume R ⊆ S. Let s, s′ be elements of S integral
over R. Then R[s] is module-finite over R and, since s′ is integral over R it is certainly
integral over R[s]: use the same monic polynomial to see this. Thus, (R[s])[s′] = R[s, s′]
is module-finite over R[s], and so, by the preceding Corollary, it is module-finite over R.
Thus, s± s′ and ss′, which are in R[s, s′], are integral over R. �

This depends on the characteristic polynomial method that was used to prove the Theo-
rem above. A bit of further analysis of the proof shows that if s, s′ satisfy monic polynomial
equations of degrees m and n over R, the every element of R[s, s′] satisfies a monic poly-
nomial equation of degree mn over R. It can be shown that, in general, one cannot do
better.

If F is a finite algebraic field extension of the rational numbers the elements of F that
are integral over Z are referred to as the algebraic integers of F , and form a ring o. The
study of such rings is the branch of mathematics known as algebraic number theory.

We next observe:

Theorem. Let S be an R-algebra. Then S is module-finite over R if and only if S is
finitely generated as an R-algebra and integral over R. For S to be module-finite over R,
it suffices if S is generated over R by finitely many elements each of which is integral over
R.
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Proof. We have already seen that module-finite extensions are integral, and it is clear that
they are finitely generated as R-algebras.

For the other half, it suffices to prove the final statement, and we may suppose that R ⊆
S and that S = R[s1, . . . , sn]. R[s1] is module-finite over R by one of our characterizations
of when an element is integral, and S is module-finite over R[s1] by induction on n. The
result now follows because a module-finite extension of a module-finite extension of R is
module-finite over R. �

A union of a family of sets, subgroups, submodules, subrings or subalgebras is called a
directed union if any two of them are contained in a third. Then any finite union of them
is contained in one of them.

Corollary. S is integral over R if and only if it is a directed union of module-finite
extensions of R.

Proof. “If” is clear, since every element of S will be in one of the module-finite extensions
and therefore integral over R. For “only if,” note that S is the directed union of its finitely
generated R-subalgebras, each of which will be module-finite over R. �

Observe that Z[
√
p : p > 1 is prime] is integral over Z but not module-finite (and hence

not finitely generated as a Z-algebra). In fact, adjoining the square roots of the several
primes to even to Q does not introduce the square roots of any other primes. Similarly, if
K is a field and x is an indeterminate, the ring K[x1/2n

: n ∈ N] is integral over K[x] but
is neither module-finite nor finitely generated as an algebra over K[x].

Let f : R → S be a ring homomorphism, V a multiplicative system in R, and W the
image of V in S. Since the image of V in W−1S consists of invertible elements, there is
a unique induced homomorphism g : V −1R → W−1S such that g(r/1) = f(r)/1 for all
r ∈ R.

Lemma. With notation as in the paragraph above, if S is module-finite over R (respec-
tively, integral over R), then W−1S is module-finite (respectively, integral) over V −1R.

Moreover, if R ⊆ S so that W = V , and T is the integral closure of R ∈ S, then
V −1R ⊆ V −1T ⊆ V −1S, and V −1T is the integral closure of V −1R in V −1S.

Proof. If S = Rs1 + · · ·+Rsk and s/f(v) ∈W−1S, then s = r1s1 + · · ·+ rksk for suitable
rj ∈ R, and then s/f(v) =

(
f(r1)/f(v)

)
(s1/1) + · · · +

(
f(r1)/f(v)

)
(s1/1) which we may

rewrite as g(r1/v)(s1/1) + · · ·+g(rk/v)(sk/1) = (r1/v)(s1/1) + · · ·+ (rk/1)(sk/1), because
of the way the V −1R-module structure is defined on W−1S. Thus, s1/1, . . . , sk/1 span
W−1S as a V −1R-module. For the integrality part, note that elements 1/f(v) are integral
because they are in the image of V −1R, while for elements s/1 one may take a monic
polynomial satisfied by s over R and then s/1 satisfies the same polynomial, with the
coefficients replaced by their images in V −1R.

Now suppose that R ⊆ S so that W = V . Localization at W preserves the injectivity
of maps of R-modules, and hence of R-algebras. V −1T is integral over V −1R by the result
of the first paragraph. Now suppose that s/v is integral over V −1R. We must show that
s/v ∈ V −1T . Consider the monic polynomial satisfied by s/v over V −1R. We may multiply
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by an element of V to clear denominators, yielding a polynomial v0sn+r′n−1s
n−1 + · · ·+r′0

in s over R whose image in V −1S is 0. We may multiply by one element of V to get a
polynomial v1sn + rn−1s

n−1 + · · ·+ r0 in s over R that really is 0. It is no longer monic,
but the leading coefficient is in V . Multiply through by vn−1

1 and rewrite the result as
(v1s)n + rn−1(v1s)n−1 + · · · + r1v

n−2
1 (v1s) + r0v

n−1
1 = 0. This shows that v1s is integral

over R. Hence, v1s ∈ T , and s/v = v1s/(v1v) ∈ V −1T . �

If R ⊆ S are rings, a prime Q of S that contracts to a prime P of R is said to lie over
P .

Lemma. Let R ⊆ S be domains and let s ∈ S − {0} be integral over R. Then s has a
nonzero multiple in R.

Proof. Consider an equation of integral dependence for s on R of degree n. Since s 6= 0,
we must have that one of the lower coefficients ri is not 0: let h be the least value of i
such that rh 6= 0, so that ri = 0 for i < h < n. Then the equation can be rewritten
as sh(sn−h + · · · + rh+1s + rh) = 0. Since s 6= 0 and S is a domain, we have that
sn−h + · · ·+ rh+1s+ rh = 0, so that rh = s(−sn−h1 − · · · − rh+1), which shows that rh is
a nonzero multiple of s in R. �

Theorem. Let S be an integral extension of R, I ⊆ R an ideal, and u ∈ IS. Then u
satisfies a monic polynomial equation un + i1u

n−1 + · · ·+ in−1u+ in = 0 where it ∈ It for
1 ≤ t ≤ n.

Proof. We have that u =
∑n
t=1 stit, with the st ∈ S and the it ∈ I. We may therefore

replace S by the smaller ring generated over R by u and the elements st. This ring is
module-finite over R. Thus, there is no loss of generality in assuming that S is module-finite
over R, with generators s1, . . . , sn, and, as earlier, we may enlarge the set of generators
so that we may assume that s1 = 1. It is easy to see that IS = Is1 + · · · + Isn, the set
of linear combinations of s1, . . . , sn with coefficients in I: each element is for i ∈ I and
s ∈ S has this form because each element of S is an R-linear combination of s1, . . . , sn.
If u ∈ IS, then every usj is in IS, and so there are n equations

usj =
n∑
t=1

ijksk.

Let V be the n× 1 column matrix with entries s1, . . . , sn and let B be the n× n matrix
(ijk). Then the same argument that we gave earlier shows that u satisfies the characteristic
polynomial of B, which has the form

xn + i1x
n−1 + i2x

n−2 + · · · + in

where it is in It ⊆ R for every t, 1 ≤ t ≤ n. �

Lying over theorem. Let S be an integral extension of R. Then for every prime P
of R, there are primes of S that contract to P , and they are mutually incomparable. In
particular, the map Spec (S) → Spec (R) is onto. For every ideal I of R, the contraction
of IS to R is contained in Rad I, and so if I is radical, IS ∩R = I.
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Proof. We prove the last statement first. Let u ∈ IS ∩ R, Consider the monic equation
that u satisfies given by the preceding theorem. After we substitute u for x, the leftmost
term of the equation is un while the other terms are in I. This implies that un ∈ I and so
u ∈ Rad I, as required.

In particular, if I = P is prime then R−P is a multiplicative system in R ⊆ S, and PS
does not meet it, since PS ∩R = P . Therefore there is a prime ideal Q of S that contains
PS and is disjoint from R− P . Since P ⊆ PS, we see that Q ∩R = P .

It remains only to show that two primes lying over P ⊆ R cannot be comparable.
Suppose to the contrary that Q0 ⊂ Q both lie over P in R. The trick here is to pass to
R/P ⊆ S/Q0. This extension is still integral: given s ∈ S, it satisfies a monic equation
over R, and s+Q satisfies the same equation with coefficients considered mod P . Now the
nonzero prime ideal Q/Q0 lies over the prime ideal (0) in R/P . Thus, it suffices to show
that if R ⊆ S are domains, then a nonzero prime ideal Q of S cannot lie over (0) in R.
This is immediate from the preceding Lemma: any nonzero element of Q has a nonzero
multiple in R. �

Example. The ring of functions from an infinite set X to Z/2Z is integral over Z/2Z:
every element satisfies x2 − x = 0. It has uncountably minimal primes, mutually incom-
parable and all lying over (0) in Z/2Z.

We give another proof of the lying over theorem that does not involve the eigenvalue
trick. Suppose that R ⊆ S is integral and that P ∈ Spec (R). By Supplementary Problem
Set #2, 1. and 2., RP ⊆ (R − P )−1S = S1 and the extension is still integral. If Q1 is a
prime of S1 lying over PRP , then the contraction Q of Q1 to S will lie over P , since PRP
lies over P . Thus, we have reduced to the case where R is quasi-local with maximal ideal
P . It now suffices to show that PS 6= S, for then any maximal ideal of S containing PS
will be prime, and its contraction to R will contain the maximal ideal P but not 1, forcing
the contraction to be P . Consider the family of ideals of R contained in P whose expansion
to S is not all of S. This family contains (0), and the union of a chain in the family is
again in the family: if 1 ∈ S is a linear combination of finitely many elements from the
union, these elements will come from just finitely many of the ideals in the family, and will
all lie in the largest of them. Therefore this family has a maximal element I. Consider
IS ∩ R = J . Then I ⊆ J , and we must have J = I or else JS ⊆ IS 6= S contradicts the
maximality of I. Then R/I → S/IS is injective and still integral, and R/I is quasi-local.
Therefore we may replace R ⊆ S by R/I ⊆ S/IS. If P = (0) we are done. If not, then
choose a ∈ P −{0}. Then the maximality of I implies that aS = S (or else we could have
enlarged I ⊆ R using a preimage of a). This means that there is an element b of S such
that ab = 1. But b is integral over R, so that there is an equation

bn = rn−1b
n−1 + rn−2b

n−2 + · · ·+ r1b+ r0

Since b = a−1, when we multiply both sides by an−1 we get that

b = rn−1 + rn−2a+ · · ·+ r1a
n−2 + r0a

n−1

which shows that a−1 = b ∈ R. Thus, a has an inverse in R, contradicting the assumption
that a ∈ P − {0}. �
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Corollary (Going up theorem). Let R ↪→ S be an integral extension and let

P0 ⊂ P1 ⊂ · · · ⊂ Pd

be a chain of prime ideals of R. Let Q0 be a prime ideal of S lying over P0. Then there is
a chain of prime ideals

Q0 ⊂ Q1 ⊂ · · · ⊂ Qd

of S such that for all t, Qt lies over Pt.

Proof. It suffices to construct Q1 ⊇ Q0 lying over Q1: the result then follows by a straight-
forward induction on d. Consider R/P0 ⊆ S/Q0. This is an integral extension, and P1/P0

is a prime ideal of R/P0, so there is a prime ideal of S/Q0 that lies over it: it will have
the form Q1/Q0 for some prime ideal Q1 of S. It is clear that Q0 ⊂ Q1, and it is easy to
verify that that Q1 lies over P1 in R. �

Corollary. If R ↪→ S is an integral extension then dimR = dimS.

Proof. Let Q0 ⊂ · · · ⊂ Qd be a chain of prime ideals of S. Their contractions will give a
chain of prime ideals of the same length in R: they will be distinct, because comparable
primes cannot contract to the same prime ideal. This shows that dimS ≤ dimR.

On the other hand, given a finite chain of primes in R, the going up theorem implies the
existence of a chain of prime ideals of S of the same length, so that dimS ≥ dimR. �

Let f : R → S be a ring homomorphism, and let f∗ = Spec (f) : Spec (S) → Spec (R)
be the usual map given by contraction. Let Y = Spec (S) and X = Spec (R). Given a map
of sets g : Y → X, and a point x ∈ X, the set g−1(x) is called the fiber of g over x: it is
simply the set of points of Y that map to x. Thus, the fiber of the function f∗ = Spec (f)
over P ∈ Spec (R) is precisely the set of primes of S lying over P in R. This set of primes
is homeomorphic with Spec of

(R− P )−1S/P e ∼= (R− P )−1(S/PS),

where R− P is the image of R− P in S/PS. The ring (R− P )−1S/P e is called the fiber
of R → S over P . (This is really terminology from the theory of schemes, and the term
scheme-theoretic fiber is also used.) Alternatively, it may be defined as the canonically
isomorphic ring (R− P )−1(S/PS). Note that it is an S-algebra. Its primes correspond
exactly to primes of S that contain PS and are disjoint from R− P , which is exactly the
condition for them to lie over P in R. (R − P )−1S/P e is also an algebra over RP /PRP
(which may be identified with fraction field of the domain R/P ).

If R → S is integral (respectively, module-finite), then RP /PRP → (R − P )−1S/P e is
also integral (respectively, module-finite). Up to multiplication by elements coming from
units of R, every element of the (R − P )−1S/P e comes from S, and for the image of an
element of S we may use the same equation of integral dependence that it satisfied over
R, taking the images of the coefficients in RP /PRP . In the case where S is spanned over
R by s1, . . . , sn, the images of s1, . . . , sn span (R− P )−1S/P e over RP /PRP .
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We want to obtain a bound for the number of primes lying over P in the case of a
module-finite extension.

We first prove two preliminary results.

Two ideals I, J of a ring R are called comaximal if I + J = R. Ideals I1, . . . , In of R
are called pairwise comaximal if for all j 6= k, Ij + Ik = R. Note that if m1, . . . ,mn are
mutually distinct maximal ideals of R, then they are pairwise comaximal.

We recall that the product ideal IJ is the ideal generated by all the elements ij for i ∈ I
and j ∈ J . Each element of IJ is a sum of the form i1j1 + · · · + ikjk for some positive
integer k and elements i1, . . . , ik ∈ I and j1, . . . , jk ∈ J .

Lemma (Chinese remainder theorem). If I1, . . . , In are pairwise comaximal in the
ring R, then

I1 · · · In = I1 ∩ · · · ∩ In.

Let J = I1 · · · In. The ideals
I1I2, I3, . . . , In

are also pairwise comaximal. Moreover, the map

R/J → R/I1 × · · · ×R/In

that sends r + J to (r + I1, . . . , r + In) is a ring isomorphism.

Proof. First consider the case where n = 2. Choose i1 ∈ I1 and i2 ∈ I2 such that i1+i2 = 1.
If u ∈ I ∩ J then u = u · 1 = u(i1 + i2) = ui1 + ui2. But ui1 ∈ I1I2 because u ∈ I2, and
ui2 ∈ I1I2 because u ∈ I1. Thus, u ∈ I1I2. The map R → R/I1 × R/I2 that sends
r to (r + I1, r + I2) is a ring homomorphism that clearly has kernel I1 ∩ I2 = I1I2. It
therefore induces an injection R/I1I2 ↪→ R/I1×R2. To see that this map is surjective, let
(r1 + I1, r2 + I2) in the image be given. Then r1i2 + r2i1 maps to this element: mod I1,
r1i2 + r2i1 ≡ r1 · 1 + r2 · 0 ≡ r1, and the calculation mod I2 is exactly similar.

To prove the second statement, it clearly suffices to show that I1I2 is comaximal with
Ij for j ≥ 3. Choose i1 ∈ I1 and u ∈ Ij such i1 +u = 1, and choose i2 ∈ I2 and v ∈ Ij such
that i2 + v = 1. Multiply these equations. Then i1i2 + i1v + ui2 + uv = 1, and i1i2 ∈ I1I2
while i1v + ui2 + uv ∈ Ij .

The general case of the ring isomorphism now follows by induction on n. By the induc-
tion hypothesis,

R/J = R/
(
(I1I2)I3 · · · In

) ∼= (R/(I1I2)
)
×R/I3 × · · · ×R/In

and R/(I1I2) ∼= R/I1 ×R/I2 by the case n = 2 already established. �

If R = Z, the principal ideals a1Z, . . . anZ are pairwise comaximal if and only if the
integers a1, . . . , an are relatively prime in pairs, and we get the classical Chinese remainder
theorem.
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Theorem. Let R be a reduced K-algebra that is module-finite over the field K. This
simply means that R is a finite-dimensional vector space over K. Then R is a product of
finite algebraic field extensions L1 × · · · × Ln of K. R has n maximal ideals, the kernels
of the n product projections R � Li, 1 ≤ i ≤ n, and n, the number of maximal ideals, is
at most the dimension of R as K-vector space.

Proof. Since K has dimension 0 and R is integral over K, R has dimension 0. Thus, every
prime ideal is maximal. Let m1, . . . ,mh be any subset of the maximal ideals of R. By the
Chinese remainder theorem, R/(m1 · · ·mh) ∼= R/m1 × · · · ×R/mh. Let Li = R/mi. Li is
a field and finite-dimensional as a K-vector space, and so it is a finite algebraic extension
of K. As a K-vector space, R/m1 × · · · ×R/mh is the direct sum over K of the Li, which
shows that h is at most the K-vector space dimension of R/(m1 · · ·mh), and therefore is
also at most the K-vector space dimension of R. This means that the number of maximal
ideals of R is at most the K-vector space dimension of R. Now suppose that m1, . . . ,mn

are all the maximal ideals of R. Since R is reduced, the intersection of the mi is (0). Thus,
R ∼= R/(0) ∼= R/m1 × · · · ×R/mn. �

Corollary. Let S be module-finite over R with n generators. The number of prime ideals
of S lying over a prime P of R is at most n.

Proof. By our earlier remarks, we may replace R→ S by RP /PRP → (RP )−1S/P e, and n
does not increase. But now R = K is a field, and S is a finite-dimensional K-vector space
of dimension at most n. Passing to Sred can only decrease its K-vector space dimension,
while the number of prime ideals (which are all maximal) does not change, and now we
may apply the preceding result. �

Note that the solution given for problem 4. in Supplementary Problem Set #1 estab-
lishes a bijection between the natural transformations from hX tohY and the morphisms
from Y to X, and it easy to check that it is compatible with composition, so that an
isomorphism of hX and hY implies an isomorphism of Y with X. A useful consequence
is that the object representing a functor is unique, up to isomorphism. This establishes
literally hundreds of isomorphisms. For example, if S is a multiplicative system in R with
image S in R/I, the isomorphism S−1R/IS−1R ∼= S

−1
(R/I) is a consequence of the fact

that both represent, in the category of rings, the functor that assigns to the ring T all
homomorphisms from R→ T such that I maps to 0 in T and S maps into the units of T .

If P is a prime ideal of R, by the height of P we mean the supremum of lengths of finite
strictly ascending chains of primes contained in P . It is immediate that the height of P
is the same as the Krull dimension of the quasilocal ring RP . It should be clear that the
dimension of R is the same as the supremum of heights of all prime ideals, and that this
will be the same as the supremum of heights of all maximal ideals.

Corollary. If R ⊆ S is an integral extension and Q is a prime ideal of S lying over a
prime P in R, then the height of P is bigger than or equal to the height of Q.

Proof. A chain of distinct primes contained in Q will contract to a chain of distinct primes
contained in P . �
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A much harder problem is this: suppose that S is integral over R and we are given a
chain

Pn ⊃ Pn−1 ⊃ · · · ⊃ P0

of primes in R, and a prime Qn of S lying over Pn. Can we find a chain

Qn ⊃ Qn−1 ⊃ · · · ⊃ Q0

of S such that Qi lies over Pi for every i? This turns out to need additional hypotheses
even when R is a domain. In order to formulate the correct hypothesis on R needed here,
we must discuss the notion of an integrally closed domain.

The set of elements of S ⊇ R that are integral over R was shown earlier to be a ring.
This ring is called the integral closure of R in S.

We shall say that a domain R is integrally closed or normal if every element of the
fraction field of R that is integral over R is in R. The integral closure of a domain R in
its fraction field is called the the integral closure or normalization of R.

A unique factorization domain is normal. To see this, suppose that a/b is a fraction
integral over R but not in R. We may assume that it has been written in lowest terms, so
that a and b have no common divisor other than units, and b is not a unit. If it satisfies
the equation

(a/b)d + rn−1(a/b)d−1 + · · ·+ r0 = 0

with the ri ∈ R we may multiply through by bd to get the equation

ad + rn−1a
d−1b+ · · ·+ r0b

d = 0.

Every term other than the leftmost is divisible by b, and so b | ad. Any prime factor of b
must divide ad and therefore a, a contradiction, since a/b is in lowest terms. �

In particular, any principal ideal domain, as well as any polynomial ring over a field or
a principal ideal domain, is normal.

If K is a field, R = K[x2, x3] is not normal. x = x3/x2 is in the fraction field, and is
integral over K[x2, x3], since z = x is a root of z2 − x2 = 0. The integral closure of R is
K[x].

The ring Z[
√

5] is not integrally closed. The element τ =
1 +
√

5
2

is in the fraction field,

and is integral, since it is a root of x2 − x − 1 = 0. It is not obvious but not difficult to
show that Z + Zτ is integrally closed, and is the integral closure of Z[

√
5]. (Suppose that

a+ b
√

5 is integral over Z[
√

5] and hence over Z, where a, b ∈ Q. It follows that a− b
√

5
will satisfy the same monic polynomial over Z that a + b

√
5 does, and so is also integral

over Z. Adding, we find that a+ b
√

5 + a− b
√

5 = 2a is integral over Z, and therefore in
Z. Thus, a is either k or k + 1/2, where k is an integer. By subtracting a suitable integer
linear combination of

√
5 and τ , we get an element of the form c

√
5, integral over Z, such

that c is an rational. It will therefore suffice to show that if c is rational and c
√

5 is integral
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over Z, then c is an integer. Write c = m/n in lowest terms. Then 5c2 is rational and is
integral over Z and therefore is an integer, i.e., n2 | 5m2. If 5 |n then it does not divide m,
and this is impossible. If 5 does not divide n, then n2 |m2, so that c is a rational number
whose square is an integer, and it follows that c is an integer. �)

If R ⊆ S are domains and R is a direct summand of S as an R-module, then R is normal
whenever S is. For Suppose that a, b ∈ R, b 6= 0, but that a/b is integral over R. Then it
is integral over S, and therefore a/b = s ∈ S, i.e., a = bs. But there is an R-linear map f
from S = R⊕RW (where W is an R-submodule of S) that kills W and is the identity on
R. It follows that a = f(a) = f(bs) = bf(s), and so a/b = f(s) ∈ R.

Let K be a field. Then the ring R generated over K by all monomials of degree d
in S = K[x1, . . . , xn] is integrally closed: we shall show that it is a direct summand of
K[x1, . . . , xn]. Note that every monomial of degree divisible by d, say degree dk, is the
product of k monomials of degree d. Let W be the K-span of all monomials whose degree
is not divisible by d. The product of an element of R and an element of W is in W : when
we multiply and distribute in all possible ways, we get a sum of terms each of which is the
product of a monomial of degree divisible by d and a monomial of degree not divisible by
d, and that product is in W . Thus, S = R⊕RW . If the number of variables is greater than
one and d > 1, these rings are not unique factorization domains. For example, if n = 2
and d = 2, S = K[x1, x2] and R = K[x2

1, x1x2, x
2
2]. The fact that (x1x2)2 = (x2

1)(x2
2)

shows that R is not a UFD.

We can now state the result we aim to prove:

Theorem (Going down theorem). Let R be a normal integral domain, and let S be
integral over R. Suppose that no nonzero element of R is a zerodivisor in S, i.e., that S
is torsion-free as an R-module. Let

Pn ⊃ Pn−1 ⊃ · · · ⊃ P0

be a chain of primes in R, and let Qn be a prime ideal of S lying over Pn. Then there is
a chain of primes

Qn ⊃ Qn−1 ⊃ · · · ⊃ Q0

of S such that Qi lies over Pi for every i.

We need some preliminaries before we can prove this.

Proposition. Let A be a ring and A[x] the polynomial ring in one variable over A.
(a) If f and g are nonzero polynomials of A[x] with degrees n and d and leading coefficients

a and b respectively, then if either a or b is not a zerodivisor in A, the degree of fg is
d+ n and its leading coefficient is ab. In particular, the conclusion holds if f or g is
monic.

(b) (Division algorithm) Let g be any polynomial and f a monic polynomial in R[x] of
degree d. Then one can write g = qf + r, where q, r ∈ A[x] and either r = 0 or the
degree of r is < d. This representation is unique.

(c) Let R ⊆ S be a ring extension and let f , g be as in (b), with f monic. Then g is a
multiple of f in R[x] if and only if it is a multiple of f in S[x].
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Proof. It is clear that fg has at most one term of degree d + n, namely abxd+n, with all
other terms of lower degree, and that it has such a term provided that ab 6= 0, which is
true if either a or b is not a zerodivisor. This proves part (a).

To prove existence in part (b), we perform long division in the usual way. To make this
precise, first note that if g = 0 or has degree < d , we may take q = 0 and r = g. Otherwise,
let axn be the highest degree term in g, where a 6= 0 is in R. Then g1 = g − axn−dg has
smaller degree than f , and so can be written in the form q1g+r by induction on the degree
of f . But then f = (axn−d + q1)g + r, as required.

It remains to prove uniqueness. But if qf + r = q′f + r′ both satisfy the condition, then
(q − q′)f = r′ − r is 0 or has degree smaller than that of f , which is impossible from part
(a) unless q − q′ = 0, in which case r′ − r = 0 as well.

To prove part (c), note that we can perform the division algorithm thinking in R[x] or
in S[x]. By uniqueness, the result is the same. If g is a multiple of f in S[x] the remainder
must be zero, and then the same holds in R[x]. �

Note in connection with part (a) that if A = Z/(4) and 2 denotes the image of 2 in A,
then ( 2x+ 1)( 2x+ 1) = 1 in A[x].

Proposition. Let R be an integrally closed domain with fraction field K and let S be
a domain containing R. Suppose that s ∈ S is integral over R. Let f(x) ∈ K[x] be
the minimal monic polynomial of s over K. Then f(x) ∈ R[x], and for any polynomial
g(x) ∈ R[x] such that g(s) = 0, f(x) | g(x) in R[x].

Proof. Choose an algebraically closed field L that contains the fraction field of S. Thus,
K ⊆ L as well. s satisfies some monic polynomial h(x) with coefficients in R. It follows
that g(x) |h(x) in K[x]. Therefore, every root of g in L is a root of h(x). It follows that all
the roots of g are integral over R. The coefficients of g are elementary symmetric functions
of the roots of g. Therefore, the coefficients of g are elements of K that are integral over
R. Since R is normal, they are in R. Now suppose that g(x) is any polynomial of R[x]
such that g(s) = 0. We know that f(x) | g(x) in K[x]. The fact that f(x) | g(x) in R[x]
follows from part (c) of the preceding proposition. �

We are now ready for:

Proof of the going down theorem. We have an integrally closed domain R ⊆ S where S is
integral over R and the nonzero elements of R are not zerodivisors in S. We are given a
prime Q of S lying over P in R, and a prime P0 of R with P0 ⊂ P . We want to show that
there is a prime Q0 ⊂ Q such that Q0 lies over P0. The general case of the going down
theorem then follows by a straightforward induction.

We begin by showing that there is a prime ideal q ⊆ S such that q ⊂ Q and q lies over the
prime ideal (0) in R. To see this, consider the multipicative system W = (R−{0})(S−Q)
in S. Because the elements of R−{0} are not zerodivisors in S and the elements of S−Q
are not zero, the multiplicative system W does not contain 0. This means that there is a
prime ideal q of S disjoint from W . In particular, since R− {0} ⊆W , we must have that
q ∩ R = (0), and since S − Q ⊆ W , we must have that q ⊆ Q. Since Q lies over P and
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P0 ⊂ P , P 6= (0), and this means that q ⊂ Q. We now replace S by S/q. Since q does not
meet R, we still have an injection R ↪→ S/q, and we may replace R by its image in S/q
and so assume that R ⊆ S/q. This extension is obviously still integral: the monic equation
over R satisfied by s ∈ S is also satisfied by its image in S/q. We replace Q by Q/q, which
still lies over P . If we can find a prime of S/q contained in Q/q that lies over P0, it will
have the form Q0/q for some prime Q0 of S with Q0 ⊆ Q. Then Q0 will lie over P0 in R
and we will also have Q0 ⊆ Q. Since P0 ⊂ P , we actually have that Q0 ⊂ Q.

Therefore, we may assume without loss of generality that R ⊆ S is an extension of
domains and that S is integral over R. This stronger condition replaces the assumption
that nonzero elements of R are not zerodivisors in S. Let A = R−P0 and B = S −Q. To
complete the proof, we shall show that the multiplicative system AB does not meet the
ideal P0S. This implies that there is a prime ideal Q0 of S containing P0S and disjoint
from AB ⊇ A ∪ B, so that P0 ⊆ Q0 and Q0 meets neither R − P0 nor S − Q. But this
means that Q0 lies over P0 and is contained in Q, as required.

Suppose that a ∈ A and b ∈ B are such that ab ∈ P0S. The argument used in the
proof of the lying over theorem (see the lecture notes from September 24) shows that ab
satisfies a monic polynomial equation g1(x) in one variable x such that all coefficients of
the equation except the leading coefficient are in P0 (not just in P0S).

This means that b is a root of the polynomial g(x) = g1(ax) over b. Note that the
leading coefficient of g(x) is a power of a, and that all other coefficients are in P0.

Think of K = frac (R) as contained in frac (S) = L. Since b satisfies the algebraic
equation g(b) = 0, it is algebraic over K, and has a monic minimal polynomial f(x) with
coefficients in K that is irreducible in K[x]. By the preceding Lemma, this polynomial has
coefficients in R, since R is normal. It divides g(x) in K[x], because g(x) has coefficients
in R ⊆ K, and f(x) is the minimal polynomial of b.

Since f(x) is monic, our result on the division algorithm implies that f(x) divides g(x)
in R[x] as well: let us say that g(x) = f(x)q(x), where all three have coefficients in R. We
now consider coefficients mod P0, which means, in effect , that we are working in R[x],
where R = R/P0. Let a be the image of a in R: since a ∈ R − P , a 6= 0 in R/P . Then,
mod P0, g(x) has the form adxd, since all lower coefficents are in P0. This implies that
the monic polynomial f must become xk mod P0, where k is its degree. This means,
thinking over R, that f(x) is monic of degree k with all lower coefficients in P0: say
f(x) = xk + pk−1x

k−1 + · · ·+ p0, where the pj ∈ P0.

Since b is a root of f(x), we have that bk = −pk−1b
k−1 − · · · − p0 ∈ P0S ⊆ Q, and so

b ∈ Q, which is a contradiction! Thus, AB does not meet P0S, and we are done. �

Corollary. Let R be an integrally closed domain, S an integral extension of R that is
torsion free over R, and Q a prime ideal of S that lies over P in R. Then the height of Q
is equal to the height of P .

Proof. We have already seen that the height of Q is at most the height of P . Conversely,
given a chain of primes contained in P we may use the going down theorem, starting with
the largest prime in the chain, to construct a chain of primes in S that lies over it and
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is contained in Q, and this shows that the height of Q is at least as big as the height of
P . �

Let’s look at two examples. Consider R = K[x] ⊆ K[x, y]/(y2 − y, xy) = S. This is
integral, since y satisfies a monic equation. It is an extension: we can map this larger
algebra back to K[x] by sending x 7→ x and y 7→ 0, and the composition is the identity on
K[x]. The element 1− y generates a minimal prime Q of the larger ring containing x and
not y: we can see that it is minimal, because a smaller prime cannot contain (1− y) and
cannot contain y either (or else Q would contain both y and 1− y), while y(1− y) = 0 in
the quotient. But (1− y)S contracts to xK[x], which has height one. The problem here is
that x is a zerodivisor in S, which shows that one cannot omit the hypothesis that S be
torsion-free over R in the statement of the going down theorem.

In the example above, R is normal. We next consider an example where both rings are
domains but R is not normal: in fact, S is the integral closure of R. Let K be a field, let
S = K[x, y], and let

R = K[x(1− x), x2(1− x), y, xy] ⊆ S.

S is integral over R since it is generated over K[y] ⊆ R by x, and z = x satisfies the monic
polynomial z2 − z − x(1− x) = 0, which has coefficients in R. x is in the fraction field of
R, since it is equal to xy/y or x2(1− x)/

(
x(1− x)

)
. Let Q = (1− x, y)S, which is easily

seen to lie over
P =

(
x(1− x), x2(1− x), y, xy

)
R,

a maximal ideal of R, and let P0 be the contraction of xS to R. Then

P0 =
(
x(1− x), x2(1− x), xy

)
R.

We claim that no prime Q0 contained in Q lies over P0. For any prime of S contained in
Q cannot contain x, for x /∈ Q. But since Q0 must contain both x(1 − x) and xy (these
elements are in P0) and it does not contain x, it must contain both 1 − x and y, which
forces it to be equal to Q. But then it lies over P , not P0. This shows that one cannot
omit the hypothesis that R be normal in the statement of the going down theorem.


