
The local nature of an element of a ring or module

Let R be any commuative ring, and let M be any R-module. Very possibly, M = R.
Consider a Zariski open cover of X = Spec (R) by sets of the form D(fi) = {P ∈ Spec (R) :
fi /∈ P}, Here, i runs through an index set I that may be infinite. If u ∈M , then u has an
image u/1 = ui in each of the modules Mfi . Moreover, the image of ui in Mfifj

∼= (Mfi)fj

is the same as the image of uj in (Mfj
)fi

: both are the same as the image of u in Mfifj
.

The theorem below provides a converse. This is an extraordinarily useful fact: roughly
speaking, one may construct an element of a ring or module by constructing it locally with
respect to an open cover, provided that the choices fit together on overlaps. This is one of
the ideas that underlies the theory of schemes. We give a completely elementary proof of
this result here, which does not need any knowledge of sheaves.

Theorem. Let R be a ring, M and R-module, and let {D(fi) : i ∈ I} be a Zariski open
cover of X = Spec (R). Suppose that for every i ∈ I, one is given ui ∈Mfi

in such a way
that for all i, j ∈ I, the image of ui in (Mfi)fj is the same as the image of uj in (Mfj )fi

under the canonical identification of these two modules. Then there is a unique element
u ∈M such that the image of u in Mfi

is ui for every i.

Proof. The D(fi) cover X if and only if the fi generate the unit ideal, in which case finitely
many cover. If there is a unique u for every finite cover, all of these elements u must be the
same: given two finite covers, we may choose u to be the element that solves the problem
for their union, and this element works for each of the original finite covers. The same
element then solves the problem for the original (possibly infinite) cover.

Hence, we may assume without loss of generality that the cover is finite, with n open
sets, D(f1), . . . , D(fn). Note that for positive integers ki, f1, . . . , fn generate the unit
ideal iff fk1

1 , . . . , fkn
n generate the unite ideal. In fact, D(f) = D(fk) for k > 0. To prove

uniqueness, suppose that u and u′ have the same image in Mfi for all i. Then u − u′

maps to 0 in each, which means that fki
i (u− u′) = 0 for some ki. Thus, AnnR(u− u′) ⊇

(fk1
1 , . . . , fkn

n ) = R, and u− u′ = 0.

To prove existence we use induction on n. If n = 1, f1 is a unit, Mf1 = M , and the
result is obvious.

We next consider the case where n = 2, which is the heart of the argument. We have el-
ements u1 = w1/fh

1 ∈Mf1 and u2 = w2/fk
2 ∈Mf2 , where w1, w2 ∈M and their images in

Mf1f2 agree. This means that for some sufficiently large N , (f1f2)N (fk
2 w1−fh

1 w2) = 0, i.e.,
fN+k
2 (fN

1 w1)− fN+h
1 (fN

2 w2) = 0. Then u1 = fN
1 w1/fN+h

1 , and u2 = fN+k
2 w2/fN+h

2 . We
may replace f1, f2 by fN+h

1 , fN+k
2 , respectively, and w1, w2 by fN

1 w1, fN
2 w2, respectively,

to simply notation. Then, after this change, we may assume that u1 = w1/f1, u2 = w2/f2,
and f2w1 − f1w2 = 0. The new f1 and f2 still generate the unit ideal, so that we have
r1, r2 ∈ R such that r1f1 + r2f2 = 1. Let u = r1w1 + r2w2. The image of u in Mf1 is
r1w1/1 + (r2/f1)(f1w2)/1 = (r1f1/f1)w1/1 + (r2/f1)(f2w1/1) =

(
(r1f1 + r2f2)/f1

)
w1/1 =

w1/f1 = u1. The image of u in Mf2 is u2 by symmetry.
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We now assume the result for a given n ≥ 2, and prove existence for the case where
we have n + 1 open sets, D(f1), . . . , D(fn+1) in the cover. Since the fi generate the unit
ideal, we can choose r1, . . . , rn+1 ∈ R such that

∑n+1
j=1 rjfj = 1. Let g = g1 =

∑n
j=1 rjfj

and let g2 = fn+1. In the ring Rg, the images fj/1 of the elements f1, . . . , fn generate the
unit ideal. We apply the induction hypothesis to the module Mg over this ring and the n
open sets D(f1/1), . . . , D(fn/1). In (Mg)fj

∼= Mgfj
∼= (Mfj

)g we have the element uj/1,
the image of uj when we localize at g. Moreover, for 1 ≤, i, j ≤ n, ui/1 and uj/1 have the
same image in M(fig)(fjg) = Mfifjg, since ui and uj have the same image in Mfifj . Hence,
there is a unique element v1 ∈ Mg whose images in the Mfjg, 1 ≤ j ≤ n, are the same as
the images of the respective uj . Let v2 = un+1 ∈ Mg2 . Since g1 + rn+1g2 = 1, we have
that g1 and g2 generate the unit ideal in R. We next show that v1 and v2 have the same
image in Mg1g2 . Let w denote the difference of the images. Since f1/1, . . . , fn/1 generate
the unit ideal in Rg1 , and Mg1g2 is a module over Rg1 , it suffices to show that every fj/1
has a power that kills w. Thus, it suffices to show that v1 and v2 have the same image in
every Mfjg2g, 1 ≤ j ≤ n. We know that the image of v1 is the same as the image of uj ,
while the image of v2 is the image of un+1. But uj and un+1 have the same image even in
Mfjfn+1 = Mfjg2 by hypothesis., and this remains true when we localize further.

By the case where n = 2, there exists an element u ∈M whose image in Mg1 is v1 and
whose image in Mg2 = Mfn+1 is v2 = un+1. It remains to show that the image of u in Mfj

is uj for 1 ≤ j ≤ n. Since g1 and g2 generate the unit ideal in R, it suffices to prove this
after localization at g1 and at g2. But the image of u in Mfjg1 is the same as the image of
uj by construction, and the image of u in Mfjg2 is the image of un+1/1 in Mfjfn+1 , which
is the same as the image of uj by hypothesis. �


