
Noether normalization and Hilbert’s Nullstellensatz

We prove the Noether normalization theorem over a field and, more generally, over an
integral domain. We then deduce Hilbert’s Nullstellensatz.

The following result implies that, after a change of variables, any nonzero polynomial in
R = K[x1, . . . , xn], the polynomial ring in in n variables over a field, becomes a nonzero
scalar times a polynomial that is monic in xn with coefficients in A = K[x1, . . . , xn−1] ⊆ R,
where we think of R as A[xn]. We may also do this with any one of the other variables. This
simple trick, or method, provides a wealth of information about algebras finitely generated
over a field. It will be the key to our proofs of the Noether normalization theorem and
Hilbert’s Nullstellensatz.

Consider this example: the polynomial x1x2 is not monic in either variable. But there
is an automorphism of the polynomial ring in two variables that fixes x2 and maps x1 to
x1 +x2. (Its inverse fixes x2 and maps x1 to x1−x2.) The image of x1x2 is (x1 +x2)x2 =
x2

2 + x1x2. As a polynomial in x2 over K[x1], this is monic. Note that we may also think
of the effect of applying an automorphism as a change of variables.

More generally, note that if g1(xn), . . . , gn−1(xn) are arbitrary elements of K[xn] ⊆ R,
then there is a K-automorphism φ of R such that xi 7→ yi = xi + gi(xn) for i < n and
while xn = yn is fixed. The inverse automorphism is such that xi 7→ xi − gi(xn) while xn
is again fixed. This means that the elements yi are algebraically independent and generate
K[x1, . . . , xn]. They are “just as good” as our original indeterminates.

Lemma. Let D be a domain and let f ∈ D[x1, . . . , xn]. Let N ≥ 1 be an integer that
bounds all the exponents of the variables occurring in the terms of f . Let φ be the D-
automorphism of D[x1, . . . , xn] such that xi 7→ xi + xN

i

n for i < n and such that xn maps
to itself. Then the image of f under φ is a polynomial whose highest degree term involving
xn has the form cxmn , where c is a nonzero element of D. In particular, if D = K is a
field, then the image of f is a nonzero scalar of the field times a polynomial that is monic
in xn when considered as a polynomial over K[x1, . . . , xn−1].

Proof. Consider any nonzero term of f , which will have the form cαx
a1
1 x

a2
2 · · ·xan

n , where
α = (a1, . . . , an) and cα is a nonzero element in D. The image of this term under φ is

cα(x1 + xNn )a1(x2 + xN
2

n )a2 · · · (xn−1 + xN
n−1

n )an−1xan
n ,

and this contains a unique highest degree term: it is the product of the highest degree
terms coming from all the factors, and it is

cα(xNn )a1(xN
2

n )a2 · · · (xN
n−1

n )an−1xan
n = cxan+a1N+a2N

2+···+an−1N
n−1

n .

The exponents that one gets on xn in these largest degree terms coming from distinct
terms of f are all distinct, because of uniqueness of representation of integers in base N .
Thus, no two exponents are the same, and no two of these terms can cancel. Therefore,
the degree m of the image of f is the same as the largest of the numbers

an + a1N + a2N
2 + · · ·+ an−1N

n−1

1
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as α = (a1, . . . , an) runs through n-tuples of exponents occurring in nonzero terms of f ,
and for the choice α0 of α that yields m, cα0x

m
n occurs in φ(f), is the only term of degree

m, and and cannot be canceled. When D = K is a field, it follows that c−1
α0
φ(f) is monic

of degree m in xn when viewed as a polynomial in A[xn], as required. �

Let R be an A-algebra and z1, . . . , zd ∈ R. We shall say that the elements z1, . . . , zd
are algebraically independent over A if the unique A-algebra homomorphism from the
polynomial ring A[x1, . . . , xd] → R that sends xi to zi for 1 ≤ i ≤ n is an isomorphism.
An equivalent statement is that the mononomials za1

1 · · · z
ad

d as (a1, . . . , ad) varies in Nd
are all distinct and span a free A-submodule of R: of course, this free A-submodule is
A[z1, . . . , zd]. The failure of the zj to be algebraically independent means precisely that
there is some nonzero polynomial f(x1, . . . , xd) ∈ A[x1, . . . , xd] such that f(z1, . . . , zd) =
0. The following is now easy:

In the proof result below, we localize successively at several nonzero elements in a domain
D. Note that if we localize D at an element c 6= 0, and then localize Dc at an element
b/ck 6= 0, we get the same result Dbc as if we had localized D at the single element bc.
Therefore, by induction, the effect of a finite number of localizations at nonzero elements
is the same as the result of localizing the original domain at one nonzero element.

Noether normalization theorem. Let D be an integral domain and let R be any finitely
generated D-algebra extension of D. Then there is a nonzero element c ∈ D and elements
z1, . . . , zd in Rc algebraically independent over Dc such that Rc is module-finite over its
subring Dc[z1, . . . , zd], which is isomorphic to a polynomial ring (d may be zero) over Dc.
In particular, if D = K, a field, then it is not necessary to invert an element: every finitely
generated K-algebra is isomorphic with a module-finite extension of a polynomial ring!

Proof. We use induction on the number n of generators of R over D. If n = 0 then R = D.
We may take d = 0. Now suppose that n ≥ 1 and that we know the result for algebras
generated by n − 1 or fewer elements. Suppose that R = D[θ1, . . . , θn] has n generators.
If the θi are algebraically independent over K then we are done: we may take d = n
and zi = θi, 1 ≤ i ≤ n. Therefore we may assume that we have a nonzero polynomial
f(x1, . . . , xn) ∈ D[x1, . . . , xn] such that f(θ1, . . . , θn) = 0. Instead of using the original
θj as generators of our K-algebra, note that we may use instead the elements

θ′1 = θ1 − θNn , θ′2 = θ2 − θN
2

n , . . . , θ′n−1 = θn−1 − θN
n−1

n , θ′n = θn

where N is chosen for f as in the preceding Lemma. With φ as in that Lemma, we have
that these new algebra generators satisfy φ(f) = f(x1 +xNn , . . . , xn−1 +xN

n−1

n , xn) which
we shall write as g. We replace D and R by their localizations at Dc and Rc, where c is the
coefficient of the highest power of xn occurring, so that the polynomial may be replaced
by a multiple that is monic in xn. After multiplying by a unit of Dc, we have that g is
monic in xn with coefficients in Dc[x1, . . . , xn−1]. This means that θ′n is integral over
Dc[θ′1, . . . , θ

′
n−1] = R0, and so Rc is module-finite over R0. Since R0 has n− 1 generators

over Rc, we have by the induction hypothesis that R0 is module-finite over a polynomial
Rcc′ [z1, . . . , zd] ⊆ R0, and then Rcc′ is module-finite over Dcc′ [z1, . . . , zd] as well. �
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Note that if K ⊆ L are fields, the statement that L is module-finite over K is equivalent
to the statement that L is a finite-dimensional vector space over K, and both are equivalent
to the statement that L is a finite algebraic extension of K.

Also notice that the polynomial ring R = K[x1, . . . , xd] for d ≥ 1 has dimension at
least d: (0) ⊂ (x1)R ⊂ (x1, x2)R ⊂ · · · ⊂ (x1, . . . , xd)R is a strictly increasing chain
of prime ideals of length d. Later we shall show that the dimension of K[x1, . . . , xd] is
exactly d. But for the moment, all we need is that K[x1, . . . , xd] has dimension at least
one for d ≥ 1.

Corollary (Zariski’s Lemma). Let R be a finitely generated algebra over a field K,
and suppose that R is a field. Then R is a finite algebraic extension of K, i.e., R is
module-finite over K.

Proof. By the Noether normalization theorem, R is module-finite over some polynomial
subring K[z1, . . . , zd]. If d ≥ 1, the polynomial ring has dimension at least one, and then
R has dimension at least one, a contradiction. Thus, d = 0, and R is module-finite over
K. Since R is a field, this means precisely that R is a finite algebraic extension of K. �

Corollary. Let K be an algebraically closed field, let R be a finitely generated K-algebra,
and let m be a maximal ideal of R. Then the composite map K → R � R/m is an
isomorphism.

Proof. R/m is a finitely generated K-algebra, since R is, and it is a field. Thus, K → R/m
gives a finite algebraic extension of K. Since K is algebraically closed, it has no proper
algebraic extension, and so K → R/m must be an isomorphism.

Corollary (Hilbert’s Nullstellensatz, weak form). Let R = K[x1, . . . , xn] be a poly-
nomial ring over and algebraically closed field K. Then every maximal ideal m of R is
the kernel of a K-homomorphism K[x1, . . . , xn] → K, and so is determined by the el-
ements λ1, . . . , λn ∈ K to which x1, . . . , xn map. This maximal ideal is the kernel of
the evaluation map f(x1, . . . , xn) 7→ f(λ1, . . . , λn). It may also be described as the ideal
(x1 − λ1, . . . , xn − λn)R.

Proof. Since γ : K ∼= R/m, the K-algebra map R → R/m, composed with γ−1, gives a
map R � K whose kernel is m. �

Thus, when K is algebraically closed, we have a bijection between the points of Kn and
the maximal ideals of K[x1, . . . , xn].

Corollary (Hilbert’s Nullstellensatz, alternate weak form). Let f1, . . . , fn be poly-
nomials in K[x1, . . . , xn], where K is algebraically closed. Then then the fi generate the
unit ideal (i.e., we have 1 =

∑
t gtft for suitable polynomials gt) if and only if the polynomi-

als fi do not vanish simultaneously, i.e., if and only if the algebraic set V (f1, . . . , fn) = ∅.

Proof. If the fi do not generate the unit ideal, the ideal they generate is contained in some
maximal ideal of K[x1, . . . , xn]. But the functions in that maximal ideal all vanish at one
point of Kn, a contradiction. On the other hand, if the fi all vanish simultaneously at a
point of Kn, they are in the maximal ideal of polynomials that vanish at that point: this
direction does not need that K is algebraically closed. �



4

We have two uses of the notation V (S): one is for any subset S of any ring, and it is
the set of all primes containing S. The other use is for polynomial rings K[x1, . . . , xn],
and then it is the set of points where the given polynomials vanish. For clarity, suppose
that we use V for the second meaning. If we think of these points as corresponding to a
subset of the maximal ideals of the ring (it corresponds to all maximal ideals when the field
is algebraically closed), we have that V(S) is the intersection of V (S) with the maximal
ideals corresponding to points of Kn, thought of as a subset of Kn. Suppose that for every
y ∈ Kn we let my = {f ∈ K[x1, . . . , xn] : f(y) = 0}. Then my is a maximal ideal of
K[x1, . . . , xn] whether K is algebraically closed or not. When K is algebraically closed,
we know that all maximal ideals have this form. This gives an injection Kn → Spec (R)
that sends y to my. The closed algebraic sets of Kn are simply the closed sets of Spec (R)
intersected with the image of Kn, if we identify that image with Kn. Thus, the algebraic
sets are the closed sets of a topology on Kn, which is called the Zariski topology. It is the
inherited Zariski topology from Spec (R). Note that V(I) = {y ∈ Y : my ∈ V (I)}.

In this course, I will continue from here on to use the alternate notation V when dis-
cussing algebraic sets. However, people often use the same notation for both, depending
on the context to make clear which is meant.

Theorem (Hilbert’s Nullstellensatz, strong form. Let K be an algebraically closed
field and let R = K[x1, . . . , xn] be the polynomial ring in n variables over K. Suppose
that g, f1, . . . , fs ∈ R. Then g ∈ Rad (f1, . . . , fs) if and only if V(g) ⊇ V (f1, . . . , fs),
i.e., if and only if g vanishes at every point where the fi vanish simultaneously.

Proof. It is clear that gN =
∑s
i=1 gifi implies that g vanishes wherever the all of the fi

vanish: at such a point y, we have that g(y)N = 0 and so g(y) = 0.

The more interesting implication is the statement that if g does vanish whenever all
the fi vanish then g has a power that is in the ideal generated by the fi. The following
method of proof is called Rabinowitsch’s trick. Introduce an extra variable z and consider
the polynomials f1, . . . , fs, 1 − gz ∈ K[x1, . . . , xn, z]. There is no point of Kn+1 where
these all vanish: at any point where the fi vanish (this only depends on what the first
n coordinates of the point are), we have that g vanishes as well, and therefore 1 − gz is
1− 0 = 1. This means that f1, . . . , fs, 1− gz generate the unit ideal in K[x1, . . . , xn, z],
by the weak form of Hilbert’s Nullstellensatz that we have already established. This means
that there is an equation

1 = H1(z)f1 + · · ·+Hs(z)fs +H(z)(1− gz)

where H1(z), . . . , Hs(z) and H(z) are polynomials in K[x1, . . . , xn, z]: all of them may
involve all of the variables xj and z, but we have chosen a notation that emphasizes their
dependence on z. But note that f1, . . . , fs and g do not depend on z. We may assume
that g 6= 0 or the result is obvious. We now define a K[x1, . . . , xn]-algebra map φ from
K[x1, . . . , xn, z], which we think of as K[x1, . . . , xn][z], to the ring K[x1, . . . , xn][1/g] =
K[x1, . . . , xn]g, which we may think of as a subring of the fraction field of K[x1, . . . , xn].
This ring is also the localization of K[x1, . . . , xn] at the multiplicative system {1, g, g2, . . . }
consisting of all powers of g. Note that every element of K[x1, . . . , xn]g can be written
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in the form u/gh, where u ∈ K[x1, . . . , xn] and h is some nonnegative integer. We define
the K[x1, . . . , xn]-algebra map φ simply by specifying that the value of z is to be 1/g.
Applying this homomorphism to the displayed equation, we find that

1 = H1(1/g)f1 + · · ·+Hs(1/g)fs +H(1/g)(1− 1)

or
1 = H1(1/g)f1 + · · ·+Hs(1/g)fs.

Since each of the Hi(1/g) is in K[x1, . . . , xn]g, we can choose a positive integer N so
large that each of the gi = gNHi(1/g) ∈ K[x1, . . . , xn]: there are only finitely many
denominators to clear. Multiplying the most recently displayed equation by gN gives the
equation gN = g1f1 + · · ·+gnfn with gi ∈ K[x1, . . . , xn], which is exactly what we wanted
to prove. �

Corollary. Let R→ S be a homomorphism of finitely generated K-algebras. Then every
maximal ideal of S contracts to a maximal ideal of R.

Proof. Suppose that the maximal ideal n of S contracts to the prime P in R, so that
K ⊆ R/P ⊆ S/n. Then S/n is a finite algebraic extension of K, i.e., a finite dimensional
K-vector space, and so the domain R/P is a finite-dimensional K-vector space, i.e., it is
module-finite over K, and therefore it is a domain of dimension 0, which forces it to be a
field. �


